
CS390C: Principles of Concurrency and Parallelism

Principles of Concurrency and
Parallelism

 Lecture 4: Message-Passing and CSP

 1/19/12

Thursday, January 19, 12

CS390C: Principles of Concurrency and Parallelism

Issues
● Given a collection of threads, how should they communicate

information among one another?

● Using message-passing, they communicate through messages,
information that is directed from one thread to another.

− Sometimes the recipient may be anonymous
● channel-based communication

− Typically, the recipient is known
● What should the sender do after the message is sent?

− wait until the recipient acknowledges receipt (synchronous)
− proceed regardless (asynchronous)

Thursday, January 19, 12

CS390C: Principles of Concurrency and Parallelism

Communicating Sequential Processes

● Landmark proposal by Hoare in 1978
● Key components

− guarded commands

− dynamic thread creation

− synchronous message passing
● an input action in a guarded command causes the actions in the

guard to block until the input action can be satisfied
− there is a matching output action

− No communication through global (shared) variables

3

Thursday, January 19, 12

CS390C: Principles of Concurrency and Parallelism

Parallel Commands

● Defines eleven processes
● Behavior of processes fork(0), ..., fork(4) specified by

command FORK
− Bound variable i indicates identity of a particular fork

● Similar structure for phil

4

room :: ROOM || fork(i:0..4) :: FORK || phil(i:0..4) :: PHIL

Thursday, January 19, 12

CS390C: Principles of Concurrency and Parallelism

Input and Output Commands

● X ? (a,b)

− inputs from process X a pair, binding the first element to a and
the second to b

● Y ! (3 * a, b + 13)

− outputs to process Y a pair, consisting of the values computed by
the corresponding expressions within the environment in which
the command takes place

● X(i)? V()

− From the ith array of processes X, input a signal V()

● display(i-2) ! “A”

− send to the i-2nd display the character “A”
5

Thursday, January 19, 12

CS390C: Principles of Concurrency and Parallelism

Guarded Commands

6

i := 0;
* [i < size; content(i) <> n -> i := i + 1]

Scan the elements of the array contents incrementing counter i as long as n is
not encountered and the end of the array is not reached.

x >= y --> m := x [] y >=x m := y

Assign m to x if x >= y; assign m to y if y >= x. Do one or the other
if x = y.

Thursday, January 19, 12

CS390C: Principles of Concurrency and Parallelism

Guarded Commands

7

X:: *[c:char, A?c ->
 [c <> “*” --> B!c
 []
 c = “*” --> A?c;
 [c <> “*” --> B!”*”; B!c
 []
 c = “*” --> B!”#”]
]]

What does this program do?
What assumptions does it make?

Thursday, January 19, 12

CS390C: Principles of Concurrency and Parallelism

Bounded Buffer

8

Consumer contains pairs of commands X!more() and X?p
Producer contains commands of the form X!p

X::
 buffer:(0..9) portion;
 in,out:integer, in:= 0; out := 0;
 *[in < out + 10; producer?buffer(in mod 10) --> in := in + 1
 []
 out < in; consumer?more() --> consumer ! buffer(out mod 10);
 out := out + 1
]

Thursday, January 19, 12

CS390C: Principles of Concurrency and Parallelism

Small Set of Integers

9

S::
 content:(0..99)integer, size:integer,size := 0;
*[n:integer,X?has(n) --> SEARCH;X!(i<size)
 || n:integer; X?insert(n) --> SEARCH;
 [i<size --> skip
 | i = size; size < 100 --> content(size) := n; size := size + 1
]]

where SEARCH is:

 i:integer; i := 0;
 *[i < size; content(i) <> n --> i := i + 1]

Thursday, January 19, 12

CS390C: Principles of Concurrency and Parallelism

Dining Philosophers

● Five philosophers:
− Only eat and think

− Share a common dining room.
● Shared bowl of spaghetti
● Five forks

− Need two forks to eat (both right and left)

− After finishing eating, puts both forks down

10

Thursday, January 19, 12

CS390C: Principles of Concurrency and Parallelism

Dining Philosophers

11

PHIL = *[... for ith philosopher
 THINK;
 room!enter();
 fork(i)!pickup(); fork((i+1) mod 5)!pickup();
 EAT;
 fork(i)!putdown(); fork((i+1) mod 5)!putdown();
 room!exit()
]

FORK = *[phil(i)?pickup() --> phil(i)?putdown()
 | (phil(i - 1) mod 5)?pickup() --> phil((i-1) mod 5)?putdown()
]

ROOM = occupancy:integer; occupancy := 0;
 *[(i:0..4)phil(i)?enter() --> occupancy := occupancy + 1
 | (i:0..4)phil(i)?exit() --> occupancy := occupancy - 1
]

[room::ROOM || fork(i:0..4)::FORK || phil(i:0..4)::PHIL]

What happens if all five philosophers enter the room, and each picks up the left fork?
How would you solve the problem?

Thursday, January 19, 12

CS390C: Principles of Concurrency and Parallelism

Issues

● Explicit naming of source and destination

− No first-class channels or ports

● Fully synchronous

− How would you model asynchronous communication?

● No unbounded number of processes

● Fairness

● Output guards

12

[X::Y!stop() || Y::continue:boolean; continue := true;
 *[continue; X?stop() --> continue := false
 | continue --> n := n + 1
]
]

Z:: [X!2 || Y!3] could be expressed as: Z::[X!2 --> Y!3 [] Y!3 --> X!2]

Why does the following not work? Z::[true --> X!2; Y!3 [] true --> Y!3; X!2]

Consider: Y :: Z?y; X!go() || X:: Y?go(); Z?x

Thursday, January 19, 12

CS390C: Principles of Concurrency and Parallelism

Readings

● Communicating Sequential Processes, Hoare (1978)
● See also http://www.usingcsp.com/cspbook.pdf

13

Thursday, January 19, 12

http://www.usingcsp.com/cspbook.pdf
http://www.usingcsp.com/cspbook.pdf

