’rinciples of Concurrency anc
Parallelism

Lecture 10: Cilk and

Workstealing Schedulers
4/3/12

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

So far ...

 Erlang:
- functional
~ message-passing

- language-primitives for communication, synchronization,...

+ Posix
- library
- C-based
* In this lecture:
- Cilk
- C-based

- language primitives for communication, synchronization,...

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Cilk

cilk int fib (int n) {
int nl, n2;

if (n < 2) return n;
else {
nl = spawn fib(n-1);
n2 = spawn fib (n-2);
sync;
return (nl + n2);

spawn: procedure call can execute asychronously with the caller

sync: join point: current thread waits for all locally-spawned tasks to complete
procedures never terminate while they have outstanding (spawned) children

Logical parallelism:
Cilk does not mandate creation of threads or mapping tasks to processes

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Cilk

» Faithful extension to C
- eliding Cilk keywords leads to a serial C program
» Features

- spawn keyword can only be applied to a Cilk function
« cannot be used within a C function
- Cilk functions cannot be called with normal C conventions

- must be called with a spawn and waited for by a sync

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Terminology

» Thread: maximal sequence of instructions not
containing spawn, sync, return, etc.

cilk int £fib (int n) {
int nl, n2;

if (n < 2) return n;
else {
nl = spawn fib(n-1);
n2 = spawn fib(n-2);
sync;
return (nl + n2);

Thread A: if statement upto first
spawn

Thread B: computation of n-2 before
second spawn

Thread C: n1+n2 before return

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Example

#include <stdlib.h>
#include <stdio.h>
#include <cilk.h>

cilk int main(int argc,
{

int n;

char xargv|[])

CS390C: Principles of Concurrency and Parallelism

cilk double sum(int L, int U) double result;
{ n = atoi(argv[1l]);
if (L == U) return L; if (n <= 0) {
else { printf("'n_=_%d:’'"
double lower, upper; "n_must _be positive\n",n);
int mid = (U+L)/2; } else {
lower = spawn sum(L, mid); result = spawn sum(l, n);
upper = spawn sum(mid+ 1, U); sync;
sync; printf ("Result: %1f\n", result);
return (lower + upper); }
} return O;
} }
6

Tuesday, April 3, 12

Example

#include <stdlib.h>
#include <stdio.h>
#include <cilk.h>

int * v = 0;

cilk double sum(int L,
{

int U)

if (L == U) return vI[L];

else {
double lower, upper;
int mid = (U + L)/2;
lower = spawn sum(L, mid);
upper = spawn sum(mid+ 1, U);
sync;
return (lower + upper);

{

}
{

cilk int main(int argc,

cilk wvoid

init (int L, int U)
if (L ==1U) v[L] =L + 1;
else {
int mid = (U + L)/2;

spawn init (L, mid);
spawn init (mid + 1,
sync;

}

U);

char xargv[])

int n; double result; n = atoi(argv[l]);
v = malloc(sizeof(int) * n);

spawn init (0, n-1); sync;
result = spawn sum(0, n-1); sync;
free(v);

printf ("Result: %1f\n", result);
return O;

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

A Cilk procedure is broken into a sequence of threads (circles)

Downward edges indicate spawning of a new subcomputation

Horizontal edges indicate control transfer (continuation) to successor thread

Upward edge indicates returning a value to a parent procedure

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Cilk and C

» Source-to-source compiler
+ C functions cannot directly spawn or call Cilk
procedures

- Use automatically-generated stub functions for this
purpose

- A Cilk context entails allocating OS resources (e.g.,
threads)

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Example

#include <cilk.h>

cilk float g (double x)

{
/* do something */ #include <cilk.h>
}
extern float EXPORT(g) (CilkContext* context,
cilk void h (int i) double x);
{
float y; void £ ()
{
y = spawn g (2.7); char* argv[] = { "f", "--nproc", "4", 0 };
sync; int argc = 3;
}
float y;
int main (int argc, char *argv[]) double x = 0.0;
{ CilkContext* context;
float y;
CilkContext* context; context = Cilk_init (&argc, argv);
context = Cilk_init (&argc, argv); y = EXPORT(g) (&x);
y = EXPORT(g) (context, 3.14); Cilk_terminate (context);
}
Cilk_terminate (context);
(b)
return O;
} 10

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Storage

Cactus stack

11
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Sharing and Races

cilk int foo (void)

{
int x = 0, y;

spawn bar (&x) ;
y=x+1;
sync;

return (y);

+

cilk void bar (int *px)
{
printf ("%d", *px + 1);
return;

}

cilk int foo (void)
{

int x = 0;

spawn bar (&x) ;
x =x + 1;
sync;

return (x);

+

cilk void bar (int *px)
{
*px = *px + 1;
return;

}

12

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Inlets

cilk int fib (int n)

{
int x = 0;
inlet void summer (int result)
{
X += result;
return;
} Inlets guaranteed to execute
atomically
if (n<2) return n;
else {
summer (spawn fib (n-1));
summer (spawn fib (n-2));
sync;
return (x);
+
+

CS390C: Principles of Concurrency and Parallelism

13

Tuesday, April 3, 12

Programming Model

+ View computation as a DAG

- a thread cannot be executed until all threads on which it
depends have completed.

- Dependency between threads assigned to different
processors requires communication

+ Key challenge:

- Efficient scheduling of threads

- Work-stealing: when a processor runs out of work, ask
another processor for work.

14
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Work Stealing

» Locally, a processor executes procedures in ordinary
serial order

- explore the spawn tree in a depth-first manner

- when a child procedure is spawned, save the parent’s
continuation (context) at the bottom of the stack

« stacks grow downwards
+ start commencing work on the child
- when another processor “steals” work, it steals from the
top of the stack

- |east recent

15
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Performance Model

* What are the fundamental limits that guide how fast a
Cilk computation can run!?

- Tp: Execution time of a computation on P processors

- Ti:Total time needed to execute all threads comprising the
task tree (DAG). Refer to this as work.

* Lower bound: Tp = T\/P
- Program’s span: T
* Execution time of computation on an infinite number of
processors

- Time needed to execute threads along longest dependency path
* TP > T

16
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Performance Model

T'p %Tl/P—FTOO

Critical path overhead:

Tp <T1/P + cooToo -

Parallelism

P =T, /Ts

Average amount of work for every step taken along the span
When P< P then Tp~T,/P

17
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Compilation

+ Generate two copies of a procedure

- fast clone: behaves like the Cilk-elided version with no
support for parallelism

- slow clone: full support for parallelism

» Each processor (worker) maintains a dequeue (doubly-
ended queue) of ready (runnable) procedures

- The worker operates locally on the tail treating it much like
a call stack

- When a worker runs out of work, it steals work from the
the head of the victim’s dequeue.

18
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Clones

* When a procedure is spawned, the fast clone runs.

* When a thief steals a procedure, the procedure is
converted to a slow clone.

- Fast clones never stolen

- No descendents of a fast clone ever stolen

- stealing from the head guarantees that parents are stolen before
their children

+ sync statements in the fast clone are no-ops

- Slow clone -

- use a goto to restore the program counter and local

variables from the frame

19
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Fast Clone

1 int fib (int n)

2 A

3 fib_frame *f; frame pointer
4 f = alloc(sizeof (*f)); allocate frame
5 f->sig = fib_sig; initialize frame
6 if (n<2) {

7 free(f, sizeof (*f)); free frame

8 return n;

9 }

10 else {

11 int x, y;

12 f->entry = 1; save PC

13 f->n = n; save live vars
14 xT = £ store frame pointer
15 push(); push frame

16 x = fib (n-1); do C call

17 if (pop(x) == FAILURE) pop frame

18 return 0; frame stolen
19 e second spawn
20 ; sync is free!l
21 free(f, sizeof (*f)); free frame

22 return (x+y);

23 }

24 }

20
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Microscheduler

» Schedules procedures across a fixed set of processors

- Executes slow clone

- Receives pointer to frame as argument

- args and local state inside frame
* restores program counter

» sync waits for children

21
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

>

Shared memory deque

» T: first unused
» H: head
» E: exception

Work-first
» move costs from worker

to thief

One worker per deque
One thief at a time

» enforced by lock

W N~

—_
S O 00O O

11
12
13
14
15
16
17
18

Protocol

Worker/Victim
push() {
T++;

}

pop() {
T--3
if (H> T) {
T++;
lock(L);
T--;
if (H>T) {
T++;
unlock (L) ;
return FAILURE;
}
unlock(L);
}
return SUCCESS;
}

CS390C: Principles of Concurrency and Parallelism

—_

H O OO0 Ul Wi+

Thief
steal() {
lock(L);
H++;
if (H>T) {
H--;
unlock (L) ;
return FAILURE;
}
unlock (L) ;
return SUCCESS;
}

22

Tuesday, April 3, 12

Stealing

Thief

i

AN

T Victim

(a) (b) (c)

CS390C: Principles of Concurrency and Parallelism

23

Tuesday, April 3, 12

Threaded Building Blocks (TBB)

+ Set of library templates

+ Aim to reduce some of the low-level reasoning
needed to effectively program Posix threads

- Tasks vs threads

- Inspired by Cilk work-stealing scheduler

24
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Example: parallel-for

void SerialMatrixMultiply(float c[M][N], float a[M][L], float b[L][N])
{
for(size_t i=0; i<M; ++i) {
for(size_t j=0; j<N; ++j) {
float sum = O;
for(size_t k=0; k<L; ++k)
sum += a[i][k]*b[k][j];
cli][i] = sum;

25
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Example: parallel-for

#include “tbb/task scheduler init.h”
#include “tbb/parallel for.h”
#include “tbb/blocked range2d.h”

// Initialize task scheduler
tbb::task scheduler init tbb_init;

/[Do the multiplication on submatrices of size = 32x32

tbb::parallel for (blocked range2d<size t>(0, N, 32, 0, N, 32),

MatrixMultiplyBody2D(c,a,b));

CS390C: Principles of Concurrency and Parallelism

26

Tuesday, April 3, 12

Example: parallel-for

class MatrixMultiplyBody2D {
float (*my_a)[L], ("my_b)IN], (*my_c)[N];
public:
void operator()(const blocked range2d<size t>&r) const {
/oat(a)lL] = my_a; // a,b,c usedin example to emphasize
float (*b)[N] = my_b; // commonality with serial code

float (*c)[N] = my_c; Matrix C
for(size_ti=r.rows().begin(); il=r.rows().end(); ++i)
for(size_t j=r.cols().begin(); j!=r.cols().end(); ++j) { 13
float sum = 0; .5'\99
for(size_t k=0; k<L; ++k) 5
sum += a[i][k]*b[K][j]; N
cli]i] = sum;

N /

MatrixMultiplyBody2D(float c[M][N], float a[M][L], float b[L][N]) :
\ my_a(a), my_b(b), my_c(c) {}

CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Example: parallel-reduce

float SerialSumFoo(float al[], size t n) {
float sum = 0;
for(size t 1=0; 1i!=n; ++1)
sum += Foo(al[1i]) ;
return sum;

float ParallelSumFoo(const float al], size t n) {
SumFoo sf (a) ;

4

parallel reduce(blocked range<size t>(0,n), sf);
return sf.my sum;

28
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Splitting and Joining

Available Worker

split iteration space in half \
steal second half of iteration space

v v

reduce first half of iteration space SumFoo y(x,split());

v

reduce second half of iteration space into y

\ 4
wait for thief

|

x.join(y);

split iteration space in half

|

reduce first half of iteration space No Available Worker

I

reduce second half of iteration space

29
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

Example: parallel-reduce

class SumFoo ({
float* my a;

public:

float my sum;
void operator () (const blocked range<size t>& r)

float *a = my_ a;
float sum = my sum;
size t end = r.end() ;

for(size t i=r.begin(); il!=end; ++1i)
sum += Foo(al[il]) ;
my sum = sum;
SumFoo (SumFoo& x, split) : my a(x.my a), my sum(0) {}
void join(const SumFoo& y) {my sum+=y.my sum; }

SumFoo (float al])

my af(a), my sum(0)

30
CS390C: Principles of Concurrency and Parallelism

Tuesday, April 3, 12

