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CS390C: Principles of Concurrency and Parallelism

Course Overview

● Introduction to Concurrency and Parallelism

● Basic Concepts

− Interaction Models for Concurrent Tasks
● Shared Memory, Message-Passing, Data Parallel

− Elements of Concurrency
● Threads, Co-routines, Events

− Correctness
● Data races, linearizability, deadlocks, livelocks, serializability

− Performance Measures
● Cost models, latency, throughput, speedup, efficiency
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Course Overview
● Abstractions

− Shared memory, message-passing, data parallel
● Erlang, MPI, Concurrent ML, Cuda
● Posix, Cilk, OpenMP

− Synchronous vs. asynchronous communication
● Data Structures and Algorithms

− Queues, Heaps, Trees, Lists
− Sorting, Graph Algorithms

● Processor Architectures

− Relaxed memory models

− GPGPU
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Grading and Evaluation
● Scribe
− Transcribe and expand lecture notes to a cohesive 

narrative.  Provide additional examples and bibliography.

● Four to five small programming projects
− Programming exercises will be in different languages and 

use different tools.

● One midterm and final exam
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Introduction

What is Concurrency?

   Traditionally, the expression of a task in the form of 
multiple, possibly interacting subtasks, that may 
potentially be executed at the same time.
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Introduction

What is Concurrency?

− Concurrency is a programming concept.
− It says nothing about how the subtasks are actually 

executed.
− Concurrent tasks may be executed serially or in parallel 

depending upon the underlying physical resources 
available.
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Why Concurrency?

Concurrency plays a critical role in sequential as well 
as parallel/distributed computing environments.

It provides a way to think and reason about 
computations, rather than necessarily a way of 
improving overall performance.
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Why Concurrency?
● In a serial environment, consider the following 

simple example of a server, serving requests from 
clients (e.g., a web server and web clients)

t = 0

request 1request 2

Non-concurrent
serial server
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Let us process requests serially

t = 6

t = 0
request 1request 2

request 1request 2

t = 8
request 1request 2

Total completion time = 8 units, Average service time = (6 + 8)/2 = 7 units
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Try a concurrent server now!

t = 0

request 1

request 2

t = 1

request 1

request 2

t = 2

request 1

request 2
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We reduced mean service time!

t = 3

t = 4

t = 8

Total completion time = 8 units, Average service time = (4 + 8)/2 = 6 units
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Why Concurrency?
● The lesson from the example is quite simple:

− Not knowing anything about execution times, we can 
reduce average service time for requests by processing 
them concurrently!

● But what if I knew the service time for each 
request?
− Would “shortest job first” not minimize average service 

time anyway?
− Aha! But what about the poor guy standing at the back 

never getting any service (starvation/ fairness)?
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Why Concurrency?
● Notions of service time, starvation, and fairness 

motivate the use of concurrency in virtually all 
aspects of computing:
− Operating systems are multitasking
− Web/database services handle multiple concurrent 

requests
− Browsers are concurrent
− Virtually all user interfaces are concurrent
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Why Concurrency?
● In a parallel context, the motivations for 

concurrency are more obvious:
− Concurrency + parallel execution = performance
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What is Parallelism?
● Traditionally, the execution of concurrent tasks on 

platforms capable of executing more than one task 
at a time is referred to as “parallelism”

● Parallelism integrates elements of execution  -- and 
associated overheads

● For this reason, we typically examine the 
correctness of concurrent programs and 
performance of parallel programs.
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Why Parallelism?
● We can broadly view the resources of a computer 

to include the processor, the data-path, the memory 
subsystem, the disk, and the network.

● Contrary to popular belief, each of these resources 
represents a major bottleneck.

● Parallelism alleviates all of these bottlenecks.
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Why Parallelism?

● Starting from the least obvious:

− I/O (disks) represent major bottlenecks in terms of their 
bandwidth and latency

− Parallelism enables us to extract data from multiple disks at 
the same time, effectively scaling the throughput of the I/O 
subsystem

− An excellent example is the large server farms (several 
thousand computers) that ISPs maintain for serving content 
(html, movies, music, mail).
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Why Parallelism?

● Most programs are memory bound – i.e., they operate at a small 
fraction of peak CPU performance (10 – 20%)

● They are, for the most part, waiting for data to come from the 
memory.

● Parallelism provides multiple pathways to memory – effectively 
scaling memory throughput as well!
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Why Parallelism?

● The process itself is the most obvious bottleneck.

● Moore's law states that the component count on a die doubles 
every 18 months.

● Contrary to popular belief, Moore's law says nothing about 
processor speed.

● What does one do with all of the available “components” on the 
die?
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Parallelism in Processors
● Processors increasingly pack multiple cores into a single die.

Why?
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Parallelism in Processors

● The primary motivation for multicore processors, contrary to 
belief is not speed, it is power.

● Power consumption scales quadratically in supply voltage.

● Reduce voltage, simplify cores, and have more of them – this is 
the philosophy of multicore processors
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Architecture Trends

22
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Utilization
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Circa 2001

24

IBM Power 4

First non-embedded processor with 
multiple cores

Unified L2 cache, 1.3 GHz
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Circa 2010
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Tilera

100 cores

32 MB aggregate cache

distributed coherency
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Circa 2010

26

No cache coherency 
across multiple cores
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Circa 2010
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Azul
864 cores

16 x 54 cores

Full cache coherence
But, slower processors 

(roughly 1/3 speed of Core2 duo)
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Why Parallel?
● Sometimes, we just do not have a choice – the data associated 

with the computations is distributed, and it is not feasible to 
collect it all.

− What are common buying patterns at Walmart across the 
country?

● In such scenarios, we must perform computations in a 
distributed environment.

− Distributed programming shares many of the same issues as 
parallel programming, but there are important differences
● latency and throughput scales
● failure models
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