’rinciples of Concurrency anc
Parallelism

Lecture | |: Data Races
4/12/12

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Data Race

- A data race occurs when two concurrently executing
threads access a shared variable and when:

- at least one of the accesses is a write

- there is no explicit mechanism used to prevent the
accesses from being simultaneous

 Meaning of programs with data races depends upon
interleaving of thread executions.

- Sometimes this is ok (when?)

= Usually, it is not

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Example

public class Example extends Thread ({
private static int cnt = 0; // shared state
public void run() {
int y = cnt;
cnt =y + 1;
}
public static void main(String args[]) {
Thread tl = new Example();
Thread t2 = new Example() ;
tl.start () ;
t2.start () ;

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

What can go wrong?

- A data race manifests as the result of an undesirable
schedule or interleaving

+ Key is to prevent such interleavings

- Judicious use of locks or synchronization

- Not always repeatable (Heisenbugs)

* How can we tell that a program does not have a data
race!

- Dynamic (monitor its execution)

- Static (apply compile-time analysis)

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Current State

. 2008 study (Lu et.al, ASPLOS'08)

+ Examined 74 non-deadlock bugs in MySQL, Apache,
Mozilla, OpenOffice

- |/3 of the bugs caused by violation of program order
- 34% involved multiple variables

- 92% can be triggered by enforcing certain schedules
involving no more than 4 memory accesses

- 73% could not be fixed by simply adding locks

+ Concurrency bugs not easily repaired or detected

5
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Explanation of Failures

. T1 .T.2 int x=0; T1 int x=0;
1 ¥nt x=0; 7 it () { int y=3; int y=3; Il] x=5
2 int y=3; 8 x=5; X=5; T2 Yary
3 if (x>y) L9 h if (x>y) o o if (x>y) . Tace
4 print (“pass”); print (“p...”); A | else [3if >y) - {3if (x>y)
2 clse Eai]): 11| A print(“f.7);
print (“fail”); X=5; T2 6 print(..)
(a) Code (b) Passing (¢) Failing (d) Failure slice (d) Dual slice
® Value diff. AFlow diff. — dependence = — — Correlation
false true
3 if (race) I— —| 3if (race)
1 x=1; x=-1; x=-1; 1 x=-1
g }’f:O; nyO; _}’f: , * 2=l true false
3 if(mee) |if(race) o e|if face) ST (x<0) 5 if(x<0) | [33 (x<0) |
x=1; X=1;
5 if (x<0) if (x<0) |o o if (x<0) 6 output(y)
6 y=1; y=1; A =
‘ y=1 y=0
7 output(y) |output(y) e e joutput(y) [7outputy)| [7outputy)| [7 output(y) - —[7 output(y)]
(a) Code (b) Passing (c) Failing (d) Passing slice (e) Failure slice (f) Dual slice

6

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

How can data races be detected and

ErevenTed?

+ Enforce the use of high-level language mechanisms

- monitors, synchronized, etc.

- Monitors: (Hoare 1974)

- a group of shared variables along with procedures to access them.

- all accesses protected by the same (anonymous) lock acquired and
released upon entry/exit of the monitor

- shared variable not visible outside monitor
- lots of issues

- dynamically allocated data, waiting, exceptions, nesting, ...

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Dynamic Approaches

+ Happens-before relation

- partial order on events of all threads in a concurrent
execution

- Between threads, events are ordered according to the
synchronization objects they access

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Formally

+ An interleaving is an execution in which

- lock/unlock alternates correctly

- each read sees the most recent write to the same location

« sequentially consistent semantics

» Totally orders all actions

- does not keep track of which actions take place in parallel

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Formally

Definition [program order]. program order, <po, iS a total order over the
actions of the same thread in an interleaving.

Definition [synchronises with]: in an interleaving /, index i synchronises-
with index |, i <sw |, if i < jand A(l) = U (unlock), A(l) = L (lock).

Definition [happens-before]. Happens-before is the transitive closure of
program order and synchronises with.

10
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Example

Thread 0 Thread 1
*y =1 lock();
lock(); tmp = *Xx;
*x =1 unlock();
unlock(); if tmp = 1
then print *y

S\W

— /N S

Q:W[ly=1], @:L, @0:W[x=1], @:U, 1: L, 1:R[x=1], 1:U, 1:R[y=1], 1:X(1)

\po/\/\/ Ny \B/\\/\/

Q:W[y=1], 1:L, 1:R[x=0], 1:U, 0:L, 0:W[x=1], 0:U

N\ _/

PO PO PO PO 11

PO

Tuesday, April 17, 12

Happens-Before

Thread 1 Thread 2

lock(mu) ;

}

v o:= v+l;

}

unlock(mu) ;

T~

lock(mu) ;

{

v o= v+l;

{

uniock (mu) ;

CS390C: Principles of Concurrency and Parallelism

12

Tuesday, April 17, 12

Data Race

» If two threads access a shared variable, and the
accesses are not ordered under a happens-before
relation, then there is a potential data race.

+ Dynamic detection of happens-before violations is
difficult:

- Require per-thread information about concurrent accesses
to shared memory

- But, there are techniques that can be used to alleviate this
issue

- vector clocks

13
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Example

Two conflicting accesses

A racy program not related by happens before.

Thread 1 X*

Thread O
*y = 1 if *x ==
*x =1

0:WLy=1], 1:R[x=0], 0:W[x=1]

then print *y ___,////,

ole)

14
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Happens-Before

Thread 1 Thread 2
y = y+1;
¥ Using just happens-before, need a
lock (mu) ; large number of test cases to catch
the error.

v = v+l; Can we do better?

unlock (mu) ;

\

lock{(mu);

unlock(mu) ;

\

Yy = y+1;
15

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Eraser Lockset Algorithm

 To avoid data races, every shared variable must be protected by
some lock.

+ A dynamic tool must infer what these locks are

 For each shared variable v, maintain the set C(v) of candidate locks
for v.

This set contains those locks that have protected v for the
computation so far.

Initially, the set holds all possible locks.

When v is accessed, compute the interesection of C(v) with the
current set of locks held by the thread

If the set is empty, there is no lock that consistently protects v

16
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Example

Program locks_held Clv)
{} {mul, mu2}
lock (mal);
{mul}
v = v+l;
{mul}
unlock (mul) ;
{}
lock(mu2);
{mu2}
v = v+1l:;
{}
unlock (mu2) ;
{}

CS390C: Principles of Concurrency and Parallelism

17

Tuesday, April 17, 12

Improvements

+ Common programming practices often violate locking
discipline, but are still race free:

- Initialization
- Reading shared data

- Read-write locks:

- multiple readers, single (exclusive) writer

18
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Initialization

+ How can we tell when initialization is complete!?

- Assume initialization is complete if a variable is accessed by
a second thread.

- As long as a variable is only accessed by a single thread,
reads and writes have no effect on the candidate lock set.

- Similar conditions hold for read-only data

19
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

State Transition Diagram

initial allocation

rd/wr, first

thread

Shared

wr

WT, NCwW

thread C(v) updated, and
races reported when it
becomes empty

initialized

Shared—
Modified

C(v) updated, but
empty set not reported

20
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Read-Write Locks

* For each variable v, some lock m protects v

- m is held in write mode for every write of v

- m is held in some mode (read or write) for every read of v

Let locks_held(t) be the set of locks held in any mode by thread t.
Let write locks held(t) be the set of locks held in write mode by thread t.
For each v, initialize C(v) to the set of all locks.
On each read of v by thread t,
set C(v) := G(v) N locks_held(t);
if C(v) : {}, then issue a warning.
On each write of v by thread t,
set C(v) := C(v) N write_locks_held(t);
if C(v) = { }, then issue a warning.

- Locks held in read mode are removed from the candidate set
when a write occurs

» such locks held by a writer do not protect against a data race between the

writer and some other reader thread
21
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Implementation

» Binary instrumentation

- Each load and store
* Except loads/stores indirect off the stack

- Each lock/unlock

- Storage allocator

 Lockset representation

- Each set of locks represented as index into a table of lock
addresses

»+ Use a shadow memory to hold lockset index

22
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Implementation

Program &v +
memory shadow
offset
3 ;
= p—e] ul
Lockset index J_
table
mu2
Shadow Lock vector
memory

23
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Issues

* Lots of imprecision

- Leads to false alarms for programs that use different kinds
of synchronization idioms

» fork/join

« barriers

- How do we make race detectors more precise!

- Hopefully, without losing efficiency

24
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Vector Clocks

+ A vector clock records a clock for each thread in the system
- partially ordered point-wise

- each thread has its own clock incremented at a lock release operation

- each thread also keeps a vector clock that records the clock for the last
operation of any other thread that happens-before the current operation of
this thread

- each thread also maintains a vector clock for each lock

- clocks updated on synchronization operations

Vil Vo aiff Vi. Vi (t) < VQ(t)

Viu Ve = At. max(Vi(t), Va(t))
1y = At.0
ince(V) = Au.if u=tthen V(u)+ 1else V(u)

25
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Vector clocks

+ To identify conflicting accesses, keep two vector
clocks for Rx and Wx for each variable x.

- Rx(t) and Wx(t) records the clock of the last read and
write to x by thread t.

- A read from x by thread u is race-free provided it happens-
after the last write of each thread, Wx C Cu.

- A write to x by thread u is race-free provided the write
happens after all previous accesses to that variable, Wx C

Cu and Rx C Cu.

26
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Example

m X
4,0,...) {0,8,...) 0,0,...> €0,0,...>
wr(0,x)
4,0,...) 0,8....) 0,0,..., <4,0....
rel(0,m)
(5,0,...) \‘\‘ (0,8,...) (4,0,..) €4,0,.)
acq(1l,m)
M
(5,0,...) 4,8,...) 4,0,..) <4,0,..
wr(1,x)
v
(5,0,...7 4,8,...) 4,0,..) (4\8,..)

27
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

Issues

- A target program with n threads
- requires O(n) storage

- each vector clock operation (copying, comparing, joining, ...)
requires O(n) time

+ But, do we really need the full generality of vector
clocks?

- Avoid expensive operations in the general case

28
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

FastTrack

« Consider a write-write race:

- Avoid recording the entire clock

- In the previous example:
- critical information is the clock (4) and identity (0) of the thread
- Denote a pair of clock and thread as an epoch

 Epochs require constant space
* copying is a constant-time operation

+ comparing an epoch to a vector clock requires constant time

29
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

FastTrack

Cy C; L W

m X
4,0,...) 0,8,...) 0,,.> L
wr(0,x)
4,0,...) 0,8,...) 0,0,...) 4@0
rel(0,m)
(5,0,...) 0,8,...) 4,0,...) 4@0
acq(1,m)
(5,0,...) (4,8,...) (4,0,...) 4@0
wr(1,x)
(5,0,..) 4,8,..) 4,0,..) 8@1

30
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

FastTrack

- Read-write races

- more difficult because reads are not totally ordered (even
in race-free programs)

- A write to a variable x can conflict with the last read of x
performed by any thread, not just the last thread seen in

the trace

- But, in practice

* reads are totally ordered

- thread local data
- lock-protected data
- only record epochs in this case

31
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 17, 12

