
CS390C: Principles of Concurrency and Parallelism

 Principles of Concurrency and 
Parallelism

Lecture 3: Threads and Events

1/17/12

1

Tuesday, January 17, 12



CS390C: Principles of Concurrency and Parallelism

Threads and Processes
● A process is a representation of a computation managed by an operating 

system

− Virtual address space

− process control block

● A thread is a representation of a computation managed by an application

− thread control block

● Process and thread control blocks contain all the information necessary to 
execute the computation (e.g., stacks, register contents, program memory, 
etc.)

● Main difference: 

− all threads within a computation execute within the same address space

2

Tuesday, January 17, 12



✘

CS390C: Principles of Concurrency and Parallelism

 Processes

3

Process 
P1

Process 
P2

Data 
D1

Data 
D2

Address space Address space

Tuesday, January 17, 12



CS390C: Principles of Concurrency and Parallelism

Threads

4

Thread T1 Thread T2

Data 
D1

Data 
D2

Address space

Process

✓

Tuesday, January 17, 12



CS390C: Principles of Concurrency and Parallelism

Threads and Processes

● Critical distinction:
− References (i.e., locations) have meaning between 

threads

− They are interpreted independently between processes
● Sharing state among processes requires special care

− memory-mapped regions, devices, etc.

5

Tuesday, January 17, 12



CS390C: Principles of Concurrency and Parallelism

Threads

● The state (resources) needed to execute a thread is 
managed directly by a process
− lightweight user-level threads 

− managed by an underlying runtime or virtual machine

● Kernel threads
− typically user-level threads are multiplexed on top of 

kernel threads

6

Tuesday, January 17, 12



CS390C: Principles of Concurrency and Parallelism

Design Choices
● One process - One thread
● One process - Multiple threads
● Multiple processes - Multiple threads

7

Tradeoffs

    Cost of thread creation, management, and scheduling
    Blocking and I/O
    Application sensitivity

Tuesday, January 17, 12



CS390C: Principles of Concurrency and Parallelism

Coordination

● Synchronous
− co-routines

− cooperative

● Asynchronous
− preemptive

− callbacks

● Demand-driven
− events

8

Tuesday, January 17, 12



CS390C: Principles of Concurrency and Parallelism

Threads 
● An initial model

● Mediation among threads through explicit synchronization (locks, 
monitors,)

● Scheduling is asynchronous

− Very flexible

− But, raises lots of problems
● Deadlock, livelock, fairness, etc.

Why Threads Are A Bad Idea September 28, 1995, slide 3

What Are Threads?

! General-purpose solution for managing concurrency.

! Multiple independent execution streams.

! Shared state.

! Pre-emptive scheduling.

! Synchronization (e.g. locks, conditions).

Shared state
(memory, files, etc.)

Threads

Tuesday, January 17, 12



CS390C: Principles of Concurrency and Parallelism

Issues

● Synchronization
− How should two threads communicate?

● Use a lock
− What happens if we forget, or we use the wrong lock?

● Race conditions
− What is the computation model we are trying to adhere to?

● Message-passing
− May need to greatly restructure existing sequential algorithms

− Aggressive synchronization can lead to deadlock

10

Tuesday, January 17, 12



CS390C: Principles of Concurrency and Parallelism

Composability
● Threads that communicate using locks can easily 

break abstractions
− Lower layers in the software stack may need to know 

behavioral properties of higher layers, and vise versa

11

Why Threads Are A Bad Idea September 28, 1995, slide 7

Why Threads Are Hard, cont'd

! Hard to debug: data dependencies, timing dependencies.

! Threads break abstraction: can't design modules

independently.

! Callbacks don't work with locks.

Module A

Module B

T1 T2

sleep wakeup

deadlock!

Module A

Module B

T1

T2

deadlock!

callbacks

calls

Tuesday, January 17, 12



CS390C: Principles of Concurrency and Parallelism

Performance and Correctness

● Even if there are no races, performance is an issue.

− Too many locks: limits concurrency; too few: safety

− Message-passing has similar overheads and safety issues

− Inherently non-deterministic

● Performance at the expense of correctness

− Many core applications not “thread-safe”
● OS kernel calls, windowing toolkits, etc.

− How do we migrate a sequential program to a concurrent one?
● Identify places where concurrency is beneficial
● Protect regions where concurrency may be harmful

12

Tuesday, January 17, 12



CS390C: Principles of Concurrency and Parallelism

Events

● Demand-driven strategy
− Single execution stream, much like co-routines

− Register interest in events
● Wait for event to happen
● Invoke handler when it does

− No preemption
● No locking necessary

13

Why Threads Are A Bad Idea September 28, 1995, slide 9

Event-Driven Programming

! One execution stream: no CPU

concurrency.

! Register interest in events

(callbacks).

! Event loop waits for events,

invokes handlers.

! No preemption of event

handlers.

! Handlers generally short-lived.

Event

Loop

Event Handlers

Tuesday, January 17, 12



CS390C: Principles of Concurrency and Parallelism

Why is event-based programming 
useful?

● GUIs:
− A handler for each interaction event (mouse click, drop-

down action, etc.)

− Handler implements dedicated behavior

● Distributed programming
− One handler for each source of input

● Sometimes referred to a “specialist” concurrency

14

Tuesday, January 17, 12



CS390C: Principles of Concurrency and Parallelism

Issues

● Can’t have long-lived handlers
− Composability

● Suppose handler calls a function.  How does the handler know 
how long the function will run?  Suppose the function blocks?

● What about state?
− No guarantee on consistency when handler resumes

− “stack-ripping” (cooperative stack management)
● continuations as callbacks
● blocking I/O

15

Tuesday, January 17, 12



CS390C: Principles of Concurrency and Parallelism

Spectrum

● Event-based programming eschews concurrency
− Easy to write, but hard to scale

● No preemption, synchronization, deadlock
● Simple control-flow
● Debugging strategy similar to sequential programming

● Thread-based programming embraces concurrency
− Harder to write, but easier to scale

16

Tuesday, January 17, 12



CS390C: Principles of Concurrency and Parallelism

Readings

● Why Threads are a Bad Idea (for most purposes), 
Ousterhout, 1996

● Why Events are a Bad Idea (for high-concurrency 
servers), von Behren et. al (2003)

● Cooperative Task Management without Manual 
Stack Management,  Adya et. al (2002)

17

Tuesday, January 17, 12


