
CS390C: Principles of Concurrency and Parallelism

 Principles of Concurrency and
Parallelism

Suresh Jagannathan

suresh@cs.purdue.edu

http://www.cs.purdue.edu/homes/suresh

http://www.cs.purdue.edu/homes/suresh/CS390C

1

www.piazza.com (CS390PCP)

Tuesday, January 10, 12

mailto:suresh@cs.purdue.edu
mailto:suresh@cs.purdue.edu
http://www.cs.purdue.edu/homes/suresh
http://www.cs.purdue.edu/homes/suresh
http://www.cs.purdue.edu/homes/suresh/CS390C
http://www.cs.purdue.edu/homes/suresh/CS390C
http://www.piazza.com
http://www.piazza.com

CS390C: Principles of Concurrency and Parallelism

Course Overview

● Introduction to Concurrency and Parallelism

● Basic Concepts

− Interaction Models for Concurrent Tasks
● Shared Memory, Message-Passing, Data Parallel

− Elements of Concurrency
● Threads, Co-routines, Events

− Correctness
● Data races, linearizability, deadlocks, livelocks, serializability

− Performance Measures
● Cost models, latency, throughput, speedup, efficiency

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Course Overview
● Abstractions

− Shared memory, message-passing, data parallel
● Erlang, MPI, Concurrent ML, Cuda
● Posix, Cilk, OpenMP

− Synchronous vs. asynchronous communication
● Data Structures and Algorithms

− Queues, Heaps, Trees, Lists
− Sorting, Graph Algorithms

● Processor Architectures

− Relaxed memory models

− GPGPU

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Grading and Evaluation
● Scribe
− Transcribe and expand lecture notes to a cohesive

narrative. Provide additional examples and bibliography.

● Four to five small programming projects
− Programming exercises will be in different languages and

use different tools.

● One midterm and final exam

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Introduction

What is Concurrency?

 Traditionally, the expression of a task in the form of
multiple, possibly interacting subtasks, that may
potentially be executed at the same time.

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Introduction

What is Concurrency?

− Concurrency is a programming concept.
− It says nothing about how the subtasks are actually

executed.
− Concurrent tasks may be executed serially or in parallel

depending upon the underlying physical resources
available.

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Why Concurrency?

Concurrency plays a critical role in sequential as well
as parallel/distributed computing environments.

It provides a way to think and reason about
computations, rather than necessarily a way of
improving overall performance.

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Why Concurrency?
● In a serial environment, consider the following

simple example of a server, serving requests from
clients (e.g., a web server and web clients)

t = 0

request 1request 2

Non-concurrent
serial server

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Let us process requests serially

t = 6

t = 0
request 1request 2

request 1request 2

t = 8
request 1request 2

Total completion time = 8 units, Average service time = (6 + 8)/2 = 7 units

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Try a concurrent server now!

t = 0

request 1

request 2

t = 1

request 1

request 2

t = 2

request 1

request 2

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

We reduced mean service time!

t = 3

t = 4

t = 8

Total completion time = 8 units, Average service time = (4 + 8)/2 = 6 units

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Why Concurrency?
● The lesson from the example is quite simple:

− Not knowing anything about execution times, we can
reduce average service time for requests by processing
them concurrently!

● But what if I knew the service time for each
request?
− Would “shortest job first” not minimize average service

time anyway?
− Aha! But what about the poor guy standing at the back

never getting any service (starvation/ fairness)?

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Why Concurrency?
● Notions of service time, starvation, and fairness

motivate the use of concurrency in virtually all
aspects of computing:
− Operating systems are multitasking
− Web/database services handle multiple concurrent

requests
− Browsers are concurrent
− Virtually all user interfaces are concurrent

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Why Concurrency?
● In a parallel context, the motivations for

concurrency are more obvious:
− Concurrency + parallel execution = performance

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

What is Parallelism?
● Traditionally, the execution of concurrent tasks on

platforms capable of executing more than one task
at a time is referred to as “parallelism”

● Parallelism integrates elements of execution -- and
associated overheads

● For this reason, we typically examine the
correctness of concurrent programs and
performance of parallel programs.

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Why Parallelism?
● We can broadly view the resources of a computer

to include the processor, the data-path, the memory
subsystem, the disk, and the network.

● Contrary to popular belief, each of these resources
represents a major bottleneck.

● Parallelism alleviates all of these bottlenecks.

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Why Parallelism?

● Starting from the least obvious:

− I/O (disks) represent major bottlenecks in terms of their
bandwidth and latency

− Parallelism enables us to extract data from multiple disks at
the same time, effectively scaling the throughput of the I/O
subsystem

− An excellent example is the large server farms (several
thousand computers) that ISPs maintain for serving content
(html, movies, music, mail).

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Why Parallelism?

● Most programs are memory bound – i.e., they operate at a small
fraction of peak CPU performance (10 – 20%)

● They are, for the most part, waiting for data to come from the
memory.

● Parallelism provides multiple pathways to memory – effectively
scaling memory throughput as well!

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Why Parallelism?

● The process itself is the most obvious bottleneck.

● Moore's law states that the component count on a die doubles
every 18 months.

● Contrary to popular belief, Moore's law says nothing about
processor speed.

● What does one do with all of the available “components” on the
die?

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Parallelism in Processors
● Processors increasingly pack multiple cores into a single die.

Why?

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Parallelism in Processors

● The primary motivation for multicore processors, contrary to
belief is not speed, it is power.

● Power consumption scales quadratically in supply voltage.

● Reduce voltage, simplify cores, and have more of them – this is
the philosophy of multicore processors

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Architecture Trends

22

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Utilization

23

Tuesday, January 10, 12

Circa 2001

24

IBM Power 4

First non-embedded processor with
multiple cores

Unified L2 cache, 1.3 GHz

Tuesday, January 10, 12

Circa 2010

25

Tilera

100 cores

32 MB aggregate cache

distributed coherency

Tuesday, January 10, 12

Circa 2010

26

No cache coherency
across multiple cores

Tuesday, January 10, 12

Circa 2010

27

Azul
864 cores

16 x 54 cores

Full cache coherence
But, slower processors

(roughly 1/3 speed of Core2 duo)

Tuesday, January 10, 12

CS390C: Principles of Concurrency and Parallelism

Why Parallel?
● Sometimes, we just do not have a choice – the data associated

with the computations is distributed, and it is not feasible to
collect it all.

− What are common buying patterns at Walmart across the
country?

● In such scenarios, we must perform computations in a
distributed environment.

− Distributed programming shares many of the same issues as
parallel programming, but there are important differences
● latency and throughput scales
● failure models

Tuesday, January 10, 12

