’rinciples of Concurrency anc
Parallelism

Lecture 5: Erlang
1/31/12

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 7, 12

Example

+ Suppose we have N threads (or processes, tasks) that form a ring
 Each thread communicates with its neighbor forwarding a message
- How big can we make the ring?

+ How long does it take to send a messase!?

Mes=zage sending times (LOG-/LOGY
188888

Frocess creation fimes (LOG-LOG scale? ' ' I’r:-r"lmsg.'txt’
1888
ferlspawn. txt ToHmsg. tat?
‘o#spaun. xt?
laaga -
laae -

w188

0

[

o

o

L

@

~ z 188

]

o

<

o

o

I

1@
18
1k ___r________ﬂ__—__FH’ff/rf_’____d_,_______F_——_____r—____u__ﬂ____u
))) w1 L L
1 1@ 188 la@a laaaa
1@ 188 1668 18688 186868

Mumber of processes
Humber of processes

CS390C: Principles of Concurrency and Parallelism

lagaag

Tuesday, February 7, 12

Philosophy

+ Independent processes
- suitable for executing on distributed machines
* No sharing

- (Deep) copy data sent on messages

* no cross-machine pointers
* no locks, data races, synchronization issues, ...

+ All processes have a unique name
+ Asynchronous sends, synchronous receives

- Eventual delivery

- But if A sends messages m| and m2 to B, m2 will never arrive before
mi

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 7, 12

Key features

* Functional
- single assignment (every variable assigned to at most once)

» Lightweight first-class processes
» Pattern-matching

+ Small collection of datatypes
- lists, tuples, pairs
» Dynamic typing

 Realtime concurrent garbage collection

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 7, 12

Examples

-module (math).
-export([fac/1]).

fac(N) when N > 0 -=> N * fac(N-1);
fac(0) -> 1.

> math:fac(25).
15511210043330985984000000

lookup(Key, {Key, Val, , }) =->
{ok, Val};
lookup(Key, {Keyl,Val,S,B}) when Key<Keyl ->
lookup(Key, S);
lookup(Key, {Keyl,Val,S,B}) ->
lookup(Key, B);
lookup(Key, nil) ->
not found.

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 7, 12

Examples

append([H|T], L) -> [H|append(T, L)];
append ([], L) -> L.

sort([Pivot|T]) ->
sort([X||X <- T, X < Pivot]) ++
[Pivot] ++
sort([X||X <- T, X >= Pivot]);
sort([]) -> [1]-

> Adder = fun(N) -> fun(X) -> X + N end end.
#Fun

> G = Adder(10).
#Fun

> G(5).

15

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 7, 12

Concurrency

-module(m).
-export([loop/0]).
loop() ->
receive
who are you ->
io:format ("I am ~p~n", [self()]),

loop()
end.
1> P = spawn(m, loop, []).
<0.58.0>

2> P ! who_are_you.
I am <0.58.0>
who are you

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 7, 12

Concurrency

-module(counter).
-export([start/0,loop/1]).

start() ->
spawn (counter, loop, [0]).

loop(Val) ->
receive
increment -> loop(Val + 1)
end.

Issues:
e Cannot directly access counter value.
e Messaging protocol is explicit (via message increment)

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 7, 12

Refinement

-module (counter).
-export([start/0,loop/1l,increment/1,value/1,stop/1]).

$% First the interface functions.
start() ->
spawn(counter, loop, [0]).

increment (Counter) -> Counter ! increment.

value(Counter) ->
Counter ! {self(),value},
receive
{Counter,Value} -> Value
end.

stop(Counter) -> Counter ! stop.

loop(Val) ->
receive
increment -> loop(Val + 1);
{From,value} -> From ! {self(),Val}, loop(Val);
stop -> true;
Other -> loop(Val)
end.

CS390C: Principles of Concurrency and Parallelism

Tuesday, February 7, 12

Concurrency

-module(M).
-export([start/0, ping/1l, pong/01]).

ping(0) ->

pong ! finished,

io:format("ping finished~n", []);
ping(N) ->

pong ! {ping, self()},

receive pong ->

io:format("Ping received pong~n", [])

end,

ping(N - 1).

pong() ->
receive

finished -> io:format("Pong finished~n", []);

{ping, Ping PID} ->
io:format("Pong received ping~n", []),
Ping PID ! pong,
pong ()

end.

start() -> register(pong, spawn(M, pong, [])),
spawn(M, ping, [3]).

CS390C: Principles of Concurrency and Parallelism

10

Tuesday, February 7, 12

Distributed Programming

- Can generalize previous example to a distributed environment

-module(M).
-export([start/0, ping/1l, pong/0]).

ping(0,Pong node) ->

{pong, Pong_Node} ! finished, On one host: erl -sname ping
io:format("ping finished~n", [1]); On another: erl -sname pong
ping(N) -> '
{pong, Pong Node} ! {ping, self()},
receive pong -> On one node:
io:format("Ping received pong~n", []) M:start pong().
end, On another:

ping(N - 1, Pong Node). M:start ping(pong@<host>).
pong() ->
receive
finished -> io:format("Pong finished~n", []);
{ping, Ping PID} ->
io:format("Pong received ping~n", []),
Ping PID ! pong,
pong()
end.

start pong() -> register(pong, spawn(M, pong, [])),
start ping(Pong Node) -> spawn(M, ping, [3, Pong Node]).

11
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 7, 12

Monitoring

process flag(trap exit, true),
Pid = spawn link(fun() -> ... end),
receive

{"EXIT', Pid, Why} ->

end

CS390C: Principles of Concurrency and Parallelism

12

Tuesday, February 7, 12

Client/Server

server (Fun, Data) ->
receive
{new fun, Funl} ->
server (Funl, Data);
{rpc, From, ReplyAs, Q} ->
{Reply, Datal} = Fun(Q, Data),
From ! {ReplyAs, Reply},
server (Fun, Datal)
end.

rpc(A, B) ->
Tag = new ref (),
A ! {rpc, self(), Tag, B},
receive
{Tag, Val} -> Vval
end

CS390C: Principles of Concurrency and Parallelism

13

Tuesday, February 7, 12

Concurrency Patterns

Unicast RPC call
Call (RPC)
A!B A ! {self(), B},
receive
{A, Reply} ->
Reply
end
Event Handling Callback
receive A -> A end receive
{From, A} ->
From ! F(A)
end

14
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 7, 12

Concurrency Patterns

Callback within RPC

A ! {Tag, X}, dg(A, Tag).

g(A, Tag) ->
recelive
{Tag, Val} -> Val;
{Al X} ->
A ! F(X),
go(A, Tag)
end.

15
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 7, 12

Timeouts

receive

get event() ->
Messagel [when

) receive
Actionsl j; {mouse, click} ->
Message2 [when receive
Actions2 ; {mouse, click} ->
.« oo double click
after after double click interval()
TimeOutExpr -> -> single_click
ActionsT end ...
end.

end

16
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 7, 12

Readings

Concurrent Programming in Erlang (Part 1)

http://www.erlang.org/download/erlang-book-part|.pdf

See also: www.erlang.org

17
CS390C: Principles of Concurrency and Parallelism

Tuesday, February 7, 12

http://www.erlang.org/download/erlang-book-part1.pdf
http://www.erlang.org/download/erlang-book-part1.pdf

