
CS390C: Principles of Concurrency and Parallelism

 Principles of Concurrency and
Parallelism

Lecture 2: Coroutines

1/12/12

1

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Expressivity
● A concurrent program provides no fundamental computability advantages

over a sequential program

− Any computation that can be expressed using a multitape Turing
machine can be expressed using a single-tape Turing machine

● Why have it, then?

− Performance: parallelism

− Responsiveness:

● web servers
● operating systems

− Flexibility

● Algorithms, data structures, etc.
− Expressivity

2

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Starting Point: Control

● How do we represent or capture the notion of
simultaneity?

● Example:
− A generator:

3

x = 0;
proc f() = { r := x;
 x := x + 1;
 return r }
f(); yields 0
f(); yields 1

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Generators

● Suppose instead of incrementing a counter, we
returned the elements of an array

● A bit more complicated, but generation can still be
expressed using updates on the array index

4

i := 0

proc f(a) = { if i < Array.length(a)
 then { r := A[i];
 i := i + 1;
 return r }
 else raise ArrayOutofBoundsExn }

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Generators
● What happens if generation is not so apparent?
● Example:
− Generate all the elements of a tree

− How do we write a getNextTreeElt routine?
● We need to record and remember the next position in the

tree for subsequent calls to the generator
● We want to keep things modular and abstract, and not expose

how the tree is traversed to clients
● Want to write something like:

5

foreach node in Tree do { ... }

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Generators

● How do we implement foreach?
− It is meant to be a generator that yields the next leaf in

the tree (according to some traversal policy) every time
it is invoked

− Must preserve the state of the traversal internally

− How should this state be kept?

6

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Iterators and Coroutines
● Iterators are a special case of generators
− Found in C++, Java, Python, Lua, etc.

− Enables enumeration of the elements of a datatype

● Key questions:
− How do we maintain local state implicitly?

− Can we build a general iteration framework without
having to provide specialized versions for each datatype?

● Idea:
− Imagine a procedure that “remembers” its state across

calls
7

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Coroutine

8

A() B() C()

Procedure calls

what happens when A()
calls B() again?

A() B() C()

When a coroutine returns, it remembers its
program state. Why is this useful?

Coroutines

what happens when A()
calls B() again?

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Generators and Coroutines
− Procedures:

● single operation: call

● single stack, stack frame popped upon return

− Generators:

● two operations: suspend and resume

− assymetric: generator suspends, caller resumes it
● single stack, generator is an “object” that maintains local state variables

● single entry point

− Coroutines:

● one operation: transfer

− fully symmetric
● When A transfers to B it acts like a:

− generator suspend wrt A

− generator resume wrt B
● transfer names who gets control next

− non stack-like

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Coroutines and Concurrency

10

● How would you implement coroutines?
− Typically, implementations of procedures and procedure

calls involving pushing and popping “activation frames”
on the stack

− These frames hold the arguments and local variables for
the call.

− The frame is popped when the procedure is returned.

● How do we preserve the state that will be used
when we make the next call?
− Keep multiple stacks, one for each coroutine

− Essential feature of threads

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Continuations

● A reified representation of a program’s control
stack.

● Example:

11

proc f(x) = { ...
 g(y);
 ... ; A
 }

proc h(y) = { ...
 f(...);
 ... ; B
 }

When g is called, the program
stack retains enough
information to “remember”
that A must be executed and
then B.

The stack captures the “rest
of the computation” - it is the
continuation of the call to g().

If the computation were
preempted immediately after
the call to g() returns, its
resumption would entail
execution of the continuation

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Continuations

12

● Can we reify this notion into a source language?
− result is a continuation, a reified representation

 (in the form of an abstraction) of a program control-stack.
− Define a primitive operation called call/cc:

● call-with-current-continuation
● callcc (fn k => e)

− captures the current continuation, binds to k, and evaluate e
− the notation fn k => e defines an anonymous function that takes k as an

argument
● throw k x

− apply continuation k with argument x

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Example

13

call/cc (fn k => (throw k 3) + 2) + 1 ! 4

let f = call/cc (fn k => fn x => throw k (fn y => x + y))
in f 6 ! 12

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Example: Samefringe

− Two binary trees have the same fringe if they have
exactly the same leaves reading left to right

14

a b

c d e

f

g h

a b c d

e

f g

h

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Samefringe

● Simple strategy:
− Collect leaves of both trees into two lists, and

compare elements

− What’s wrong with this approach?

15

frontier t1 = collect all leaves of tree t1
frontier t2 = collect all leaves of tree t2

samefringe (t1,t2) = compare the frontiers of t1 and t2 pairwise

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Samefringe Using Coroutines

− Rather than collecting all leaves or transforming tree
eagerly, generate leaf values for two trees lazily

− Create generators for the two trees that yield the next
leaf when invoked, and return control back to the caller,
remembering where they are

− How do we write these generators?

fun samefringe(t1,t2) =
 let val g1 = makeGenerator(t1)
 val g2 = makeGenerator(t2)

 fun loop() = let val l1 = g1()
 val l2 = g2()
 in case (l1,l2) of
 (Empty,Empty) => true
 | (Leaf(x),Leaf(y)) => (x = y) andalso loop()
 | _ => false
 end
 in loop ()
 end

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

What have we achieved?

17

● Call/cc gives us a way to capture the remaining part of a
computation at any given program point.

● If we capture a continuation and store it, we have a
handle on a program state. This is what is necessary to
suspend a co-routine.

● If we invoke a captured continuation, we effectively
resume a computation (or co-routine) at the point where
its continuation was saved.

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Generators (revisited)

18

● How should we generate the leaves for samefringe?
● Need to:

− save state and suspend after each new leaf is found
− resume caller once state is saved

● Use continuations for state saving
− If continuations are “first-class” they can be stored into

locations for later use

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Generators (revisited)

19

cont caller;
proc generate-num;

proc generate-numbers () = {
 loop (i=0) (i++)
 {
 call/cc (fn (genrest) =>
 { generate-num := proc () = throw genrest ();
 throw caller i }
 }

generate-num := generate-numbers;
proc make-generator () = {
 fn () => call/cc (fn (k) => {
 caller := k;
 generate-num()
 })
 }

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Analysis

20

● Continuations saved at two points in the
generator definition:
− To save state associated with the generator loop itself
− To save the callers state, so that it can be resumed

with the next generated value
● How might we implement this functionality in the

absence of explicit continuations?

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Manifestation
● Several languages provide explicit support for continuation-

capture

− Scheme, ML, Haskell, ...

● Here’s how we might write a generator in ML:

21

fun makeGenerator i =
 let val caller = ref NONE
 val generateNumRef = ref (fn () => ())
 fun generateNums () =
 let fun loop (i) =
 let val _ = callcc (fn genrest =>
 ((generateNumRef := (fn ()=> throw genrest ()));
 throw (valOf(!caller)) (SOME i)))
 in loop (i+1)
 end
 in loop (i)
 end
 val _ = (generateNumRef := generateNums)
 in fn () =>
 callcc (fn k => (caller := SOME k;
 (!generateNumRef)();
 NONE))
 end

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

What next?

● Being able to save and restore control state is at the
heart of any implementation of concurrency

● Using continuations, we can build our own threading
system
− schedulers

● cooperative
● preemptive

● Not quite so simple though ...
− exceptions and aborting; interrupts

− asynchrony 22

Thursday, January 12, 12

CS390C: Principles of Concurrency and Parallelism

Further Reading

23

Essentials of Programming Languages, Friedman, Wand, Haynes (2001)

Continuation-based Multiprocessing, Wand (1980)

Continuations and Threads: Expressing Machine Concurrency Directly in
 Advanced Languages (1997)

Continuations and Concurrency, Hieb and Dybvig (1990)

Thursday, January 12, 12

