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So far ...
● Erlang: 

− functional
− message-passing
− language-primitives for communication, synchronization,...

● Posix

− library
− C-based

● In this lecture:

− Cilk
● C-based
● language primitives for communication, synchronization,...
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Cilk
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Introduction
Cilk

Cilk++
Introduction to Cilk

Introducing Cilk
cilk int fib (int n) {

int n1, n2;

if (n < 2) return n;
else {
n1 = spawn fib(n-1);
n2 = spawn fib(n-2);
sync;
return (n1 + n2);

}
}

I Cilk constructs
I cilk: Cilk function. Without it, functions are standard C
I spawn: call can execute asynchronously in a concurrent

thread
I sync: current thread waits for all locally-spawned functions
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spawn: procedure call can execute asychronously with the caller

sync: join point: current thread waits for all locally-spawned tasks to complete
   procedures never terminate while they have outstanding (spawned) children

Logical parallelism: 
Cilk does not mandate creation of threads or mapping tasks to processes 
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Cilk

● Faithful extension to C
− eliding Cilk keywords leads to a serial C program

● Features
− spawn keyword can only be applied to a Cilk function

● cannot be used within a C function

− Cilk functions cannot be called with normal C conventions
● must be called with a spawn and waited for by a sync

4
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Terminology

● Thread: maximal sequence of instructions not 
containing spawn, sync, return, etc.

5

Introduction
Cilk

Cilk++
Introduction to Cilk

Cilk Terminology
I Parallel control = spawn, sync, return from spawned

function
I Thread = maximal sequence of instructions not containing

parallel control (task in earlier terminology)

cilk int fib (int n) {

int n1, n2;

if (n < 2) return n;
else {
n1 = spawn fib(n-1);
n2 = spawn fib(n-2);
sync;
return (n1 + n2);

}
}

Thread A:if statement up to first
spawn
Thread B:computation of n-2
before second spawn
Thread C:n1+n2 before return
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Thread A: if statement upto first 
spawn

Thread B: computation of n-2 before 
second spawn

Thread C: n1+n2 before return
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Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Sum of first N integers

#include <stdlib.h>
#include <stdio.h>
#include <cilk.h>
cilk double sum(int L, int U)
{
if (L == U) return L;
else {
double lower, upper;
int mid = (U+L)/2;
lower = spawn sum(L, mid);
upper = spawn sum(mid+ 1, U);
sync;
return (lower + upper);

}
}

cilk int main(int argc, char *argv[])
{
int n;
double result;
n = atoi(argv[1]);
if (n <= 0) {

printf("’n = %d:’"
"n must be positive\n",n);

} else {
result = spawn sum(1, n);
sync;
printf("Result: %lf\n", result);

}
return 0;

}
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Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Initialize and sum a vector

#include <stdlib.h>
#include <stdio.h>
#include <cilk.h>
int * v = 0;
cilk double sum(int L, int U)
{
if (L == U) return v[L];
else {
double lower, upper;
int mid = (U + L)/2;
lower = spawn sum(L, mid);
upper = spawn sum(mid+ 1, U);
sync;
return (lower + upper);

}
}

cilk void
init(int L, int U)
{
if (L == U) v[L] = L + 1;
else {

int mid = (U + L)/2;
spawn init(L, mid);
spawn init(mid + 1, U);
sync;

}
}
cilk int main(int argc, char *argv[])
{
int n; double result; n = atoi(argv[1]);
v = malloc(sizeof(int) * n);
spawn init(0, n-1); sync;
result = spawn sum(0, n-1); sync;
free(v);
printf("Result: %lf\n", result);
return 0;

}
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Model

8

6 CHAPTER 2. PROGRAMMING IN CILK

Figure 2.2: The Cilk model of multithreaded computation. Each procedure, shown as a rounded rectangle,
is broken into sequences of threads, shown as circles. A downward edge indicates the spawning of a subpro-
cedure. A horizontal edge indicates the continuation to a successor thread. An upward edge indicates the
returning of a value to a parent procedure. All three types of edges are dependencies which constrain the
order in which threads may be scheduled.

A Cilk procedure cannot safely use the return values of the children it has spawned until it
executes a sync statement. If all of its children have not completed when it executes a sync,
the procedure suspends and does not resume until all of its children have completed. The sync
statement is a local “barrier,” not a global one as, for example, is sometimes used in message-
passing programming. In Cilk, a sync waits only for the spawned children of the procedure to
complete, and not for all procedures currently executing. When all its children return, execution
of the procedure resumes at the point immediately following the sync statement. In the Fibonacci
example, a sync statement is required before the statement return (x+y), to avoid the anomaly
that would occur if x and y were summed before each had been computed. A Cilk programmer
uses spawn and sync keywords to expose the parallelism in a program, and the Cilk runtime system
takes the responsibility of scheduling the procedures e�ciently.

As an aid to programmers, Cilk inserts an implicit sync before every return, if it is not present
already. As a consequence, a procedure never terminates while it has outstanding children.

The main procedure must be named main, as in C. Unlike C, however, Cilk insists that the
return type of main be int. Since the main procedure must also be a Cilk procedure, it must be
defined with the cilk keyword.

It is sometimes helpful to visualize a Cilk program execution as a directed acyclic graph, or dag ,
as is illustrated in Figure 2.2. A Cilk program execution consists of a collection of procedures,2

each of which is broken into a sequence of nonblocking threads. In Cilk terminology, a thread

is a maximal sequence of instructions that ends with a spawn, sync, or return (either explicit
or implicit) statement. (The evaluation of arguments to these statements is considered part of
the thread preceding the statement.) The first thread that executes when a procedure is called is
the procedure’s initial thread , and the subsequent threads are successor threads. At runtime,
the binary “spawn” relation causes procedure instances to be structured as a rooted tree, and the
dependencies among their threads form a dag embedded in this spawn tree

A correct execution of a Cilk program must obey all the dependencies in the dag, since a thread
cannot be executed until all the threads on which it depends have completed. We shall discuss
properties of the Cilk scheduler in Section 2.8.

2
Technically, procedure instances.

A Cilk procedure is broken into a sequence of threads (circles)

Downward edges indicate spawning of a new subcomputation

Horizontal edges indicate control transfer (continuation) to successor thread

Upward edge indicates returning a value to a parent procedure
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Cilk and C

● Source-to-source compiler
● C functions cannot directly spawn or call Cilk 

procedures
− Use automatically-generated stub functions for this 

purpose

− A Cilk context entails allocating OS resources (e.g., 
threads)

9
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Example
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2.3. CILK AND C 13

#include <cilk.h>

cilk float g (double x)

{

/* do something */

}

cilk void h (int i)

{

float y;

y = spawn g (2.7);

sync;

}

int main (int argc, char *argv[])

{

float y;

CilkContext* context;

context = Cilk_init (&argc, argv);

y = EXPORT(g) (context, 3.14);

Cilk_terminate (context);

return 0;

}

(a)

#include <cilk.h>

extern float EXPORT(g) (CilkContext* context,

double x);

void f ()

{

char* argv[] = { "f", "--nproc", "4", 0 };

int argc = 3;

float y;

double x = 0.0;

CilkContext* context;

context = Cilk_init (&argc, argv);

y = EXPORT(g) (&x);

Cilk_terminate (context);

}

(b)

Figure 2.4: (a) A Cilk program with a C main that invokes a Cilk procedure g using a stub. Note that g
can also be spawned by other Cilk procedures. (b) A C source file with a C function f that invokes g from
(a) using the stub.
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Storage
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2.5. SHARED MEMORY 15

A A A A A

A B C D E

B C B B

ED

A

B C

D E

Figure 2.5: A cactus stack. Procedure A spawns B and C, and B spawns D and E. The left part of
the figure shows the spawn tree, and the right part of the figure shows the view of the stack by the five
procedures. (The stack grows downward.)

since the object will be deallocated automatically when the child returns. Similarly, sibling proce-
dures cannot reference each other’s local variables. Just as with the C stack, pointers to objects
allocated on the cactus stack can only be safely passed to procedures below the allocation point in
the call tree.

You can allocate size bytes of storage on the stack by calling the C library function Cilk alloca:

ptr = Cilk_alloca(size);

Memory allocated by Cilk alloca is freed when the procedure in which it was called returns.
In the current release, Cilk’s version of Cilk alloca() does not work properly when it is called

from within a C function. Similarly, the C function alloca() does not work properly when called
within a Cilk procedure.

2.4.2 Heap memory

To allocate heap storage, you call

ptr = malloc(size);

which allocates size bytes out of heap storage and returns a pointer to the allocated memory. The
memory is not cleared. Heap storage persists until it is explicitly freed:

free(ptr);

where ptr is a pointer previously returned by a call to malloc(). Unlike storage allocated by
Cilk alloca(), a pointer to storage allocated by malloc() can be safely passed from a child
procedure to its parent.

2.5 Shared memory

Cilk supports shared memory. Sharing occurs when a global variable is accessed by procedures
operating in parallel, but sharing can also arise indirectly from the passing of pointers to spawned
procedures, allowing more than one procedure to access the object addressed by the pointer. (Cilk
supports the same semantics for pointer passing as C. See Section 2.4.) Updating shared objects

Cactus stack
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Sharing and Races
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cilk int foo (void)
{

int x = 0, y;

spawn bar(&x);
y = x + 1;
sync;
return (y);

}

cilk void bar (int *px)
{

printf("%d", *px + 1);
return;

}

Figure 2.6: Passing the spawned procedure bar an
argument consisting of a pointer to the variable x
leads to the sharing of x.

cilk int foo (void)
{

int x = 0;

spawn bar(&x);
x = x + 1;
sync;
return (x);

}

cilk void bar (int *px)
{

*px = *px + 1;
return;

}

Figure 2.7: Nondeterministic behavior may result
from shared access to the variable x when x is up-
dated.

in parallel can cause nondeterministic anomalies to arise, however. Consequently, it is important
to understand the basic semantics of Cilk’s shared-memory model.

Before delving into the semantics of shared memory, let us first see how sharing might occur
in a Cilk program and what anomalies might arise. Figure 2.6 shows two Cilk procedures, foo()
and bar(). In this example, foo() passes variable x to bar() by reference, and then it proceeds to
read x before the sync.4 Concurrently, bar() reads x through the pointer px. This way of sharing
the value of x is safe, because the shared variable x is assigned in foo() before bar() is spawned,
and no write accesses happen on x thereafter.

Figure 2.7 shows a slightly modified version of the Cilk procedures in Figure 2.6. Here, foo()
passes the variable x to bar() by reference, but now it proceeds to modify x itself before the sync.
Consequently, it is not clear what value bar() will see when it reads x through pointer px: the
value at the time the variables were passed, the value after foo() has modified them, or something
else. Conversely, it is not clear which value of x foo() will see. This situation is called a data

race , and it leads to nondeterministic behavior of the program. In most cases, nondeterminism of
this sort is undesirable and probably represents a programming error.

The easiest way to deal with the anomalies of shared access is simply to avoid writing code in
which one thread modifies a value that might be read or written in parallel by another thread. If
you obey this rule, Cilk’s shared-memory model guarantees that your program will deterministically
produce the same values for all variables, no matter how the threads are scheduled. Determinacy
is a goal to be strived for in parallel programming, although sometimes more parallelism can be
obtained with a nondeterministic algorithm.

In some circumstances you may find you need to cope with the intricacies of sharing. In
that case, you will need to understand something about the memory-consistency model of the

4
Actually, the sync statement in foo() is redundant, since the return statement implicitly imposes a sync

immediately before the actual return.
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Inlets

13

2.7. ADVANCED FEATURES 19

cilk int fib (int n)
{

int x = 0;
inlet void summer (int result)
{

x += result;
return;

}

if (n<2) return n;
else {

summer(spawn fib (n-1));
summer(spawn fib (n-2));
sync;
return (x);

}
}

Figure 2.9: Using an inlet to compute the nth Fibonnaci number.

Occasionally, you may find you want to incorporate the returned value into the parent’s frame in a
more complex way. Cilk provides an inlet feature for this purpose. Inlets are inspired in part by
the inlet feature of TAM [11].

An inlet is essentially a C function internal to a Cilk procedure. Normally in Cilk, the spawning
of a procedure must occur as a separate statement and not in an expression. An exception is made
to this rule if the spawn is performed as an argument to an inlet. In this case, the procedure is
spawned, and when it returns, the inlet is invoked. In the meantime, control of the parent procedure
proceeds to the statement following the inlet.

Figure 2.9 illustrates how the fib() function might be coded using inlets. The inlet summer()
is defined to take a returned value result and add it to the variable x in the frame of the procedure
that does the spawning. All the variables of fib() are available within summer(), since it is an
internal function of fib().

Since an inlet is like a C function, it obeys the restrictions of C functions (see Section 2.3) in
that it cannot contain spawn or sync statements. It is not entirely like a C function, because as
we shall see, Cilk provides certain special statements that may only be executed inside of inlets.
Because inlets cannot contain spawn or sync statements, they consist of a single Cilk thread.

It may happen that an inlet is operating on the variables of a procedure frame at the same
time when the procedure itself or other inlets are also operating on those variables. Consequently,
it is important to understand the e↵ects of these interactions. Cilk guarantees that the threads of
a procedure instance, including its inlets, operate atomically with respect to one another. In other
words, you need not worry that variables in a frame are being updated by another thread while
you are updating variables in the frame. This implicit atomicity of threads makes it fairly easy to
reason about concurrency involving the inlets of a procedure instance without locking, declaring
critical regions, or the like. On the other hand, Cilk guarantees nothing more than dag consistency
in the interaction between two threads belonging to two di↵erent procedure instances. Do not
assume that threads of di↵erent procedure instances operate atomically with respect to each other.

Inlets guaranteed to execute 
atomically
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Programming Model

● View computation as a DAG
− a thread cannot be executed until all threads on which it 

depends have completed.

− Dependency between threads assigned to different 
processors requires communication

● Key challenge:
− Efficient scheduling of threads

− Work-stealing: when a processor runs out of work, ask 
another processor for work.

14
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Work Stealing

● Locally, a processor executes procedures in ordinary 
serial order
− explore the spawn tree in a depth-first manner

− when a child procedure is spawned, save the parent’s 
continuation (context) at the bottom of the stack

● stacks grow downwards
● start commencing work on the child

− when another processor “steals” work, it steals from the 
top of the stack

● least recent 

15
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Performance Model

● What are the fundamental limits that guide how fast a 
Cilk computation can run?
− Tp : Execution time of a computation on P processors

− T1: Total time needed to execute all threads comprising the 
task tree (DAG).  Refer to this as work.

● Lower bound:  Tp ≥ T1/P

− Program’s span:  T∞

● Execution time of computation on an infinite number of 
processors

● Time needed to execute threads along longest dependency path
● Tp ≥ T∞

16
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Performance Model
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state1 = alloca(state_size);

/* fill in *state1 with data */

spawn foo(state1);

if (SYNCHED)
state2 = state1;

else
state2 = alloca(state_size);

/* fill in *state2 with data */

spawn bar(state2);

sync;

Figure 2.13: An illustration of the use of SYNCHED to save storage and enhance locality.

and commences work on the child. (Here, we use the convention that the stack grows downward,
and that items are pushed and popped from the “bottom” of the stack.) When the child returns,
the bottom of the stack is popped (just like C) and the parent resumes. When another processor
requests work, however, work is stolen from the top of the stack, that is, from the end opposite to
the one normally used by the worker.

Cilk’s work-stealing scheduler executes any Cilk computation in nearly optimal time. From an
abstract theoretical perspective, there are two fundamental limits to how fast a Cilk program could
run. Let us denote with TP the execution time of a given computation on P processors. The work

of the computation is the total time needed to execute all threads in the dag. We can denote the
work with T1, since the work is essentially the execution time of the computation on one processor.
Notice that with T1 work and P processors, the lower bound TP � T1/P must hold.7 The second
limit is based on the program’s span , —textbf, denoted by T1, which is the execution time of
the computation on an infinite number of processors, or equivalently, the time needed to execute
threads along the longest path of dependency. The second lower bound is simply TP � T1.

Cilk’s work-stealing scheduler executes a Cilk computation on P processors in time TP 
T1/P + O(T1), which is asymptotically optimal. Empirically, the constant factor hidden by the
big O is often close to 1 or 2 [5], and the formula

TP ⇡ T1/P + T1 (2.1)

is a good approximation of runtime. This performance model holds for Cilk programs that do not
use locks. If locks are used, Cilk does not guarantee anything. (For example, Cilk does not detect
deadlock situations.)

We can explore this performance model using the notion of parallelism , which is defined
as P = T1/T1. The parallelism is the average amount of work for every step along the span.
Whenever P ⌧ P , that is, the actual number of processors is much smaller than the parallelism of

7
This abstract model of execution time ignores memory-hierarchy e↵ects, but is nonetheless quite accurate [5].

Critical path overhead:

Parallelism

24 CHAPTER 2. PROGRAMMING IN CILK

state1 = alloca(state_size);

/* fill in *state1 with data */

spawn foo(state1);

if (SYNCHED)
state2 = state1;

else
state2 = alloca(state_size);

/* fill in *state2 with data */

spawn bar(state2);

sync;

Figure 2.13: An illustration of the use of SYNCHED to save storage and enhance locality.

and commences work on the child. (Here, we use the convention that the stack grows downward,
and that items are pushed and popped from the “bottom” of the stack.) When the child returns,
the bottom of the stack is popped (just like C) and the parent resumes. When another processor
requests work, however, work is stolen from the top of the stack, that is, from the end opposite to
the one normally used by the worker.

Cilk’s work-stealing scheduler executes any Cilk computation in nearly optimal time. From an
abstract theoretical perspective, there are two fundamental limits to how fast a Cilk program could
run. Let us denote with TP the execution time of a given computation on P processors. The work

of the computation is the total time needed to execute all threads in the dag. We can denote the
work with T1, since the work is essentially the execution time of the computation on one processor.
Notice that with T1 work and P processors, the lower bound TP � T1/P must hold.7 The second
limit is based on the program’s span , —textbf, denoted by T1, which is the execution time of
the computation on an infinite number of processors, or equivalently, the time needed to execute
threads along the longest path of dependency. The second lower bound is simply TP � T1.

Cilk’s work-stealing scheduler executes a Cilk computation on P processors in time TP 
T1/P + O(T1), which is asymptotically optimal. Empirically, the constant factor hidden by the
big O is often close to 1 or 2 [5], and the formula

TP ⇡ T1/P + T1 (2.1)

is a good approximation of runtime. This performance model holds for Cilk programs that do not
use locks. If locks are used, Cilk does not guarantee anything. (For example, Cilk does not detect
deadlock situations.)

We can explore this performance model using the notion of parallelism , which is defined
as P = T1/T1. The parallelism is the average amount of work for every step along the span.
Whenever P ⌧ P , that is, the actual number of processors is much smaller than the parallelism of

7
This abstract model of execution time ignores memory-hierarchy e↵ects, but is nonetheless quite accurate [5].

Average amount of work for every step taken along the span
When                    then
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the application, we have equivalently that T1/P � T1. Thus, the model predicts that TP ⇡ T1/P ,
and therefore the Cilk program is predicted to run with almost perfect linear speedup. The measures
of work and span provide an algorithmic basis for evaluating the performance of Cilk programs over
the entire range of possible parallel machine sizes. Cilk’s timing instrumentation (see Section 4.5)
can measure these two quantities during a run of the program, no matter how many processors are
used.

We can bound the amount of space used by a parallel Cilk execution in terms of its serial
space. (We assume here that space is stack allocated and not heap allocated as is provided by the
C library function malloc.) Denote by SP the space required for a P -processor execution. Then,
S1 is the space required for an execution on one processor. Cilk’s scheduler guarantees that for a
P -processor execution, we have SP  S1P , which is to say one runtime stack per processor. In fact,
much less space may be required for many algorithms (see [3]), but the bound SP  S1P serves as
a reasonable limit. This bound implies that, if a computation uses a certain amount of memory on
one processor, it will use no more space per processor on average when run in parallel.

The algorithmic complexity measures of work and span—together with the fact that you can
count on them when designing your program—justifies Cilk as an algorithmic multithreaded
language. In addition, Cilk’s scheduler also guarantees that the stack space used by a P -processor
execution is never more than P times the stack space of an equivalent one-processor execution, and
sometimes, it can be much less.

2.9 How to measure performance

The Cilk system can be configured to gather various runtime statistics as described in Section 2.2.
Gathering those data imposes a performance penalty, however, as shown in Figure 2.14. There are
two important reasons to measure execution time: to find out how fast the application is and to
analyze what parts of an application are perhaps too slow. In the first case, the absolute time is
of critical importance, whereas in the second case, the relative time is more important. Because
measurements in Cilk perturb the program being measured, it is important to understand how to
measure what you care about.

Cilk can be configured to provide the following measurements.

Performance Measurement: In order to measure execution time, Cilk should be used as follows.

1. Compile the application using the cilkc command without the flag -cilk-profile.
2. Run the program without bothering about the runtime option --stats (see Section 2.2).

Without the -cilk-profile flag, Cilk only collects the total work and the total running
time. Higher levels of the --stats option do not provide significant insight.

Performance Analysis: When tuning a Cilk program for performance, various statistics can be
useful to determine potential problems. These statistics include work, span, and number of
steal attempts. For performance analysis, use Cilk as follows:

1. Compile the application using the cilkc command with the flag -cilk-profile. If de-
sired, also enable span measurement with -cilk-span. In the latter case, your program
may be slowed down significantly, depending on the program and the availability of fast
timers on your computer.
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Compilation

● Generate two copies of a procedure
− fast clone: behaves like the Cilk-elided version with no 

support for parallelism

− slow clone: full support for parallelism

● Each processor (worker) maintains a dequeue (doubly-
ended queue) of ready (runnable) procedures
− The worker operates locally on the tail treating it much like 

a call stack

− When a worker runs out of work, it steals work from the 
the head of the victim’s dequeue.

18
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Clones
● When a procedure is spawned, the fast clone runs.
● When a thief steals a procedure, the procedure is 

converted to a slow clone.
− Fast clones never stolen

− No descendents of a fast clone ever stolen
● stealing from the head guarantees that parents are stolen before 

their children
● sync statements in the fast clone are no-ops

● Slow clone -
− use a goto to restore the program counter and local 

variables from the frame
19
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 Fast Clone

20
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Microscheduler

● Schedules procedures across a fixed set of processors
● Executes slow clone

− Receives pointer to frame as argument
● args and local state inside frame
● restores program counter
● sync waits for children

21
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Protocol

22

Introduction
Cilk

Cilk++

Examples
Race Conditions
Advanced features
Scheduling

Simplified scheduling protocol (without
exceptions)

I Shared memory deque
I T: first unused
I H: head
I E: exception

I Work-first
I move costs from worker

to thief
I One worker per deque
I One thief at a time

I enforced by lock

//Worker/Victim

push() {
T++

}

pop() {
T--;
if (H>T) {
T++;
lock(L);
T--;
if (H>T) {
T++;
unlock(L);
return FAILURE;

}
unlock(L);

}
return SUCCESS;

//Thief

steal() {
lock(L);
H++;
if (H>T) {
H--;
unlock(L);
return FAILURE;

}
unlock(L);
return SUCCESS;

}

Dimitrios S. Nikolopoulos CS529 Lecture 04: Cilk 50 / 67
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Stealing

23
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Threaded Building Blocks (TBB)

● Set of library templates
● Aim to reduce some of the low-level reasoning 

needed to effectively program Posix threads
● Tasks vs threads

− Inspired by Cilk work-stealing scheduler

24

Tuesday, April 3, 12



CS390C: Principles of Concurrency and Parallelism

Example: parallel-for

25

6

Matrix Multiply: Serial Version

void SerialMatrixMultiply( float c[M][N], float a[M][L], float b[L][N] )
{
    for( size_t i=0; i<M; ++i ) {
        for( size_t j=0; j<N; ++j ) {
            float sum = 0;
            for( size_t k=0; k<L; ++k )
                sum += a[i][k]*b[k][j];
            c[i][j] = sum;
        }
    }
}
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Example: parallel-for

26

7

Matrix Multiply: parallel_for

#include “tbb/task_scheduler_init.h”

#include “tbb/parallel_for.h”

#include “tbb/blocked_range2d.h”

// Initialize task scheduler

tbb::task_scheduler_init tbb_init;

// Do the multiplication on submatrices of size ≈ 32x32

tbb::parallel_for ( blocked_range2d<size_t>(0, N, 32, 0, N, 32),

                            MatrixMultiplyBody2D(c,a,b) );
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Example: parallel-for

27

8

Matrix Multiply Body for parallel_for

class MatrixMultiplyBody2D {
    float (*my_a)[L], (*my_b)[N], (*my_c)[N];
public:
    void operator()( const blocked_range2d<size_t>& r ) const {
        float (*a)[L] = my_a; // a,b,c used in example to emphasize
        float (*b)[N] = my_b; // commonality with serial code
        float (*c)[N] = my_c;
        for( size_t i=r.rows().begin(); i!=r.rows().end(); ++i )
            for( size_t j=r.cols().begin(); j!=r.cols().end(); ++j ) {
                float sum = 0;
                for( size_t k=0; k<L; ++k )
                    sum += a[i][k]*b[k][j];
                c[i][j] = sum;
            }
    }

MatrixMultiplyBody2D( float c[M][N], float a[M][L], float b[L][N] ) :
        my_a(a), my_b(b), my_c(c) {}
};

Matrix CMatrix C

Sub-m
atri

ces

Sub-m
atri

ces
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Example: parallel-reduce
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proportional to the size of the range. With a limited subrange size, you can use an 
automatic variable for the array instead of having to use dynamic memory 
allocation.  

x A large subrange might use cache inefficiently. For example, suppose the 
processing of a subrange involves repeated sweeps over the same memory 
locations. Keeping the subrange below a limit might enable the repeated 
referenced memory locations to fit in cache.  See the use of parallel_reduce in 
examples/parallel_reduce/primes/primes.cpp for an example of this scenario.  

x You want to tune to a specific machine.  

3.3 parallel_reduce 
A loop can do reduction, as in this summation:  
float SerialSumFoo( float a[], size_t n ) { 
    float sum = 0; 
    for( size_t i=0; i!=n; ++i ) 
        sum += Foo(a[i]); 
    return sum; 
} 

If the iterations are independent, you can parallelize this loop using the template class 
parallel_reduce as follows: 

float ParallelSumFoo( const float a[], size_t n ) { 
    SumFoo sf(a); 
    parallel_reduce( blocked_range<size_t>(0,n), sf ); 
    return sf.my_sum; 
} 

The class SumFoo specifies details of the reduction, such as how to accumulate 
subsums and combine them.  Here is the definition of class SumFoo: 
class SumFoo { 
    float* my_a; 
public: 
    float my_sum;  
    void operator()( const blocked_range<size_t>& r ) { 
        float *a = my_a; 
        float sum = my_sum; 
        size_t end = r.end(); 
        for( size_t i=r.begin(); i!=end; ++i )  
            sum += Foo(a[i]);  
        my_sum = sum;     
    } 
 
    SumFoo( SumFoo& x, split ) : my_a(x.my_a), my_sum(0) {} 
 
    void join( const SumFoo& y ) {my_sum+=y.my_sum;} 
        
    SumFoo(float a[] ) : 
        my_a(a), my_sum(0) 
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Splitting and Joining

29
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split iteration space in half 

wait for thief 

x.join(y); 

steal second half of iteration space 

SumFoo y(x,split()); reduce first half of iteration space 
i

reduce second half of iteration space into y 

Available Worker  

split iteration space in half 

reduce first half of iteration space 
i

reduce second half of iteration space 

No Available Worker  

 

Figure 5: Graph of the Split-join Sequence 

An arc in the 198HFigure 5 indicates order in time. The splitting constructor might run 
concurrently while object x is being used for the first half of the reduction. Therefore, 
all actions of the splitting constructor that creates y must be made thread safe with 
respect to x. So if the splitting constructor needs to increment a reference count 
shared with other objects, it should use an atomic increment. 

If a worker is not available, the second half of the iteration is reduced using the same 
body object that reduced the first half. That is the reduction of the second half starts 
where reduction of the first half finished. 

CAUTION: Because split/join are not used if workers are unavailable, parallel_reduce does not 

necessarily do recursive splitting.  

CAUTION: Because the same body might be used to accumulate multiple subranges, it is critical 
that operator() not discard earlier accumulations. The code below shows an incorrect 
definition of SumFoo::operator(). 

class SumFoo { 
    ... 
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Example: parallel-reduce

30

 
Parallelizing Simple Loops 

 

Tutorial    21 
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