Principles of Concurrency and
Parallelism

Lecture 2: Coroutines

1/12/12

CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Expressivity

+ A concurrent program provides no fundamental computability advantages
over a sequential program

- Any computation that can be expressed using a multitape Turing
machine can be expressed using a single-tape Turing machine

- Why have it, then?
- Performance: parallelism
- Responsiveness:
-+ web servers
+ operating systems
- Flexibility
« Algorithms, data structures, etc.
- Expressivity

CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Starting Point: Control

+ How do we represent or capture the notion of
simultaneity?

+ Example:

- A generator:

X = 0;
proc f() = { r := x;
X 1= X + 1;
return r }
f(); yieldsO
f(); vyields1

CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Generators

» Suppose instead of incrementing a counter, we
returned the elements of an array

i:=0
proc f(a) = { if i1 < Array.length(a)
then { r := A[1i];
i := 1+ 1;

return r }
else raise ArrayOutofBoundsExn }

» A bit more complicated, but generation can still be
expressed using updates on the array index

CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Generators

» What happens if generation is not so apparent!?

+ Example:

- Generate all the elements of a tree

- How do we write a getNextTreeElt routine!?

* We need to record and remember the next position in the
tree for subsequent calls to the generator

- We want to keep things modular and abstract, and not expose
how the tree is traversed to clients

* Want to write something like:

foreach node in Tree do { ... }

CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Generators

+ How do we implement foreach!?

- It is meant to be a generator that yields the next leaf in
the tree (according to some traversal policy) every time
it is invoked

- Must preserve the state of the traversal internally

- How should this state be kept!?

CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Tterators and Coroutines

» |terators are a special case of generators

- Found in C++, Java, Python, Lua, etc.

- Enables enumeration of the elements of a datatype
+ Key questions:

- How do we maintain local state implicitly?

- Can we build a general iteration framework without
having to provide specialized versions for each datatype!

 |ldea:

- Imagine a procedure that “remembers” its state across

calls
7
CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Coroutine

Procedure calls Coroutines

A() B() C() A() B() C()

v 6
‘ (...................... v Y
... ¢, o
hat happens when A ‘ When a coroutine ret_urns, it remembers its
y PP ” 0 program state. Why is this useful?

calls B() again? .

CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Generators and Coroutines

- Procedures:

* single operation: call
« single stack, stack frame popped upon return

- Generators:

* two operations: suspend and resume

~ assymetric: generator suspends, caller resumes it

« single stack, generator is an “object” that maintains local state variables
* single entry point

- Coroutines:

* one operation: transfer
= fully symmetric
* When A transfers to B it acts like a:
- generator suspend wrt A
- generator resume wrt B
« transfer names who gets control next
- non stack-like

CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Coroutines and Concurrency

- How would you implement coroutines!?

- Typically, implementations of procedures and procedure
calls involving pushing and popping “activation frames”
on the stack

- These frames hold the arguments and local variables for
the call.

- The frame is popped when the procedure is returned.

- How do we preserve the state that will be used
when we make the next call?

- Keep multiple stacks, one for each coroutine

- Essential feature of threads 0

CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Continuations

» A reified representation of a program’s control
stack.

When g is called, the program
. Example: stack retains enough
information to “remember”
proc £(x) = { that A must be executed and
then B.
The stack captures the “rest
} of the computation” - it is the

continuation of the call to g().
proc h(y) = {

£(..0)s If the computation were
i B preempted immediately after
} the call to g() returns, its

resumption would entail
execution of the continuation

11
CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Continuations

-+ Can we reify this notion into a source language?

- result is a continuation, a reified representation
(in the form of an abstraction) of a program control-stack.
- Define a primitive operation called call/cc:

- call-with-current-continuation

- callcc (fn k =>e)

- captures the current continuation, binds to k, and evaluate e

- the notation fn k => e defines an anonymous function that takes k as an
argument

- throw k x
- apply continuation k with argument x

12
CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Example

call/cc (fn k => (throw k 3) + 2) + 1 » 4

let £ = call/cc (fn k => fn x => throw k (fn y => x + y))
in £ 6 » 12

13
CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Example: Samefringe

@,
LS
./< § S a/{'t/‘s f\g

/\

a b

- Two binary trees have the same fringe if they have
exactly the same leaves reading left to right

14
CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Samefringe

+ Simple strategy:

- Collect leaves of both trees into two lists, and
compare elements

frontier t1 = collect all leaves of tree t1
frontier t2 = collect all leaves of tree t2

samefringe (11,t2) = compare the frontiers of t1 and t2 pairwise

- What’s wrong with this approach!?

CS390C: Principles of Concurrency and Parallelism

15

Thursday, January 12, 12

Samefringe Using Coroutines

- Rather than collecting all leaves or transforming tree
eagerly, generate leaf values for two trees lazily

- Create generators for the two trees that yield the next
leaf when invoked, and return control back to the caller,

remembering where they are

fun samefringe(t1,t2) =
let val g1 = makeGenerator(t1)
val g2 = makeGenerator(t2)

fun loop() = let val 11 = g1()
val 12 = g2()
in case (11,12) of
(Empty,Empty) => true
| (Leaf(x),Leaf(y)) => (x = y) andalso loop()
| =>false
end
in loop ()
end

- How do we write these generators!?

CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

What have we achieved?

- Call/cc gives us a way to capture the remaining part of a
computation at any given program point.

- |If we capture a continuation and store it, we have a
handle on a program state. This is what is necessary to
suspend a co-routine.

- |If we invoke a captured continuation, we effectively
resume a computation (or co-routine) at the point where
Its continuation was saved.

17
CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Generators (revisited)

How should we generate the leaves for samefringe?
+ Need to:

- save state and suspend after each new leaf is found
- resume caller once state is saved
- Use continuations for state saving

- If continuations are “first-class” they can be stored into
locations for later use

CS390C: Principles of Concurrency and Parallelism

18

Thursday, January 12, 12

Generators (revisited)

cont caller;
proc generate-num;

proc generate-numbers () = {
loop (1=0) (i+t++)

{

call/cc (fn (genrest) =>
{ generate-num := proc () = throw genrest ();

throw caller i }

}

generate-num := generate-numbers;
proc make-generator () = {
fn () => call/cc (fn (k) => {
caller := k;
generate-num()

})

19
CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Analysis

- Continuations saved at two points in the
generator definition:

- To save state associated with the generator loop itself

- To save the callers state, so that it can be resumed
with the next generated value

- How might we implement this functionality in the
absence of explicit continuations?

20
CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Manifestation

- Several languages provide explicit support for continuation-
capture

- Scheme, ML, Haskell, ...

» Here’s how we might write a generator in ML:

fun makeGenerator i =
let val caller = ref NONE
val generateNumRef = ref (fn () => ())
fun generateNums () =
let fun loop (i) =
let val _ = callcc (fn genrest =>
((generateNumRef := (fn ()=> throw genrest ()));
throw (valOf(!caller)) (SOME i)))
in loop (i+1)
end
in loop (i)
end
val _ = (generateNumRef := generateNums)
infn () =>
callcc (fn k => (caller := SOME k;
('generateNumRef)();
NONE))
end

CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

What next?

+ Being able to save and restore control state is at the
heart of any implementation of concurrency

» Using continuations, we can build our own threading
system

- schedulers

* cooperative
* preemptive
+ Not quite so simple though ...

- exceptions and aborting; interrupts

- asynchrony ’

CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

Further Reading

Essentials of Programming Languages, Friedman, Wand, Haynes (2001)
Continuation-based Multiprocessing, Wand (1980)

Continuations and Threads: Expressing Machine Concurrency Directly in
Advanced Languages (1997)

Continuations and Concurrency, Hieb and Dybvig (1990)

23
CS390C: Principles of Concurrency and Parallelism

Thursday, January 12, 12

