
CS390C: Principles of Concurrency and Parallelism

Principles of Concurrency and
Parallelism

 Lecture 11: Data Races

 4/12/12

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Data Race

● A data race occurs when two concurrently executing
threads access a shared variable and when:
− at least one of the accesses is a write

− there is no explicit mechanism used to prevent the
accesses from being simultaneous

● Meaning of programs with data races depends upon
interleaving of thread executions.
− Sometimes this is ok (when?)

− Usually, it is not

2

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Example

3
37

Data Race Example

public class Example extends Thread {

 private static int cnt = 0; // shared state

 public void run() {

 int y = cnt;

 cnt = y + 1;

 }

 public static void main(String args[]) {

 Thread t1 = new Example();

 Thread t2 = new Example();

 t1.start();

 t2.start();

 }

}

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

What can go wrong?

● A data race manifests as the result of an undesirable
schedule or interleaving

● Key is to prevent such interleavings
− Judicious use of locks or synchronization

− Not always repeatable (Heisenbugs)

● How can we tell that a program does not have a data
race?
− Dynamic (monitor its execution)

− Static (apply compile-time analysis)

4

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Current State

● 2008 study (Lu et. al, ASPLOS’08)
● Examined 74 non-deadlock bugs in MySQL, Apache,

Mozilla, OpenOffice
− 1/3 of the bugs caused by violation of program order

− 34% involved multiple variables

− 92% can be triggered by enforcing certain schedules
involving no more than 4 memory accesses

− 73% could not be fixed by simply adding locks

● Concurrency bugs not easily repaired or detected

5

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Explanation of Failures

6

7
8
9

int x=0;
int y=3;
if (x>y)
 print (“pass”);
else
 print (“fail”);

T1 T2

●

6 print(..)

data race

(b) Passing

init () {
 x=5;
}

1
2
3
4
5
6 x=5;

T1
int x=0;
int y=3;

if (x>y)
else
 print (“f...”);

T2

(c) Failing

●
▲

▲

x=5; T2

T1

T1

int x=0;
int y=3;

if (x>y)
 print (“p...”); 3 if (x>y)

1 int x=0

(d) Failure slice
6 print(..)

3 if (x>y)3 if (x>y)

8 x=5

(d) Dual slice(a) Code

2 int y=3
1 x=0

dependence Correlation● ▲Value diff. Flow diff.
Figure 1. Motivating Example (I) – data race.

1
2
3
4
5
6
7

x=-1;
y=0;
if (race)
 x=1;
if (x<0)
 y=1;
output (y)

x=-1;
y=0;
if (race)

if (x<0)
 y=1;
output (y)

x=-1;
y=0;
if (race)
 x=1;
if (x<0)

output (y)

●
▲
●

▲
● ●

● ● 7 output(y)

(c) Failing(b) Passing(a) Code

4 x=1

6 output(y)

5 if (x<0)
falsetrue

truefalse

y=0y=1

(f) Dual slice

7 output(y)

5 if (x<0)

3 if (race)3 if (race)

7 output(y)

6 y=1

5 if (x<0)

1 x=-1

7 output(y)

2 y=0

(e) Failure slice(d) Passing slice
Figure 2. Motivating Example (II) - execution omission.

The mutual symbiosis between the failing and passing run is the
key to effectively handling execution omission [29] resulting from
concurrency bugs.

3. Trace Comparison
Our technique consists of two phases: trace differencing and dual
slicing. Given two runs defined by a correct schedule and a failure-
inducing one, the first phase computes their differences. As vali-
dated by systems like CHESS [13], in most cases, a failure-inducing
schedule can often be derived from a passing one by injecting only
a few preemptions. Such preemptions lead to value and/or control
differences, some of which are harmful and eventually lead to the
failure.
Execution comparison can be carried out on traces. In general,

traces maybe either lossy or lossless. Lossless traces [11] record dy-
namic information for each execution step and thus require space
proportional to the execution length. In contrast, lossy traces are ac-
quired by accumulation. For example, a lossy trace captures control
flow using program counters, or sometimes more elaborately, as a
set of tuples such as instruction: frequency and path: frequency [1].
The main benefit of lossy traces is that their space requirement can
be made linear in static program size. Comparison based on lossy
traces is simply comparison of tuples with the same key.
Despite its simplicity and space efficiency, lossy trace compar-

ison is insufficient for our purposes. For example, assume a case
in which one run executes a statement s i times, denoted as a fre-
quency pair s : i, while the other run executes s i + 1 times. Al-
though lossy trace comparison can identify that s is different in
the two runs, it fails to identify which instance of s is correlated
with the failure. This degree of precision is essential for our pur-
poses. Furthermore, in a concurrent setting, it may happen that a
statement s has exactly the same value and execution frequency in
both runs and hence is not a trace difference, but it is still strongly
correlated to the failure if it is involved in a data race.
Our technique therefore relies on comparing lossless traces. In

the context of comparing traces induced by different schedules, the
space requirement of lossless tracing is significantly alleviated be-

1
2
3
4
5
6
7
8

20

21

22

23

24

int cnt=2;

void main () {

 Queue reqs;

 spawn (t_configure());

 while (!reqs.isEmpty()) {

 spawn (t_request(reqs.pop()));

 }

}

void t_configure () {

 if (command==”change count”)

 cnt=readInt();

 …

}

void t_ request () {

 int A[100], B[100];

 int sum=0, j=0, t_cnt;

 t_cnt=cnt;

 while (j<t_cnt) {

 A[j]=readInt();

 sum=sum + A[j];

 B[j]=Integrate(B, j);

 j++;

 }

 if (t_cnt % 2 ==0)

 sum=sum+A[0];

 else

 sum=sum-A[0];

 output (sum);

}

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

da
ta

ra
ce

Figure 3. A program with a data race. The program creates a
configuration thread t configure() and a number of computation
threads t request(). A computation thread computes the sum of
an input array and the integrals (array B) up to each element in the
array. Users can set the number of elements to be considered during
computation in the configuration thread. The race lies in lines 22
and 33. If, by chance, line 33 is executed before line 22, t cnt
receives the old value of cnt and leads to unexpected output.

cause we do not need to record any dynamic information before the
first schedule difference since the two executions are identical be-
fore that point. Hence, the main challenge lies in solving the prob-
lem of trace alignment. Due to schedule variance, the perturbed
execution often makes different function invocations, has different
predicate outcomes leading to different control flows, and computes
different values for the same variables. If the two traces are not pre-
cisely aligned, the computed differences may be due to misalign-
ment, i.e., a trace difference may not be a real difference but instead
may be caused by the comparison being carried out at inappropriate
points. For example, due to non-determinism, if the same request

7
8
9

int x=0;
int y=3;
if (x>y)
 print (“pass”);
else
 print (“fail”);

T1 T2

●

6 print(..)

data race

(b) Passing

init () {
 x=5;
}

1
2
3
4
5
6 x=5;

T1
int x=0;
int y=3;

if (x>y)
else
 print (“f...”);

T2

(c) Failing

●
▲

▲

x=5; T2

T1

T1

int x=0;
int y=3;

if (x>y)
 print (“p...”); 3 if (x>y)

1 int x=0

(d) Failure slice
6 print(..)

3 if (x>y)3 if (x>y)

8 x=5

(d) Dual slice(a) Code

2 int y=3
1 x=0

dependence Correlation● ▲Value diff. Flow diff.
Figure 1. Motivating Example (I) – data race.

1
2
3
4
5
6
7

x=-1;
y=0;
if (race)
 x=1;
if (x<0)
 y=1;
output (y)

x=-1;
y=0;
if (race)

if (x<0)
 y=1;
output (y)

x=-1;
y=0;
if (race)
 x=1;
if (x<0)

output (y)

●
▲
●

▲
● ●

● ● 7 output(y)

(c) Failing(b) Passing(a) Code

4 x=1

6 output(y)

5 if (x<0)
falsetrue

truefalse

y=0y=1

(f) Dual slice

7 output(y)

5 if (x<0)

3 if (race)3 if (race)

7 output(y)

6 y=1

5 if (x<0)

1 x=-1

7 output(y)

2 y=0

(e) Failure slice(d) Passing slice
Figure 2. Motivating Example (II) - execution omission.

The mutual symbiosis between the failing and passing run is the
key to effectively handling execution omission [29] resulting from
concurrency bugs.

3. Trace Comparison
Our technique consists of two phases: trace differencing and dual
slicing. Given two runs defined by a correct schedule and a failure-
inducing one, the first phase computes their differences. As vali-
dated by systems like CHESS [13], in most cases, a failure-inducing
schedule can often be derived from a passing one by injecting only
a few preemptions. Such preemptions lead to value and/or control
differences, some of which are harmful and eventually lead to the
failure.
Execution comparison can be carried out on traces. In general,

traces maybe either lossy or lossless. Lossless traces [11] record dy-
namic information for each execution step and thus require space
proportional to the execution length. In contrast, lossy traces are ac-
quired by accumulation. For example, a lossy trace captures control
flow using program counters, or sometimes more elaborately, as a
set of tuples such as instruction: frequency and path: frequency [1].
The main benefit of lossy traces is that their space requirement can
be made linear in static program size. Comparison based on lossy
traces is simply comparison of tuples with the same key.
Despite its simplicity and space efficiency, lossy trace compar-

ison is insufficient for our purposes. For example, assume a case
in which one run executes a statement s i times, denoted as a fre-
quency pair s : i, while the other run executes s i + 1 times. Al-
though lossy trace comparison can identify that s is different in
the two runs, it fails to identify which instance of s is correlated
with the failure. This degree of precision is essential for our pur-
poses. Furthermore, in a concurrent setting, it may happen that a
statement s has exactly the same value and execution frequency in
both runs and hence is not a trace difference, but it is still strongly
correlated to the failure if it is involved in a data race.
Our technique therefore relies on comparing lossless traces. In

the context of comparing traces induced by different schedules, the
space requirement of lossless tracing is significantly alleviated be-

1
2
3
4
5
6
7
8

20

21

22

23

24

int cnt=2;

void main () {

 Queue reqs;

 spawn (t_configure());

 while (!reqs.isEmpty()) {

 spawn (t_request(reqs.pop()));

 }

}

void t_configure () {

 if (command==”change count”)

 cnt=readInt();

 …

}

void t_ request () {

 int A[100], B[100];

 int sum=0, j=0, t_cnt;

 t_cnt=cnt;

 while (j<t_cnt) {

 A[j]=readInt();

 sum=sum + A[j];

 B[j]=Integrate(B, j);

 j++;

 }

 if (t_cnt % 2 ==0)

 sum=sum+A[0];

 else

 sum=sum-A[0];

 output (sum);

}

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

da
ta

ra
ce

Figure 3. A program with a data race. The program creates a
configuration thread t configure() and a number of computation
threads t request(). A computation thread computes the sum of
an input array and the integrals (array B) up to each element in the
array. Users can set the number of elements to be considered during
computation in the configuration thread. The race lies in lines 22
and 33. If, by chance, line 33 is executed before line 22, t cnt
receives the old value of cnt and leads to unexpected output.

cause we do not need to record any dynamic information before the
first schedule difference since the two executions are identical be-
fore that point. Hence, the main challenge lies in solving the prob-
lem of trace alignment. Due to schedule variance, the perturbed
execution often makes different function invocations, has different
predicate outcomes leading to different control flows, and computes
different values for the same variables. If the two traces are not pre-
cisely aligned, the computed differences may be due to misalign-
ment, i.e., a trace difference may not be a real difference but instead
may be caused by the comparison being carried out at inappropriate
points. For example, due to non-determinism, if the same request

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

How can data races be detected and
prevented?

● Enforce the use of high-level language mechanisms
− monitors, synchronized, etc.

− Monitors: (Hoare 1974)
● a group of shared variables along with procedures to access them.
● all accesses protected by the same (anonymous) lock acquired and

released upon entry/exit of the monitor
● shared variable not visible outside monitor
● lots of issues

− dynamically allocated data, waiting, exceptions, nesting, ...

7

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Dynamic Approaches

● Happens-before relation
− partial order on events of all threads in a concurrent

execution

− Between threads, events are ordered according to the
synchronization objects they access

8

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Formally

● An interleaving is an execution in which
− lock/unlock alternates correctly

− each read sees the most recent write to the same location
● sequentially consistent semantics

● Totally orders all actions
− does not keep track of which actions take place in parallel

9

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Formally

10

Happens-before

Definition [program order]: program order, <po, is a total order over the
actions of the same thread in an interleaving.

Definition [synchronises with]: in an interleaving I, index i synchronises-
with index j, i <sw j, if i < j and A(Ii) = U (unlock), A(Ij) = L (lock).

Definition [happens-before]: Happens-before is the transitive closure of
program order and synchronises with.

61Friday, 13 January 2012

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Example

11

Thread 0 Thread 1

*y = 1 lock();

lock(); tmp = *x;

*x = 1 unlock();

unlock(); if tmp = 1

then print *y

Examples of happens before

 0:W[y=1], 0:L, 0:W[x=1], 0:U, 1: L, 1:R[x=1], 1:U, 1:R[y=1], 1:X(1)

po po po po po po po

swhb

0:W[y=1], 1:L, 1:R[x=0], 1:U, 0:L, 0:W[x=1], 0:U

po popo po

po

swhb

S(tid) actions omitted.

62Friday, 13 January 2012

Thread 0 Thread 1

*y = 1 lock();

lock(); tmp = *x;

*x = 1 unlock();

unlock(); if tmp = 1

then print *y

Examples of happens before

 0:W[y=1], 0:L, 0:W[x=1], 0:U, 1: L, 1:R[x=1], 1:U, 1:R[y=1], 1:X(1)

po po po po po po po

swhb

0:W[y=1], 1:L, 1:R[x=0], 1:U, 0:L, 0:W[x=1], 0:U

po popo po

po

swhb

S(tid) actions omitted.

62Friday, 13 January 2012

Thread 0 Thread 1

*y = 1 lock();

lock(); tmp = *x;

*x = 1 unlock();

unlock(); if tmp = 1

then print *y

Examples of happens before

 0:W[y=1], 0:L, 0:W[x=1], 0:U, 1: L, 1:R[x=1], 1:U, 1:R[y=1], 1:X(1)

po po po po po po po

swhb

0:W[y=1], 1:L, 1:R[x=0], 1:U, 0:L, 0:W[x=1], 0:U

po popo po

po

swhb

S(tid) actions omitted.

62Friday, 13 January 2012Tuesday, April 17, 12

w h ich t h ese t wo i n t e r act ions a r e exch a nged i n t i m e. F or ex a m p le, F igu r e 1
shows on e possible or de r i ng of t wo t h r e a ds execu t i ng t h e sa m e code
segm e n t . T h e t h r ee p rogr a m st a t e m e n ts execu t ed by T h r e a d 1 a r e or de r ed
by h a p pe ns-befor e beca use t h e y a r e execu t ed seq u e n t i a l l y i n t h e sa m e
t h r e a d . T h e lock of m u by T h r e a d 2 is or de r ed by h a p pe ns-befor e w i t h t h e
u n lock of m u by T h r e a d 1 beca use a lock ca n not be acq u i r ed befor e i ts
p r e v ious ow n e r h as r e le ased i t . F i n a l l y , t h e t h r ee st a t e m e n ts execu t ed by
T h r e a d 2 a r e or de r ed by h a p pe ns-befor e beca use t h e y a r e execu t ed seq u e n-
t i a l l y w i t h i n t h a t t h r e a d .

I f t wo t h r e a ds bot h access a sh a r ed v a r i a ble, a n d t h e accesses a r e not
or de r ed by t h e h a p pe ns-befor e r e l a t ion , t h e n i n a not h e r execu t ion of t h e
p rogr a m i n w h ich t h e slow e r t h r e a d r a n f ast e r a n d/or t h e f ast e r t h r e a d r a n
slow e r , t h e t wo accesses cou l d h a ve h a ppe n ed si m u l t a n eousl y; t h a t is, a
d a t a r ace cou l d h a ve occu r r ed , w h e t h e r or not i t act u a l l y d i d occu r . A l l
p r e v ious d y n a m ic r ace de t ect ion tools t h a t w e k now of a r e b ased on t h is
obse r v a t ion . T h ese r ace de t ectors mon i tor e ve r y d a t a r efe r e nce a n d sy n-
ch ron i z a t ion ope r a t ion a n d ch eck for con fl ict i ng accesses to sh a r ed v a r i-
a bles t h a t a r e u n r e l a t ed by t h e h a p pe ns-befor e r e l a t ion for t h e p a r t icu l a r
execu t ion t h e y a r e mon i tor i ng.

U n for t u n a t e l y , tools b ased on h a p pe ns-befor e h a ve t wo sign i fica n t d r a w-
b ack s. F i rst , t h e y a r e d i ff icu l t to i m p le m e n t eff icie n t l y beca use t h e y r eq u i r e
pe r-t h r e a d i n for m a t ion a bou t concu r r e n t accesses to e ach sh a r ed-m e mor y
loca t ion . M or e i m por t a n t l y , t h e effect i ve n ess of tools b ased on h a p pe ns-
befor e is h igh l y depe n de n t on t h e i n t e r le a v i ng p rod uced by t h e sch ed u le r .

F ig. 1. L a m por t ’s h a p pe ns-befor e or de rs e ve n ts i n t h e sa m e t h r e a d i n t e m por a l or de r , a n d
or de rs e ve n ts i n d i ffe r e n t t h r e a ds i f t h e t h r e a ds a r e sy nch ron i zed w i t h on e a not h e r be t w ee n
t h e e ve n ts.

394 • S t e fa n S a v a g e e t al.

A C M T r a nsact ions on C om p u t e r S yst e ms, V ol . 15, N o. 4, N ove m be r 1997.

CS390C: Principles of Concurrency and Parallelism

Happens-Before

12

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Data Race

● If two threads access a shared variable, and the
accesses are not ordered under a happens-before
relation, then there is a potential data race.

● Dynamic detection of happens-before violations is
difficult:
− Require per-thread information about concurrent accesses

to shared memory

− But, there are techniques that can be used to alleviate this
issue

● vector clocks

13

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Example

14

Data-race freedom

Definition [data-race-freedom]: A traceset is data-race free if none of
its executions has two adjacent conflicting actions from different
threads.

Equivalently, a traceset is data-race free if in all its executions all pairs of
conflicting actions are ordered by happens-before.

Thread 0 Thread 1

*y = 1 if *x == 1

*x = 1 then print *y

0:W[y=1], 1:R[x=0], 0:W[x=1]

po

Two conflicting accesses
not related by happens before.A racy program

63Friday, 13 January 2012

Tuesday, April 17, 12

F igu r e 2 shows a si m p le ex a m p le w h e r e t h e h a p pe ns-befor e a pp roach ca n
m iss a d a t a r ace. W h i le t h e r e is a pot e n t i a l d a t a r ace on t h e u n p rot ect ed
accesses to y , i t w i l l not be de t ect ed i n t h e execu t ion show n i n t h e f igu r e,
beca use T h r e a d 1 hol ds t h e lock befor e T h r e a d 2, a n d so t h e accesses to y
a r e or de r ed i n t h is i n t e r le a v i ng by h a p pe ns-befor e. A tool b ased on h a p pe ns-
befor e wou l d de t ect t h e e r ror on l y i f t h e sch ed u le r p rod uced a n i n t e r le a v i ng
i n w h ich t h e f r agm e n t of code for T h r e a d 2 occu r r ed befor e t h e f r agm e n t of
code for T h r e a d 1. T h us, to be effect i ve, a r ace de t ector b ased on h a p pe ns-
befor e n eeds a l a rge n u m be r of t est cases to t est m a n y possible i n t e r le a v-
i ngs. I n con t r ast , t h e p rogr a m m i ng e r ror i n F igu r e 2 w i l l be de t ect ed by
E r ase r w i t h a n y t est case t h a t exe rcises t h e t wo code p a t hs, beca use t h e
p a t hs v iol a t e t h e lock i ng d isci p l i n e for y r ega r d less of t h e i n t e r le a v i ng
p rod uced by t h e sch ed u le r . W h i le E r ase r is a t est i ng tool a n d t h e r efor e
ca n not gu a r a n t ee t h a t a p rogr a m is f r ee f rom r aces, i t ca n de t ect mor e
r aces t h a n tools b ased on h a p pe ns-befor e.

T h e loc k cove rs t ech n iq u e of D i n n i ng a n d Schon be rg is a n i m p rove m e n t
to t h e h a p pe ns-befor e a pp roach for p rogr a ms t h a t m a k e h e a v y use of lock s
[D i n n i ng a n d Schon be rg 1991]. I n deed , on e w a y to descr ibe ou r a pp roach
wou l d be t h a t w e ex t e n d D i n n i ng a n d Schon be rg’s i m p rove m e n t a n d
d isca r d t h e u n de r l y i ng h a p pe ns-befor e a pp a r a t us t h a t t h e y w e r e i m p rov i ng.

F ig. 2. T h e p rogr a m a l lows a d a t a r ace on y , b u t t h e e r ror is not de t ect ed by h a p pe ns-befor e
i n t h is execu t ion i n t e r le a v i ng.

Era s er: A D yn a mic D a t a R a c e D e t e c tor for M ultithre a d Pro gra ms • 395

A C M T r a nsact ions on C om p u t e r S yst e ms, V ol . 15, N o. 4, N ove m be r 1997.

CS390C: Principles of Concurrency and Parallelism

Happens-Before

15

Using just happens-before, need a
large number of test cases to catch
the error.

Can we do better?

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Eraser Lockset Algorithm

● To avoid data races, every shared variable must be protected by
some lock.

● A dynamic tool must infer what these locks are

● For each shared variable v, maintain the set C(v) of candidate locks
for v.

− This set contains those locks that have protected v for the
computation so far.

− Initially, the set holds all possible locks.

− When v is accessed, compute the interesection of C(v) with the
current set of locks held by the thread

− If the set is empty, there is no lock that consistently protects v

16

Tuesday, April 17, 12

—R e a d-S h a r e d D a t a : Som e sh a r ed v a r i a bles a r e w r i t t e n d u r i ng i n i t i a l i z a-
t ion on l y a n d a r e r e a d-on l y t h e r e a f t e r . T h ese ca n be sa fe l y accessed
w i t hou t lock s.

—R e a d-W r i te L oc ks: R e a d-w r i t e lock s a l low m u l t i p le r e a de rs to access a
sh a r ed v a r i a ble, b u t a l low on l y a si ngle w r i t e r to do so.

I n t h e r e m a i n de r of t h is sect ion w e w i l l ex t e n d t h e L ock se t a lgor i t h m to
accom mod a t e i n i t i a l i z a t ion a n d r e a d-sh a r ed d a t a , a n d t h e n ex t e n d i t f u r-
t h e r to accom mod a t e r e a d-w r i t e lock s.

2 .2 Initializ a tion a n d R e a d - S h aring

T h e r e is no n eed for a t h r e a d to lock ou t ot h e rs i f no ot h e r t h r e a d ca n
possibl y hol d a r efe r e nce to t h e d a t a be i ng accessed . P rogr a m m e rs of t e n
t a k e a d v a n t age of t h is obse r v a t ion w h e n i n i t i a l i z i ng n e w l y a l loca t ed d a t a .
T o a voi d f a lse a l a r ms ca used by t h ese u n lock ed i n i t i a l i z a t ion w r i t es, w e
de l a y t h e r ef i n e m e n t of a loca t ion ’s ca n d i d a t e se t u n t i l a f t e r i t h as bee n
i n i t i a l i zed . U n for t u n a t e l y , w e h a ve no e asy w a y of k now i ng w h e n i n i t i a l i z a-
t ion is com p le t e. E r ase r t h e r efor e consi de rs a sh a r ed v a r i a ble to be i n i t i a l-
i zed w h e n i t is fi rst accessed by a secon d t h r e a d . A s long as a v a r i a ble h as
bee n accessed by a si ngle t h r e a d on l y , r e a ds a n d w r i t es h a ve no effect on
t h e ca n d i d a t e se t .

S i nce si m u l t a n eous r e a ds of a sh a r ed v a r i a ble by m u l t i p le t h r e a ds a r e
not r aces, t h e r e is a lso no n eed to p rot ect a v a r i a ble i f i t is r e a d-on l y . T o
su ppor t u n lock ed r e a d-sh a r i ng for such d a t a , w e r epor t r aces on l y a f t e r a n
i n i t i a l i zed v a r i a ble h as becom e w r i t e-sh a r ed by mor e t h a n on e t h r e a d .

F igu r e 4 i l l ust r a t es t h e st a t e t r a nsi t ions t h a t con t rol w h e n lock se t
r ef i n e m e n t occu rs a n d w h e n r aces a r e r epor t ed . W h e n a v a r i a ble is fi rst
a l loca t ed , i t is se t to t h e V i r g i n st a t e, i n d ica t i ng t h a t t h e d a t a a r e n e w a n d
h a ve not ye t bee n r efe r e nced by a n y t h r e a d . O nce t h e d a t a a r e accessed , i t

F ig. 3. I f a sh a r ed v a r i a ble is som e t i m es p rot ect ed by m u1 a n d som e t i m es by lock m u2, t h e n
no lock p rot ects i t for t h e w hole com p u t a t ion . T h e f igu r e shows t h e p rogr essi ve r ef i n e m e n t of
t h e se t of ca n d i d a t e lock s C (v) for v . W h e n C (v) becom es e m p t y , t h e L ock se t a lgor i t h m h as
de t ect ed t h a t no lock p rot ects v .

Era s er: A D yn a mic D a t a R a c e D e t e c tor for M ultithre a d Pro gra ms • 397

A C M T r a nsact ions on C om p u t e r S yst e ms, V ol . 15, N o. 4, N ove m be r 1997.

CS390C: Principles of Concurrency and Parallelism

Example

17

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Improvements

● Common programming practices often violate locking
discipline, but are still race free:
− Initialization

− Reading shared data

− Read-write locks:
● multiple readers, single (exclusive) writer

18

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Initialization

● How can we tell when initialization is complete?
− Assume initialization is complete if a variable is accessed by

a second thread.

− As long as a variable is only accessed by a single thread,
reads and writes have no effect on the candidate lock set.

− Similar conditions hold for read-only data

19

Tuesday, April 17, 12

e n t e rs t h e E xc l usi ve st a t e, sign i fy i ng t h a t i t h as bee n accessed , b u t by on e
t h r e a d on l y . I n t h is st a t e, su bseq u e n t r e a ds a n d w r i t es by t h e sa m e t h r e a d
do not ch a nge t h e v a r i a ble’s st a t e a n d do not u pd a t e C (v) . T h is a dd r esses
t h e i n i t i a l i z a t ion issu e, si nce t h e f i rst t h r e a d ca n i n i t i a l i ze t h e v a r i a ble
w i t hou t ca usi ng C (v) to be r ef i n ed . W h e n a n d i f a not h e r t h r e a d accesses
t h e v a r i a ble, t h e n t h e st a t e ch a nges. A r e a d access ch a nges t h e st a t e to
S h a r e d . I n t h e S h a r e d st a t e, C (v) is u pd a t ed , b u t d a t a r aces a r e not
r epor t ed , e ve n i f C (v) becom es e m p t y . T h is t a k es ca r e of t h e r e a d-sh a r ed
d a t a issu e, si nce m u l t i p le t h r e a ds ca n r e a d a v a r i a ble w i t hou t ca usi ng a
r ace to be r epor t ed . A w r i t e access f rom a n e w t h r e a d ch a nges t h e st a t e
f rom E xc l usi ve or S h a r e d to t h e S h a r e d- M od i f i e d st a t e, i n w h ich C (v) is
u pd a t ed a n d r aces a r e r epor t ed , j ust as descr ibed i n t h e or igi n a l , si m p le
ve rsion of t h e a lgor i t h m .

O u r su ppor t for i n i t i a l i z a t ion m a k es E r ase r ’s ch eck i ng mor e depe n de n t
on t h e sch ed u le r t h a n w e wou l d l i k e. S u ppose t h a t a t h r e a d a l loca t es a n d
i n i t i a l i zes a sh a r ed v a r i a ble w i t hou t a lock a n d e r ron eousl y m a k es t h e
v a r i a ble accessible to a secon d t h r e a d befor e i t h as com p le t ed t h e i n i t i a l i z a-
t ion . T h e n E r ase r w i l l de t ect t h e e r ror i f a n y of t h e secon d t h r e a d’s accesses
occu r befor e t h e f i rst t h r e a d’s fi n a l i n i t i a l i z a t ion act ions, b u t ot h e r w ise
E r ase r w i l l m iss t h e e r ror . W e do not t h i n k t h is h as bee n a p roble m , b u t w e
h a ve no w a y of k now i ng for su r e.

2 .3 R e a d - Writ e Lo c ks

M a n y p rogr a ms use si ngle-w r i t e r , m u l t i p le-r e a de r lock s as w e l l as si m p le
lock s. T o accom mod a t e t h is st y le w e i n t rod uce ou r l ast r ef i n e m e n t of t h e
lock i ng d isci p l i n e: w e r eq u i r e t h a t for e ach v a r i a ble v , som e lock m p rotects
v , m e a n i ng m is h e l d i n w r i t e mode for e ve r y w r i t e of v , a n d m is h e l d i n
som e mode (r e a d or w r i t e) for e ve r y r e a d of v .

F ig. 4. E r ase r k eeps t h e st a t e of a l l loca t ions i n m e mor y . N e w l y a l loca t ed loca t ions begi n i n
t h e V i r g i n st a t e. A s v a r ious t h r e a ds r e a d a n d w r i t e a loca t ion , i ts st a t e ch a nges accor d i ng to
t h e t r a nsi t ion i n t h e f igu r e. R ace con d i t ions a r e r epor t ed on l y for loca t ions i n t h e S h a r e d-
M od i f i e d st a t e.

398 • S t e fa n S a v a g e e t al.

A C M T r a nsact ions on C om p u t e r S yst e ms, V ol . 15, N o. 4, N ove m be r 1997.

CS390C: Principles of Concurrency and Parallelism

State Transition Diagram

20

initial allocation

initialized

C(v) updated, but
empty set not reported

C(v) updated, and
races reported when it
becomes empty

Tuesday, April 17, 12

W e con t i n u e to use t h e st a t e t r a nsi t ions of F igu r e 4, b u t w h e n t h e
v a r i a ble e n t e rs t h e S h a r e d- M od i f i e d st a t e, t h e ch eck i ng is sl igh t l y d i ffe r-
e n t:

L e t loc ks h e l d(t) be t h e se t of lock s h e l d i n a n y mode by t h r e a d t .
L e t w r i te loc ks h e l d(t) be t h e se t of lock s h e l d i n w r i t e mode by t h r e a d t .
F or e ach v , i n i t i a l i ze C (v) to t h e se t of a l l lock s.
O n e ach r e a d of v by t h r e a d t ,

se t C (v) : C (v) loc ks h e l d(t) ;
i f C (v) : { }, t h e n issu e a w a r n i ng.

O n e ach w r i t e of v by t h r e a d t ,
se t C (v) : C (v) w r i te loc ks h e l d(t) ;
i f C (v) { }, t h e n issu e a w a r n i ng.

T h a t is, lock s h e l d p u r e l y i n r e a d mode a r e r e moved f rom t h e ca n d i d a t e
se t w h e n a w r i t e occu rs, as such lock s h e l d by a w r i t e r do not p rot ect
aga i nst a d a t a r ace be t w ee n t h e w r i t e r a n d som e ot h e r r e a de r t h r e a d .

3 . IM P L E M E N TIN G E R A S E R

E r ase r is i m p le m e n t ed for t h e D igi t a l U n i x ope r a t i ng syst e m on t h e A l p h a
p rocessor , usi ng t h e A T O M [S r i v ast a v a a n d E ust ace 1994] bi n a r y mod i fica-
t ion syst e m . E r ase r t a k es a n u n mod i fied p rogr a m bi n a r y as i n p u t a n d a dds
i nst r u m e n t a t ion to p rod uce a n e w bi n a r y t h a t is f u nct ion a l l y i de n t ica l , b u t
i ncl u des ca l ls to t h e E r ase r r u n t i m e to i m p le m e n t t h e L ock se t a lgor i t h m .

T o m a i n t a i n C (v) , E r ase r i nst r u m e n ts e ach loa d a n d stor e i n t h e p ro-
gr a m . T o m a i n t a i n loc k h e l d(t) for e ach t h r e a d t , E r ase r i nst r u m e n ts e ach
ca l l to acq u i r e or r e le ase a lock , as w e l l as t h e st u bs t h a t m a n age t h r e a d
i n i t i a l i z a t ion a n d fi n a l i z a t ion . T o i n i t i a l i ze C (v) for d y n a m ica l l y a l loca t ed
d a t a , E r ase r i nst r u m e n ts e ach ca l l to t h e stor age a l loca tor .

E r ase r t r e a ts e ach 32-bi t wor d i n t h e h e a p or glob a l d a t a as a possible
sh a r ed v a r i a ble, si nce on ou r p l a t for m a 32-bi t wor d is t h e sm a l lest
m e mor y-coh e r e n t u n i t . E r ase r does not i nst r u m e n t loa ds a n d stor es w hose
a dd r ess mode is i n d i r ect off t h e st ack poi n t e r , si nce t h ese a r e assu m ed to be
st ack r efe r e nces, a n d sh a r ed v a r i a bles a r e assu m ed to be i n glob a l loca t ions
or i n t h e h e a p . E r ase r w i l l m a i n t a i n ca n d i d a t e se ts for st ack loca t ions t h a t
a r e accessed v i a r egist e rs ot h e r t h a n t h e st ack poi n t e r , b u t t h is is a n
a r t i f act of t h e i m p le m e n t a t ion r a t h e r t h a n a de l ibe r a t e p l a n to su ppor t
p rogr a ms t h a t sh a r e st ack loca t ions be t w ee n t h r e a ds.

W h e n a r ace is r epor t ed , E r ase r i n d ica t es t h e f i le a n d l i n e n u m be r a t
w h ich i t w as d iscove r ed a n d a b ack t r ace l ist i ng of a l l act i ve st ack f r a m es.
T h e r epor t a lso i ncl u des t h e t h r e a d I D , m e mor y a dd r ess, t y pe of m e mor y
access, a n d i m por t a n t r egist e r v a l u es such as t h e p rogr a m cou n t e r a n d
st ack poi n t e r . W h e n used i n con j u nct ion w i t h t h e p rogr a m ’s sou rce code, w e
h a ve fou n d t h a t t h is i n for m a t ion is usu a l l y su fficie n t to loca t e t h e or igi n of
t h e r ace. I f t h e ca use of a r ace is st i l l u ncle a r , t h e use r ca n d i r ect E r ase r to
log a l l t h e accesses to a p a r t icu l a r v a r i a ble t h a t r esu l t i n a ch a nge to i ts
ca n d i d a t e lock se t .

Era s er: A D yn a mic D a t a R a c e D e t e c tor for M ultithre a d Pro gra ms • 399

A C M T r a nsact ions on C om p u t e r S yst e ms, V ol . 15, N o. 4, N ove m be r 1997.

CS390C: Principles of Concurrency and Parallelism

Read-Write Locks

● For each variable v, some lock m protects v
− m is held in write mode for every write of v

− m is held in some mode (read or write) for every read of v

− Locks held in read mode are removed from the candidate set
when a write occurs

● such locks held by a writer do not protect against a data race between the
writer and some other reader thread

21

∩

∩

=

=
=

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Implementation

● Binary instrumentation
− Each load and store

● Except loads/stores indirect off the stack

− Each lock/unlock

− Storage allocator

● Lockset representation
− Each set of locks represented as index into a table of lock

addresses

● Use a shadow memory to hold lockset index

22

Tuesday, April 17, 12

oppor t u n i t ies for usi ng st a t ic a n a l ysis to r ed uce t h e ove r h e a d of t h e
mon i tor i ng code; b u t w e h a ve not ex p lor ed t h e m .

I n sp i t e of ou r l i m i t ed pe r for m a nce t u n i ng, w e h a ve fou n d t h a t E r ase r is
f ast e nough to deb ug most p rogr a ms a n d t h e r efor e m ee ts t h e most esse n t i a l
pe r for m a nce cr i t e r ion .

3 .3 Pro gra m A nnot a tions

A s ex pect ed , ou r ex pe r ie nce w i t h E r ase r show ed t h a t i t ca n p rod uce f a lse
a l a r ms. P a r t of ou r r ese a rch w as a i m ed a t fi n d i ng effect i ve a n not a t ions to
su pp r ess f a lse a l a r ms w i t hou t acci de n t a l l y losi ng usef u l w a r n i ngs. T h is is a
k e y to m a k i ng a tool l i k e E r ase r usef u l . I f t h e f a lse a l a r ms a r e su pp r essed
w i t h accu r a t e a n d speci f ic a n not a t ions, t h e n w h e n a p rogr a m is mod i fied ,
a n d t h e mod i fied p rogr a m is t est ed , on l y f r esh a n d r e le v a n t w a r n i ngs w i l l
be p rod uced .

I n ou r ex pe r ie nce f a lse a l a r ms fe l l m a i n l y i n to t h r ee b roa d ca t egor ies:

— M e mor y R e use: F a lse a l a r ms w e r e r epor t ed beca use m e mor y is r e used
w i t hou t r ese t t i ng t h e sh a dow m e mor y . E r ase r i nst r u m e n ts a l l of t h e
st a n d a r d C , C , a n d U n i x m e mor y a l loca t ion rou t i n es. H ow e ve r , m a n y
p rogr a ms i m p le m e n t f r ee l ists or p r i v a t e a l loca tors, a n d E r ase r h as no
w a y of k now i ng t h a t a p r i v a t e l y r ecycled p iece of m e mor y is p rot ect ed by
a n e w se t of lock s.

F ig. 5. E r ase r associ a t es a lock se t i n dex w i t h e ach v a r i a ble by a dd i ng t h e v a r i a ble’s a dd r ess
to a fi xed sh a dow m e mor y offse t . T h e i n dex , i n t u r n , se lects a lock vector f rom t h e lock se t
i n dex t a ble. I n t h is case, t h e sh a r ed v a r i a ble v is associ a t ed w i t h a se t of lock s con t a i n i ng m u1
a n d m u2.

Era s er: A D yn a mic D a t a R a c e D e t e c tor for M ultithre a d Pro gra ms • 401

A C M T r a nsact ions on C om p u t e r S yst e ms, V ol . 15, N o. 4, N ove m be r 1997.

CS390C: Principles of Concurrency and Parallelism

Implementation

23

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Issues

● Lots of imprecision
− Leads to false alarms for programs that use different kinds

of synchronization idioms
● fork/join
● barriers

● How do we make race detectors more precise?
− Hopefully, without losing efficiency

24

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Vector Clocks
● A vector clock records a clock for each thread in the system

− partially ordered point-wise

− each thread has its own clock incremented at a lock release operation

− each thread also keeps a vector clock that records the clock for the last
operation of any other thread that happens-before the current operation of
this thread

− each thread also maintains a vector clock for each lock

− clocks updated on synchronization operations

25

ously acquire, (3) there are no instructions of a thread u preceding
an instruction fork(t, u) or following an instruction join(t, u), and
(4) there is at least one instruction of thread u between fork(t, u)
and join(v, u).

2.2 Review: Vector Clocks and the DJIT+ Algorithm
Before presenting the FASTTRACK algorithm, we briefly review
the DJIT+ race detection algorithm [30], which is based on vector
clocks [23]. A vector clock VC : Tid ! Nat records a clock
for each thread in the system. Vector clocks are partially-ordered
(v) in a point-wise manner, with an associated join operation (t)
and minimal element (?

V

). In addition, the helper function inc

t

increments the t-component of a vector clock:

V1 v V2 iff 8t. V1(t) V2(t)

V1 tV2 = �t. max (V1(t),V2(t))

?
V

= �t. 0

inc

t

(V) = �u. if u = t then V (u) + 1 else V (u)

In DJIT+, each thread has its own clock that is incremented
at each lock release operation. Each thread t also keeps a vector
clock C

t

such that, for any thread u, the clock entry C
t

(u) records
the clock for the last operation of thread u that happens before the
current operation of thread t. In addition, the algorithm maintains a
vector clock L

m

for each lock m. These vector clocks are updated
on synchronization operations that impose a happens-before order
between operations of different threads. For example, when thread
u releases lock m, the DJIT+ algorithm updates L

m

to be C
u

. If a
thread t subsequently acquires m, the algorithm updates C

t

to be
C

t

tL
m

, since subsequent operations of thread t now happen after
that release operation.

To identify conflicting accesses, the DJIT+ algorithm keeps two
vector clocks, R

x

and W
x

, for each variable x. For any thread t,
R

x

(t) and W
x

(t) record the clock of the last read and write to x by
thread t. A read from x by thread u is race-free provided it happens
after the last write of each thread, that is, W

x

v C
u

. A write to
x by thread u is race-free provided that the write happens after all
previous accesses to that variable, that is, W

x

v C
u

and R
x

v C
u

.
As an example, consider the following fragment from an exe-

cution trace, where we include the relevant portion of the DJIT+

instrumentation state: the vector clocks C0 and C1 for threads 0
and 1; and the vector clocks L

m

and W
x

for the last release of lock
m and the last write to variable x, respectively. We show two com-
ponents for each vector clock, but the target program may of course
contain additional threads.2

⟨4,0,...⟩

⟨4,0,...⟩

⟨5,0,...⟩

wr(0,x)

rel(0,m)

⟨4,8,...⟩

⟨0,8,...⟩

⟨4,8,...⟩

acq(1,m)

wr(1,x)

⟨0,0,...⟩

⟨0,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

⟨0,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

⟨4,8,...⟩

C0 Lm WxC1

⟨0,8,...⟩

⟨0,8,...⟩

⟨5,0,...⟩

⟨5,0,...⟩

2 For clarity, we present a variant of the DJIT+ algorithm where some
clocks are one less than in the original formulation [29]. This revised
algorithm has the same performance as the original but is slightly simpler
and more directly comparable to FASTTRACK.

At the write wr(0, x), DJIT+ updates W
x

with current clock of
thread 0. At the release rel(0, m), L

m

is updated with C0. At the
acquire acq(1, m), C1 is joined with L

m

, thus capturing the dashed
release-acquire happens-before edge shown above. At the second
write, DJIT+ compares the vector clocks

W
x

= h4, 0, . . .i v h4, 8, . . .i = C1

Since this check passes, the two writes are not concurrent, and no
race condition is reported.

3. The FASTTRACK Algorithm
A limitation of VC-based race detectors such as DJIT+ is their
performance. If a target program has n threads, then each vector
clock requires O(n) storage space and each vector clock operation
(copying, comparing, joining, etc) requires O(n) time.

Empirical data gathered from a variety of Java programs indi-
cates that synchronization operations (lock acquires and releases,
forks, joins, waits, notifies, etc) account for a very small fraction
of the operations that must be monitored by a race detector. Reads
and writes to object fields and arrays, on the other hand, account for
over 96% of monitored operations. The key insight behind FAST-
TRACK is that the full generality of vector clocks is not necessary
in over 99% of these read and write operations: a more lightweight
representation of the happens-before information can be used in-
stead. Only a small fraction of operations performed by the target
program necessitate expensive vector clock operations.

We begin by providing an overview of how our analysis catches
each type of race condition. Each race condition is either: a read-
write race condition (where the trace contains a read that is con-
current with a later write to the same variable); a write-read race
condition (a write concurrent with a later read); or a write-write
race condition (involving two concurrent writes).

Detecting Write-Write Races. We first consider how to efficiently
analyze write operations. At the second write operation in the
trace discussed in the previous section, DJIT+ compares the vector
clocks W

x

v C1 to determine whether there is a race. A careful
inspection reveals, however, that it is not necessary to record the
entire vector clock h4, 0, . . .i from the first write to x. Assuming no
races have been detected on x so far,3 then all writes to x are totally
ordered by the happens-before relation, and so the only critical
information that needs to be recorded is the clock (4) and identity
(thread 0) of the thread performing the last write. This information
(clock 4 of thread 0) is then sufficient to determine if a subsequent
write to x is in a race with any preceding write.

We refer to a pair of a clock c and a thread t as an epoch,
denoted c@t. Although rather simple, epochs provide the cru-
cial lightweight representation for recording sufficiently-precise
aspects of the happens-before relation efficiently. Unlike vector
clocks, an epoch requires only constant space, independent of
the number of threads in the program, and copying an epoch is
a constant-time operation.

An epoch c@t happens before a vector clock V (c@t � V)
if and only if the clock of the epoch is less than or equal to the
corresponding clock in the vector.

c@t � V iff c V (t)

Comparing an epoch to a vector clock (�) requires only O(1) time,
unlike vector clock comparisons (v), which require O(n) time. We
use?

e

to denote a minimal epoch 0@0. (This minimal epoch is not
unique; for example, another minimal epoch is 0@1.)

Using this optimized representation, FASTTRACK analyzes the
above trace using a compact instrumentation state that records only

3 FASTTRACK guarantees to detect at least the first race on each variable.

123

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Vector clocks

● To identify conflicting accesses, keep two vector
clocks for Rx and Wx for each variable x.
− Rx(t) and Wx(t) records the clock of the last read and

write to x by thread t.

− A read from x by thread u is race-free provided it happens-
after the last write of each thread, Wx ⊑ Cu.

− A write to x by thread u is race-free provided the write
happens after all previous accesses to that variable, Wx ⊑
Cu and Rx ⊑ Cu.

26

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Example

27

ously acquire, (3) there are no instructions of a thread u preceding
an instruction fork(t, u) or following an instruction join(t, u), and
(4) there is at least one instruction of thread u between fork(t, u)
and join(v, u).

2.2 Review: Vector Clocks and the DJIT+ Algorithm
Before presenting the FASTTRACK algorithm, we briefly review
the DJIT+ race detection algorithm [30], which is based on vector
clocks [23]. A vector clock VC : Tid ! Nat records a clock
for each thread in the system. Vector clocks are partially-ordered
(v) in a point-wise manner, with an associated join operation (t)
and minimal element (?

V

). In addition, the helper function inc

t

increments the t-component of a vector clock:

V1 v V2 iff 8t. V1(t) V2(t)

V1 tV2 = �t. max (V1(t),V2(t))

?
V

= �t. 0

inc

t

(V) = �u. if u = t then V (u) + 1 else V (u)

In DJIT+, each thread has its own clock that is incremented
at each lock release operation. Each thread t also keeps a vector
clock C

t

such that, for any thread u, the clock entry C
t

(u) records
the clock for the last operation of thread u that happens before the
current operation of thread t. In addition, the algorithm maintains a
vector clock L

m

for each lock m. These vector clocks are updated
on synchronization operations that impose a happens-before order
between operations of different threads. For example, when thread
u releases lock m, the DJIT+ algorithm updates L

m

to be C
u

. If a
thread t subsequently acquires m, the algorithm updates C

t

to be
C

t

tL
m

, since subsequent operations of thread t now happen after
that release operation.

To identify conflicting accesses, the DJIT+ algorithm keeps two
vector clocks, R

x

and W
x

, for each variable x. For any thread t,
R

x

(t) and W
x

(t) record the clock of the last read and write to x by
thread t. A read from x by thread u is race-free provided it happens
after the last write of each thread, that is, W

x

v C
u

. A write to
x by thread u is race-free provided that the write happens after all
previous accesses to that variable, that is, W

x

v C
u

and R
x

v C
u

.
As an example, consider the following fragment from an exe-

cution trace, where we include the relevant portion of the DJIT+

instrumentation state: the vector clocks C0 and C1 for threads 0
and 1; and the vector clocks L

m

and W
x

for the last release of lock
m and the last write to variable x, respectively. We show two com-
ponents for each vector clock, but the target program may of course
contain additional threads.2

⟨4,0,...⟩

⟨4,0,...⟩

⟨5,0,...⟩

wr(0,x)

rel(0,m)

⟨4,8,...⟩

⟨0,8,...⟩

⟨4,8,...⟩

acq(1,m)

wr(1,x)

⟨0,0,...⟩

⟨0,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

⟨0,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

⟨4,8,...⟩

C0 Lm WxC1

⟨0,8,...⟩

⟨0,8,...⟩

⟨5,0,...⟩

⟨5,0,...⟩

2 For clarity, we present a variant of the DJIT+ algorithm where some
clocks are one less than in the original formulation [29]. This revised
algorithm has the same performance as the original but is slightly simpler
and more directly comparable to FASTTRACK.

At the write wr(0, x), DJIT+ updates W
x

with current clock of
thread 0. At the release rel(0, m), L

m

is updated with C0. At the
acquire acq(1, m), C1 is joined with L

m

, thus capturing the dashed
release-acquire happens-before edge shown above. At the second
write, DJIT+ compares the vector clocks

W
x

= h4, 0, . . .i v h4, 8, . . .i = C1

Since this check passes, the two writes are not concurrent, and no
race condition is reported.

3. The FASTTRACK Algorithm
A limitation of VC-based race detectors such as DJIT+ is their
performance. If a target program has n threads, then each vector
clock requires O(n) storage space and each vector clock operation
(copying, comparing, joining, etc) requires O(n) time.

Empirical data gathered from a variety of Java programs indi-
cates that synchronization operations (lock acquires and releases,
forks, joins, waits, notifies, etc) account for a very small fraction
of the operations that must be monitored by a race detector. Reads
and writes to object fields and arrays, on the other hand, account for
over 96% of monitored operations. The key insight behind FAST-
TRACK is that the full generality of vector clocks is not necessary
in over 99% of these read and write operations: a more lightweight
representation of the happens-before information can be used in-
stead. Only a small fraction of operations performed by the target
program necessitate expensive vector clock operations.

We begin by providing an overview of how our analysis catches
each type of race condition. Each race condition is either: a read-
write race condition (where the trace contains a read that is con-
current with a later write to the same variable); a write-read race
condition (a write concurrent with a later read); or a write-write
race condition (involving two concurrent writes).

Detecting Write-Write Races. We first consider how to efficiently
analyze write operations. At the second write operation in the
trace discussed in the previous section, DJIT+ compares the vector
clocks W

x

v C1 to determine whether there is a race. A careful
inspection reveals, however, that it is not necessary to record the
entire vector clock h4, 0, . . .i from the first write to x. Assuming no
races have been detected on x so far,3 then all writes to x are totally
ordered by the happens-before relation, and so the only critical
information that needs to be recorded is the clock (4) and identity
(thread 0) of the thread performing the last write. This information
(clock 4 of thread 0) is then sufficient to determine if a subsequent
write to x is in a race with any preceding write.

We refer to a pair of a clock c and a thread t as an epoch,
denoted c@t. Although rather simple, epochs provide the cru-
cial lightweight representation for recording sufficiently-precise
aspects of the happens-before relation efficiently. Unlike vector
clocks, an epoch requires only constant space, independent of
the number of threads in the program, and copying an epoch is
a constant-time operation.

An epoch c@t happens before a vector clock V (c@t � V)
if and only if the clock of the epoch is less than or equal to the
corresponding clock in the vector.

c@t � V iff c V (t)

Comparing an epoch to a vector clock (�) requires only O(1) time,
unlike vector clock comparisons (v), which require O(n) time. We
use?

e

to denote a minimal epoch 0@0. (This minimal epoch is not
unique; for example, another minimal epoch is 0@1.)

Using this optimized representation, FASTTRACK analyzes the
above trace using a compact instrumentation state that records only

3 FASTTRACK guarantees to detect at least the first race on each variable.

123

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

Issues

● A target program with n threads
− requires O(n) storage

− each vector clock operation (copying, comparing, joining, ...)
requires O(n) time

● But, do we really need the full generality of vector
clocks?
− Avoid expensive operations in the general case

28

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

FastTrack

● Consider a write-write race:
− Avoid recording the entire clock

− In the previous example:
● critical information is the clock (4) and identity (0) of the thread

− Denote a pair of clock and thread as an epoch
● Epochs require constant space
● copying is a constant-time operation
● comparing an epoch to a vector clock requires constant time

29

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

FastTrack

30

a write epoch W
x

for variable x, rather than the entire vector
clock W

x

, reducing space overhead. (C and L record the same
information as C and L in DJIT+.)

⟨4,0,...⟩

⟨4,0,...⟩

⟨5,0,...⟩

wr(0,x)

rel(0,m)

⟨4,8,...⟩

⟨0,8,...⟩

⟨4,8,...⟩

acq(1,m)

wr(1,x)

⟨0,0,...⟩

⟨0,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

4@0

⟘
e

4@0

4@0

8@1

C0 Lm WxC1

⟨0,8,...⟩

⟨0,8,...⟩

⟨5,0,...⟩

⟨5,0,...⟩

At the first write to x, FASTTRACK performs an O(1)-time epoch
write W

x

:= 4@0. FASTTRACK subsequently ensures that the
second write is not concurrent with the preceding write via the
O(1)-time comparison:

W
x

= 4@0 � h4, 8, ...i = C1

To summarize, epochs reduce the space overhead for detecting
write-write conflicts from O(n) to O(1) per allocated memory
location, and replaces the O(n)-time vector clock comparison “v”
with the O(1)-time comparison operation “�”.

Detecting Write-Read Races. Detecting write-read races under
the new representation is also straightforward. On each read from
x with current vector clock C

t

, we check that the read happens after
the last write via the same O(1)-time comparison W

x

� C
t

.

Detecting Read-Write Races. Detecting read-write race condi-
tions is somewhat more difficult. Unlike write operations, which
are totally ordered (assuming no race conditions detected so far),
reads are not totally ordered even in race-free programs. Thus, a
write to a variable x could potentially conflict with the last read of
x performed by any other thread, not just the last read in the entire
trace seen so far. Hence, we may need to record an entire vector
clock R

x

, in which R
x

(t) records the clock of the last read from x
by thread t.

However, we can avoid keeping a complete vector clock in
many cases. Our examination of data access patterns across a va-
riety of multithreaded Java programs indicate that variable reads
are often totally ordered in practice, particularly in the following
common situations:
• Thread-local data, where only one thread accesses a variable,

and hence these accesses are totally ordered by program-order.
• Lock-protected data, where a protecting lock is held on each

access to a variable, and hence all access are totally ordered,
either by program order (for accesses by the same thread) or by
synchronization order (for accesses by different threads).

Reads are typically unordered only when data is read-shared, that
is, when the data is first initialized by one thread and then shared
between multiple threads in a read-only manner.

FASTTRACK uses an adaptive representation for tracking the
read history of each variable that is tuned to optimize the common
case of totally-ordered reads, while still retaining the full precision
of vector clocks when necessary.

In particular, if the last read to a variable happens after all pre-
ceding reads, then FASTTRACK records only the epoch of this last
read, which is sufficient to precisely detect whether a subsequent

access to that variable conflicts with any preceding read in the
entire program history. Thus, for thread-local and lock-protected
data (which do exhibit totally-ordered reads), FASTTRACK requires
only O(1) space for each allocated memory location and only O(1)
time per memory access.

In the less common case where reads are not totally ordered,
FASTTRACK stores the entire vector clock. However, it still handles
read operations in O(1) time, via an epoch-VC comparison (�). In
addition, since such data is typically read-shared, writes to such
variables are rare, and so their analysis overhead is negligible.

Analysis Details. Based on the above intuition, we now describe
the FASTTRACK algorithm in detail. Our analysis is an online algo-
rithm that maintains an analysis state �; when the target program
performs an operation a, the analysis updates its state via the rela-
tion �)a �0. The instrumentation state � = (C, L, R, W) is a
tuple of four components, where:

• C
t

identifies the current vector clock of thread t.
• L

m

identifies the vector clock of the last release of lock m.
• R

x

identifies either the epoch of the last read from x, if all other
reads happened-before that read, or else records a vector clock
that is the join of all reads of x.

• W
x

identifies the epoch of the last write to x.

The initial analysis state is:

�0 = (�t.inc

t

(?
V

), �m.?
V

, �x.?
e

, �x.?
e

)

Figure 2 presents the key details of how FASTTRACK (left col-
umn) and DJIT+ (right column) handle read and write operations
of the target program. Expensive O(n)-time operations are high-
lighted in grey. That table also shows the instruction frequencies
observed in our program traces, as well as how frequently each rule
was applied. For example, 82.3% of all memory and synchroniza-
tion operations performed by our benchmarks were reads, and rule
[FT READ SAME EPOCH] was used to check 63.4% of those reads.

Read Operations. The first four rules provide various alternatives
for analyzing a read operation rd(t, x). Rule [FT READ SAME EPOCH]
optimizes the case where x was already read in this epoch. This
fast path requires only a single epoch comparison and handles over
60% of all reads. We use E(t) to denote the current epoch c@t of
thread t, where c = C

t

(t) is t’s current clock. DJIT+ incorporates
a comparable rule [DJIT+ READ SAME EPOCH].

The remaining three read rules all check for write-read conflicts
via the fast epoch-VC comparison W

x

� C
t

, and then update R
x

appropriately. Here, R is a function, R
x

abbreviates the function
application R(x), and R[x := V] denotes the function that is iden-
tical to R except that it maps x to V . Changes to the instrumen-
tation state are expressed as functional updates for clarity in the
transition rules, but they are implemented as constant-time in-place
updates in our implementation.

If R
x

is already a vector clock, then [FT READ SHARED] simply
updates the appropriate component of that vector. Note that multi-
ple reads of read-shared data from the same epoch are all covered
by this rule. We could extend rule [FT READ SAME EPOCH] to han-
dle same-epoch reads of read-shared data by matching the case that
R

x

2 VC and R
x

(t) = C
t

(t). The extended rule would cover
78% of all reads (the same as [DJIT+ READ SAME EPOCH]) but does
not improve performance of our prototype perceptibly.

If the current read happens after the previous read epoch
(where that previous read may be either by the same thread or
by a different thread, presumably with interleaved synchroniza-
tion), [FT READ EXCLUSIVE] simply updates R

x

with the access-
ing threads current epoch. For the more general situation where
the current read may be concurrent with the previous read epoch,

124

a write epoch W
x

for variable x, rather than the entire vector
clock W

x

, reducing space overhead. (C and L record the same
information as C and L in DJIT+.)

⟨4,0,...⟩

⟨4,0,...⟩

⟨5,0,...⟩

wr(0,x)

rel(0,m)

⟨4,8,...⟩

⟨0,8,...⟩

⟨4,8,...⟩

acq(1,m)

wr(1,x)

⟨0,0,...⟩

⟨0,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

⟨4,0,...⟩

4@0

⟘
e

4@0

4@0

8@1

C0 Lm WxC1

⟨0,8,...⟩

⟨0,8,...⟩

⟨5,0,...⟩

⟨5,0,...⟩

At the first write to x, FASTTRACK performs an O(1)-time epoch
write W

x

:= 4@0. FASTTRACK subsequently ensures that the
second write is not concurrent with the preceding write via the
O(1)-time comparison:

W
x

= 4@0 � h4, 8, ...i = C1

To summarize, epochs reduce the space overhead for detecting
write-write conflicts from O(n) to O(1) per allocated memory
location, and replaces the O(n)-time vector clock comparison “v”
with the O(1)-time comparison operation “�”.

Detecting Write-Read Races. Detecting write-read races under
the new representation is also straightforward. On each read from
x with current vector clock C

t

, we check that the read happens after
the last write via the same O(1)-time comparison W

x

� C
t

.

Detecting Read-Write Races. Detecting read-write race condi-
tions is somewhat more difficult. Unlike write operations, which
are totally ordered (assuming no race conditions detected so far),
reads are not totally ordered even in race-free programs. Thus, a
write to a variable x could potentially conflict with the last read of
x performed by any other thread, not just the last read in the entire
trace seen so far. Hence, we may need to record an entire vector
clock R

x

, in which R
x

(t) records the clock of the last read from x
by thread t.

However, we can avoid keeping a complete vector clock in
many cases. Our examination of data access patterns across a va-
riety of multithreaded Java programs indicate that variable reads
are often totally ordered in practice, particularly in the following
common situations:
• Thread-local data, where only one thread accesses a variable,

and hence these accesses are totally ordered by program-order.
• Lock-protected data, where a protecting lock is held on each

access to a variable, and hence all access are totally ordered,
either by program order (for accesses by the same thread) or by
synchronization order (for accesses by different threads).

Reads are typically unordered only when data is read-shared, that
is, when the data is first initialized by one thread and then shared
between multiple threads in a read-only manner.

FASTTRACK uses an adaptive representation for tracking the
read history of each variable that is tuned to optimize the common
case of totally-ordered reads, while still retaining the full precision
of vector clocks when necessary.

In particular, if the last read to a variable happens after all pre-
ceding reads, then FASTTRACK records only the epoch of this last
read, which is sufficient to precisely detect whether a subsequent

access to that variable conflicts with any preceding read in the
entire program history. Thus, for thread-local and lock-protected
data (which do exhibit totally-ordered reads), FASTTRACK requires
only O(1) space for each allocated memory location and only O(1)
time per memory access.

In the less common case where reads are not totally ordered,
FASTTRACK stores the entire vector clock. However, it still handles
read operations in O(1) time, via an epoch-VC comparison (�). In
addition, since such data is typically read-shared, writes to such
variables are rare, and so their analysis overhead is negligible.

Analysis Details. Based on the above intuition, we now describe
the FASTTRACK algorithm in detail. Our analysis is an online algo-
rithm that maintains an analysis state �; when the target program
performs an operation a, the analysis updates its state via the rela-
tion �)a �0. The instrumentation state � = (C, L, R, W) is a
tuple of four components, where:

• C
t

identifies the current vector clock of thread t.
• L

m

identifies the vector clock of the last release of lock m.
• R

x

identifies either the epoch of the last read from x, if all other
reads happened-before that read, or else records a vector clock
that is the join of all reads of x.

• W
x

identifies the epoch of the last write to x.

The initial analysis state is:

�0 = (�t.inc

t

(?
V

), �m.?
V

, �x.?
e

, �x.?
e

)

Figure 2 presents the key details of how FASTTRACK (left col-
umn) and DJIT+ (right column) handle read and write operations
of the target program. Expensive O(n)-time operations are high-
lighted in grey. That table also shows the instruction frequencies
observed in our program traces, as well as how frequently each rule
was applied. For example, 82.3% of all memory and synchroniza-
tion operations performed by our benchmarks were reads, and rule
[FT READ SAME EPOCH] was used to check 63.4% of those reads.

Read Operations. The first four rules provide various alternatives
for analyzing a read operation rd(t, x). Rule [FT READ SAME EPOCH]
optimizes the case where x was already read in this epoch. This
fast path requires only a single epoch comparison and handles over
60% of all reads. We use E(t) to denote the current epoch c@t of
thread t, where c = C

t

(t) is t’s current clock. DJIT+ incorporates
a comparable rule [DJIT+ READ SAME EPOCH].

The remaining three read rules all check for write-read conflicts
via the fast epoch-VC comparison W

x

� C
t

, and then update R
x

appropriately. Here, R is a function, R
x

abbreviates the function
application R(x), and R[x := V] denotes the function that is iden-
tical to R except that it maps x to V . Changes to the instrumen-
tation state are expressed as functional updates for clarity in the
transition rules, but they are implemented as constant-time in-place
updates in our implementation.

If R
x

is already a vector clock, then [FT READ SHARED] simply
updates the appropriate component of that vector. Note that multi-
ple reads of read-shared data from the same epoch are all covered
by this rule. We could extend rule [FT READ SAME EPOCH] to han-
dle same-epoch reads of read-shared data by matching the case that
R

x

2 VC and R
x

(t) = C
t

(t). The extended rule would cover
78% of all reads (the same as [DJIT+ READ SAME EPOCH]) but does
not improve performance of our prototype perceptibly.

If the current read happens after the previous read epoch
(where that previous read may be either by the same thread or
by a different thread, presumably with interleaved synchroniza-
tion), [FT READ EXCLUSIVE] simply updates R

x

with the access-
ing threads current epoch. For the more general situation where
the current read may be concurrent with the previous read epoch,

124

Tuesday, April 17, 12

CS390C: Principles of Concurrency and Parallelism

FastTrack

● Read-write races
− more difficult because reads are not totally ordered (even

in race-free programs)

− A write to a variable x can conflict with the last read of x
performed by any thread, not just the last thread seen in
the trace

− But, in practice
● reads are totally ordered

− thread local data
− lock-protected data

● only record epochs in this case

31

Tuesday, April 17, 12

