
Lecture 9 
Assertions and Error Handling

CS240

Wednesday, February 9, 2011



The C preprocessor
•The C compiler performs Macro expansion and directive handling
‣ Preprocessing directive lines, including file inclusion and conditional 

compilation, are executed. The preprocessor simultaneously expands macros 

•Example:
‣ Specify how you want to macro expand by specifying the DEBUG variable at 

compilation time in the Makefile
‣ gcc -D option

#ifdef DEBUG
 #define DPRINT(s) fprintf(stderr,”%s\n”,s)
 #else
 #define DPRINT(s)
 #endif

Wednesday, February 9, 2011

http://en.wikipedia.org/wiki/Preprocessing_directive
http://en.wikipedia.org/wiki/Preprocessing_directive


The C preprocessor
•The C compiler performs Macro expansion and directive handling
‣ Preprocessing directive lines, including file inclusion and conditional 

compilation, are executed. The preprocessor simultaneously expands macros 

 DPRINT( makeString(“error”, CAUSE) );

•Question:
‣ Is function makeString() called?

Shouldn’t 
we have some cutesy 

pictures that make the  slides 
look cool and humorous?

Wednesday, February 9, 2011

http://en.wikipedia.org/wiki/Preprocessing_directive
http://en.wikipedia.org/wiki/Preprocessing_directive


How can this code fail?
#include <stdio.h>

int main() {
	 int a, b, c;

	 a = 10;
	 b = getchar() - 48;
	 c = a/b;

  return 0;
}

No!
Go Away!

Wednesday, February 9, 2011



Common Software Vulnerabilities
•Buffer overflows
•Input validation
•Format string problems
•Integer overflows
•Failing to handle errors
•Other exploitable logic errors

5

Wednesday, February 9, 2011



Weak Types and Errors
•Would strong typing prevent these kinds of vulnerabilities?
‣What kind of errors do type systems typically catch?

-  Structural violations: think of types as sets

•Not all elements in a set are sensible in all contexts
‣ Think of buffers as arrays

- Buffer overflow arises when arrays of different sizes than expected are constructed.

‣ Similar reasoning for overflow and underflow

•Failure to enforce temporal and logical relations

6

Wednesday, February 9, 2011



Is C more vulnerable than...
•Weak typing means data can be interpreted in multiple ways
‣ This can lead to errors
‣A single datum associated with multiple types

•Memory can be indexed arbitrarily, beyond the range(s) of declared 
arrays and structures
‣Overwrite stack contents

•Dangling pointers
‣ Pass a pointer to an object allocated locally within a function to the function’s 

caller

7

Wednesday, February 9, 2011



What is a Buffer Overflow?
•Buffer overflow occurs when a program or process tries to store more 

data in a buffer than the buffer can hold
•Very dangerous because the extra information may:
‣Affect user’s data
‣Affect user’s code
‣Affect system’s data 
‣Affect system’s code

8

Wednesday, February 9, 2011



Why Buffer Overflows?
•No check on boundaries
‣ Programming languages give user too much control
‣ Programming languages have unsafe functions 
‣Users do not write safe code

•C and C++, are more vulnerable because they provide no built-in 
protection against accessing or overwriting data in any part of 
memory
‣Can’t know the lengths of buffers from a pointer
‣No guarantees strings are null terminated

9

Wednesday, February 9, 2011



Why Buffer Overflow Matter
•Overwrites: 
‣ other buffers
‣ variables 
‣ program flow data 

•Results in:
‣ erratic program behavior
‣ a memory access exception 
‣ program termination  
‣ incorrect results 
‣ breach of system security

10

Wazzup?

Wednesday, February 9, 2011



 Suppose a web server contains a function:
  void f(char *str) {
       char buf[128];
           strcpy(buf, str);
       do(buf);
   }

 When the function is invoked the stack looks like:

 What if *str is 136 bytes long?   After strcpy:

strret-addrsfpbuf
top
of

stack

str
top
of

stack
       *str                      ret

Example 

Wednesday, February 9, 2011



Some Unsafe C lib Functions

strcpy (char *dest,  const char *src)
strcat (char *dest, const char *src)
gets (char *s)
scanf ( const char *format, … )
printf (conts char *format, … )

Should I  
be scared, or what?

Wednesday, February 9, 2011



Assertions
int main() {

 int a, b, c;

 a = 10;
 b = some_function_computes_something();

 c = a/b;
 return 0;
}

Something 
is missing here...

Wednesday, February 9, 2011



Assertions
int main() {
 int a, b, c;

 a = 10;
 b = some_function_computes_something();
 assert(b!=0);
 c = a/b;
 return 0;
}

That’s 
b.b.b.b.better..

Wednesday, February 9, 2011



Assertions
•Used to help specify programs and to reason about program 

correctness. 
•precondition
‣ an assertion placed at the beginning of a section of code  determines the set of 

states under which the code is expected to be executed. 

•postcondition
‣ placed at the end — describes the expected state at the end of execution.

•#include <assert.h>

assert (predicate);

Wednesday, February 9, 2011



Examples
(assert b!=0);
c = a/b

•At the end of a function, if you know you should return success

assert(ret == SUCCES);

Wednesday, February 9, 2011



How can this code fail?
#include <stdio.h>

#define MAX 10
char* f(char s[]);

int main() {
  char str[MAX];
  char *ptr=f(str);

  printf("%c\n", *ptr);
  return 0;
}

char *my_function(char s[]) {
  char *p = NULL;
  /* does stuff*/
  return p;
}

It’s 
the NULLity of things

Wednesday, February 9, 2011



How can this code fail?
#include <stdio.h>
#include <assert.h>
#define MAX 10
char* f(char s[]);

int main() {
  char str[MAX];
  char *ptr=f(str);
  assert(ptr!=NULL);
  printf("%c\n", *ptr);
  return 0;
}

char *my_function(char s[]) {
  char *p = NULL;
  /* does stuff*/
  return p;
}

All 
good now..

Wednesday, February 9, 2011



• Null pointer dereference
• Use after free
• Double free 
• Array indexing errors
• Mismatched array new/delete
• Potential stack/heap overrun
• Return pointers to local variables
• Logically inconsistent code
• Uninitialized variables
• Invalid use of negative values
• Passing large parameters by value
• Under allocations of dynamic data
• Memory leaks
• File handle leaks
• Unhandled return codes
• Use of invalid iterators

What to think about/check for…

Wednesday, February 9, 2011


