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CS390C: Principles of Concurrency and Parallelism

Expressivity
● A concurrent program provides no fundamental computability advantages 

over a sequential program

− Any computation that can be expressed using a multitape Turing 
machine can be expressed using a single-tape Turing machine

● Why have it, then?

− Performance: parallelism

− Responsiveness:

● web servers
● operating systems

− Flexibility

● Algorithms, data structures, etc.
− Expressivity
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Starting Point: Control

● How do we represent or capture the notion of 
simultaneity?

● Example:
− A generator:
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x = 0;
proc f() = {  r := x;
              x := x + 1;
              return r }
f();  yields 0
f();  yields 1
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Generators

● Suppose instead of incrementing a counter, we 
returned the elements of an array

●  A bit more complicated, but generation can still be 
expressed using updates on the array index
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i := 0

proc f(a) = { if i < Array.length(a)
                      then { r := A[i];
                             i := i + 1;
                             return r }
                      else raise ArrayOutofBoundsExn }
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Generators
● What happens if generation is not so apparent?
● Example: 
− Generate all the elements of a tree

− How do we write a getNextTreeElt routine?
● We need to record and remember the next position in the 

tree for subsequent calls to the generator
● We want to keep things modular and abstract, and not expose 

how the tree is traversed to clients
● Want to write something like:
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foreach node in Tree do { ... }
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Generators

● How do we implement foreach?
− It is meant to be a generator that yields the next leaf in 

the tree (according to some traversal policy) every time 
it is invoked

− Must preserve the state of the traversal internally

− How should this state be kept?
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Iterators and Coroutines
● Iterators are a special case of generators
− Found in C++, Java, Python, Lua, etc.

− Enables enumeration of the elements of a datatype

● Key questions:
− How do we maintain local state implicitly?

− Can we build a general iteration framework without 
having to provide specialized versions for each datatype?

● Idea:
− Imagine a procedure that “remembers” its state across 

calls
7
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Coroutine
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A()                    B()               C()

Procedure calls

what happens when A()
calls B() again?

A()                   B()                    C()

When a coroutine returns, it remembers its
program state.  Why is this useful?

Coroutines

what happens when A()
calls B() again?
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Generators and Coroutines
− Procedures:

● single operation: call

● single stack, stack frame popped upon return

− Generators:

● two operations: suspend and resume

− assymetric: generator suspends, caller resumes it
● single stack, generator is an “object” that maintains local state variables

● single entry point

− Coroutines:

● one operation: transfer

− fully symmetric
● When A transfers to B it acts like a:

− generator suspend wrt A

− generator resume wrt B
● transfer names who gets control next

− non stack-like
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Coroutines and Concurrency
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● How would you implement coroutines?
− Typically, implementations of procedures and procedure 

calls involving pushing and popping “activation frames” 
on the stack

− These frames hold the arguments and local variables for 
the call.

− The frame is popped when the procedure is returned.

● How do we preserve the state that will be used 
when we make the next call?
− Keep multiple stacks, one for each coroutine

− Essential feature of threads
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Continuations

● A reified representation of a program’s control 
stack.

● Example:
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proc f(x) = { ...
              g(y);
              ... ;  A
            }

proc h(y) = { ...
              f(...);
              ... ;  B
            }

When g is called, the program 
stack retains enough 
information to “remember” 
that A must be executed and 
then B.

The stack captures the “rest 
of the computation” - it is the 
continuation of the call to g().

If the computation were 
preempted immediately after 
the call to g() returns, its 
resumption would entail 
execution of the continuation
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Continuations

12

● Can we reify this notion into a source language?
− result is a continuation, a reified representation 

                 (in the form of an abstraction) of a program control-stack. 
− Define a primitive operation called call/cc:

● call-with-current-continuation
● callcc (fn k => e) 

− captures the current continuation, binds to k, and evaluate e
− the notation fn k => e defines an anonymous function that takes k as an 

argument
● throw k x

− apply continuation k with argument x
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Example
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call/cc (fn k => (throw k 3) + 2) + 1 ! 4

let f = call/cc (fn k => fn x => throw k (fn y => x + y))
in f 6 !  12
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Example: Samefringe

− Two binary trees have the same fringe if they have 
exactly the same leaves reading left to right
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Samefringe

● Simple strategy: 
− Collect leaves of both trees into two lists, and 

compare elements

− What’s wrong with this approach?
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frontier t1 = collect all leaves of tree t1
frontier t2 = collect all leaves of tree t2

samefringe (t1,t2) = compare the frontiers of t1 and t2 pairwise
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Samefringe Using Coroutines

− Rather than collecting all leaves or transforming tree 
eagerly, generate leaf values for two trees lazily

− Create generators for the two trees that yield the next 
leaf when invoked, and return control back to the caller, 
remembering where they are

− How do we write these generators?

fun samefringe(t1,t2) = 
     let val g1 = makeGenerator(t1)
          val g2 = makeGenerator(t2)
                                          
          fun loop() = let val l1 = g1()
                                  val l2 = g2()
                             in case (l1,l2) of
                                    (Empty,Empty) => true
                                  | (Leaf(x),Leaf(y)) => (x = y) andalso loop()
                                  | _ => false        
                              end
      in loop ()
      end                        
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What have we achieved?
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● Call/cc gives us a way to capture the remaining part of a 
computation at any given program point.

● If we capture a continuation and store it, we have a 
handle on a program state.  This is what is necessary to 
suspend a co-routine.

● If we invoke a captured continuation, we effectively 
resume a computation (or co-routine) at the point where 
its continuation was saved.
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Generators (revisited)
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● How should we generate the leaves for samefringe?
● Need to:

− save state and suspend after each new leaf is found
− resume caller once state is saved

● Use continuations for state saving
− If continuations are “first-class” they can be stored into 

locations for later use
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Generators (revisited)
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cont caller;
proc generate-num;

proc generate-numbers () = {
  loop (i=0) (i++) 
    {
         call/cc (fn (genrest) =>
                   { generate-num := proc () = throw genrest ();
                     throw caller i } 
    }  

generate-num := generate-numbers;
proc make-generator () = {
   fn () => call/cc (fn (k) => {
                                  caller := k;
                                  generate-num()
                               })
  }
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Analysis
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● Continuations saved at two points in the 
generator definition:
− To save state associated with the generator loop itself
− To save the callers state, so that it can be resumed 

with the next generated value
● How might we implement this functionality in the 

absence of explicit continuations?

Thursday, January 12, 12



CS390C: Principles of Concurrency and Parallelism

Manifestation
● Several languages provide explicit support for continuation-

capture

− Scheme, ML, Haskell, ...

● Here’s how we might write a generator in ML:
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fun makeGenerator i = 
    let val caller = ref NONE
        val generateNumRef = ref (fn () => ())
        fun generateNums () = 
            let fun loop (i) = 
                let val _ = callcc (fn genrest => 
          ((generateNumRef := (fn ()=> throw genrest ()));
           throw (valOf(!caller)) (SOME i)))
  in loop (i+1)
  end
            in loop (i)
            end
        val _ = (generateNumRef := generateNums)
    in fn () => 
        callcc (fn k =>   (caller := SOME k;
                                  (!generateNumRef)();
                            NONE))
    end
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What next?

● Being able to save and restore control state is at the 
heart of any implementation of concurrency

● Using continuations, we can build our own threading 
system 
− schedulers

● cooperative
● preemptive

● Not quite so simple though ...
− exceptions and aborting; interrupts

− asynchrony 22
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Further Reading
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Essentials of Programming Languages, Friedman, Wand, Haynes (2001)

Continuation-based Multiprocessing, Wand (1980)

Continuations and Threads: Expressing Machine Concurrency Directly in 
    Advanced Languages (1997)

Continuations and Concurrency, Hieb and Dybvig (1990)

Thursday, January 12, 12


