
CS390C: Principles of Concurrency and Parallelism

Principles of Concurrency and
Parallelism

 Lecture 5: Erlang

 1/31/12

Tuesday, February 7, 12

CS390C: Principles of Concurrency and Parallelism

Example
● Suppose we have N threads (or processes, tasks) that form a ring
● Each thread communicates with its neighbor forwarding a message

● How big can we make the ring?
● How long does it take to send a message?

Joe Armstrong COP

Process creation times

Distributed Systems Laboratory 3

Joe Armstrong COP

Message passing times

Distributed Systems Laboratory 4

Tuesday, February 7, 12

CS390C: Principles of Concurrency and Parallelism

Philosophy
● Independent processes

− suitable for executing on distributed machines

● No sharing

− (Deep) copy data sent on messages

● no cross-machine pointers
● no locks, data races, synchronization issues, ...

● All processes have a unique name

● Asynchronous sends, synchronous receives

− Eventual delivery

− But if A sends messages m1 and m2 to B, m2 will never arrive before
m1

3

Tuesday, February 7, 12

CS390C: Principles of Concurrency and Parallelism

Key features

● Functional
− single assignment (every variable assigned to at most once)

● Lightweight first-class processes
● Pattern-matching
● Small collection of datatypes

− lists, tuples, pairs

● Dynamic typing
● Realtime concurrent garbage collection

4

Tuesday, February 7, 12

CS390C: Principles of Concurrency and Parallelism

Examples

5

Joe Armstrong COP

Sequential Erlang in 5 examples

1 - Factorial

-module(math).

-export([fac/1]).

fac(N) when N > 0 -> N * fac(N-1);

fac(0) -> 1.

> math:fac(25).

15511210043330985984000000

2 - Binary Tree

lookup(Key, {Key, Val, _, _}) ->

{ok, Val};

lookup(Key,{Key1,Val,S,B}) when Key<Key1 ->

lookup(Key, S);

lookup(Key, {Key1,Val,S,B}) ->

lookup(Key, B);

lookup(Key, nil) ->

not_found.

Distributed Systems Laboratory 13

Joe Armstrong COP

Sequential Erlang in 5 examples

1 - Factorial

-module(math).

-export([fac/1]).

fac(N) when N > 0 -> N * fac(N-1);

fac(0) -> 1.

> math:fac(25).

15511210043330985984000000

2 - Binary Tree

lookup(Key, {Key, Val, _, _}) ->

{ok, Val};

lookup(Key,{Key1,Val,S,B}) when Key<Key1 ->

lookup(Key, S);

lookup(Key, {Key1,Val,S,B}) ->

lookup(Key, B);

lookup(Key, nil) ->

not_found.

Distributed Systems Laboratory 13
Tuesday, February 7, 12

CS390C: Principles of Concurrency and Parallelism

Examples

6

Joe Armstrong COP

3 - Append

append([H|T], L) -> [H|append(T, L)];
append([], L) -> L.

4 - Sort

sort([Pivot|T]) ->
sort([X||X <- T, X < Pivot]) ++
[Pivot] ++
sort([X||X <- T, X >= Pivot]);

sort([]) -> [].

5 - Adder

> Adder = fun(N) -> fun(X) -> X + N end end.
#Fun
> G = Adder(10).
#Fun
> G(5).
15

Distributed Systems Laboratory 14

Joe Armstrong COP

3 - Append

append([H|T], L) -> [H|append(T, L)];
append([], L) -> L.

4 - Sort

sort([Pivot|T]) ->
sort([X||X <- T, X < Pivot]) ++
[Pivot] ++
sort([X||X <- T, X >= Pivot]);

sort([]) -> [].

5 - Adder

> Adder = fun(N) -> fun(X) -> X + N end end.
#Fun
> G = Adder(10).
#Fun
> G(5).
15

Distributed Systems Laboratory 14

Joe Armstrong COP

3 - Append

append([H|T], L) -> [H|append(T, L)];
append([], L) -> L.

4 - Sort

sort([Pivot|T]) ->
sort([X||X <- T, X < Pivot]) ++
[Pivot] ++
sort([X||X <- T, X >= Pivot]);

sort([]) -> [].

5 - Adder

> Adder = fun(N) -> fun(X) -> X + N end end.
#Fun
> G = Adder(10).
#Fun
> G(5).
15

Distributed Systems Laboratory 14

Tuesday, February 7, 12

CS390C: Principles of Concurrency and Parallelism

Concurrency

7

-module(m).
-export([loop/0]).
loop() ->
 receive
 who_are_you ->
 io:format("I am ~p~n", [self()]),
 loop()
 end.
1> P = spawn(m, loop, []).
<0.58.0>
2> P ! who_are_you.
I am <0.58.0>
who_are_you

Tuesday, February 7, 12

CS390C: Principles of Concurrency and Parallelism

Concurrency

8

-module(counter).
-export([start/0,loop/1]).

start() ->
 spawn(counter, loop, [0]).

loop(Val) ->
 receive
 increment -> loop(Val + 1)
end.

Issues:
• Cannot directly access counter value.
• Messaging protocol is explicit (via message increment)

Tuesday, February 7, 12

CS390C: Principles of Concurrency and Parallelism

Refinement

9

-module(counter).
-export([start/0,loop/1,increment/1,value/1,stop/1]).

%% First the interface functions.
start() ->
 spawn(counter, loop, [0]).

increment(Counter) -> Counter ! increment.

value(Counter) ->
 Counter ! {self(),value},
 receive
 {Counter,Value} -> Value
end.

stop(Counter) -> Counter ! stop.

loop(Val) ->
 receive
 increment -> loop(Val + 1);
 {From,value} -> From ! {self(),Val}, loop(Val);
 stop -> true;
 Other -> loop(Val)
 end.

Tuesday, February 7, 12

CS390C: Principles of Concurrency and Parallelism

Concurrency

10

-module(M).
-export([start/0, ping/1, pong/0]).

ping(0) ->
 pong ! finished,
 io:format("ping finished~n", []);
ping(N) ->
 pong ! {ping, self()},
 receive pong ->
 io:format("Ping received pong~n", [])
 end,
ping(N - 1).

pong() ->
 receive
 finished -> io:format("Pong finished~n", []);
 {ping, Ping_PID} ->
 io:format("Pong received ping~n", []),
 Ping_PID ! pong,
 pong()
 end.

start() -> register(pong, spawn(M, pong, [])),
 spawn(M, ping, [3]).

Tuesday, February 7, 12

CS390C: Principles of Concurrency and Parallelism

Distributed Programming
● Can generalize previous example to a distributed environment

11

-module(M).
-export([start/0, ping/1, pong/0]).

ping(0,Pong_node) ->
 {pong, Pong_Node} ! finished,
 io:format("ping finished~n", []);
ping(N) ->
 {pong, Pong_Node} ! {ping, self()},
 receive pong ->
 io:format("Ping received pong~n", [])
 end,
ping(N - 1, Pong_Node).

pong() ->
 receive
 finished -> io:format("Pong finished~n", []);
 {ping, Ping_PID} ->
 io:format("Pong received ping~n", []),
 Ping_PID ! pong,
 pong()
 end.

start_pong() -> register(pong, spawn(M, pong, [])),
start_ping(Pong_Node) -> spawn(M, ping, [3, Pong_Node]).

On one host: erl -sname ping
On another: erl -sname pong

On one node:
 M:start_pong().
On another:
 M:start_ping(pong@<host>).

Tuesday, February 7, 12

CS390C: Principles of Concurrency and Parallelism

Monitoring

12

Joe Armstrong COP

10 - Monitor a process

...

process_flag(trap_exit, true),

Pid = spawn_link(fun() -> ... end),

receive

{’EXIT’, Pid, Why} ->

...

end

Distributed Systems Laboratory 18

Tuesday, February 7, 12

CS390C: Principles of Concurrency and Parallelism

Client/Server

13

Joe Armstrong COP

Behaviours

A universal Client - Server with hot code
swapping :-)

server(Fun, Data) ->

receive

{new_fun, Fun1} ->

server(Fun1, Data);

{rpc, From, ReplyAs, Q} ->

{Reply, Data1} = Fun(Q, Data),

From ! {ReplyAs, Reply},

server(Fun, Data1)

end.

rpc(A, B) ->

Tag = new_ref(),

A ! {rpc, self(), Tag, B},

receive

{Tag, Val} -> Val

end

Distributed Systems Laboratory 20

Joe Armstrong COP

Behaviours

A universal Client - Server with hot code
swapping :-)

server(Fun, Data) ->

receive

{new_fun, Fun1} ->

server(Fun1, Data);

{rpc, From, ReplyAs, Q} ->

{Reply, Data1} = Fun(Q, Data),

From ! {ReplyAs, Reply},

server(Fun, Data1)

end.

rpc(A, B) ->

Tag = new_ref(),

A ! {rpc, self(), Tag, B},

receive

{Tag, Val} -> Val

end

Distributed Systems Laboratory 20

Tuesday, February 7, 12

Joe Armstrong COP

Programming Patterns

Common concurrency patterns:

Cast

A ! B

Event

receive A -> A end

Call (RPC)

A ! {self(), B},

receive

{A, Reply} ->

Reply

end

Callback

receive

{From, A} ->

From ! F(A)

end

Distributed Systems Laboratory 21

CS390C: Principles of Concurrency and Parallelism

Concurrency Patterns

14

Unicast

Event Handling

RPC call

Joe Armstrong COP

Programming Patterns

Common concurrency patterns:

Cast

A ! B

Event

receive A -> A end

Call (RPC)

A ! {self(), B},

receive

{A, Reply} ->

Reply

end

Callback

receive

{From, A} ->

From ! F(A)

end

Distributed Systems Laboratory 21

Joe Armstrong COP

Programming Patterns

Common concurrency patterns:

Cast

A ! B

Event

receive A -> A end

Call (RPC)

A ! {self(), B},

receive

{A, Reply} ->

Reply

end

Callback

receive

{From, A} ->

From ! F(A)

end

Distributed Systems Laboratory 21

Joe Armstrong COP

Programming Patterns

Common concurrency patterns:

Cast

A ! B

Event

receive A -> A end

Call (RPC)

A ! {self(), B},

receive

{A, Reply} ->

Reply

end

Callback

receive

{From, A} ->

From ! F(A)

end

Distributed Systems Laboratory 21

Callback

Tuesday, February 7, 12

CS390C: Principles of Concurrency and Parallelism

Concurrency Patterns

15

Joe Armstrong COP

Challenge 2

Can we easily program tricky concurrency
patterns?

Callback within RPC

A ! {Tag, X}, g(A, Tag).

g(A, Tag) ->

receive

{Tag, Val} -> Val;

{A, X} ->

A ! F(X),

go(A, Tag)

end.

Parallel RPC

par_rpc([A,B,C], M)

Distributed Systems Laboratory 22

Callback within RPC

Tuesday, February 7, 12

CS390C: Principles of Concurrency and Parallelism

Timeouts

16

receive
 Message1 [when
 Actions1 ;
 Message2 [when
 Actions2 ;
...
after
 TimeOutExpr ->
 ActionsT
end

get_event() ->
 receive
 {mouse, click} ->
 receive
 {mouse, click} ->
 double_click
 after double_click_interval()
 -> single_click
end ...
end.

Tuesday, February 7, 12

CS390C: Principles of Concurrency and Parallelism

Readings

Concurrent Programming in Erlang (Part 1)

 http://www.erlang.org/download/erlang-book-part1.pdf

See also: www.erlang.org

17

Tuesday, February 7, 12

http://www.erlang.org/download/erlang-book-part1.pdf
http://www.erlang.org/download/erlang-book-part1.pdf

