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Memory
Computer programs manipulate an 

abstraction of the computer’s 
memory subsystem
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Memory: on the hardware side
3

@ http://computer.howstuffworks.com/computer-memory.htm/printable
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Memory: on the software side
4

•Each computer programming languages offers a different abstraction 
•The goal is to make programming easier and improve portability of 

the source code by hiding irrelevant hardware oddities
•Each language offers a memory API -- a set of operations for 

manipulating memory

‣ Sample exam question: 
- How does the abstraction of memory exposed by the Java programming language differ from 

that of the C programming language?
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Memory: the Java Story
•Memory is a set of objects with 

fields, methods and a class + 
local variables of a method

•Memory is read by accessing a 
field or local variable

•Memory is modified by writing 
to a field or local variable

•Location and size of data are 
not exposed

•Memory allocation is done by 
call in new

‣Question:
- Does main() terminate?

5

public class Main {
	 static public 
   void main(String[] a){
	 	 Cell c1, c2 = null;
	 	 while (true) {
	 	 	 c1 = new Cell();
	 	 	 c1.next = c2;
	 	 	 c2 = c1;
	 	 }
	 }
}

class Cell {	Cell next; }
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Memory: the Java Story
•The semantics of new is as follows:
‣Allocate space for the object’s fields and metadata fields
‣ Initialize the metadata fields
‣ Set all fields to null/zero/false
‣ Invoke the user defined constructor method

7
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Aparté
•Garbage collection is the technology that gives the illusion of infinite 

resources 
•Garbage collection or GC is implemented by the programming 

language with the help of the compiler
‣ Though for a some well-behaved C programs it is possible to link a special 

library that provides most of the benefits of GC 

‣Question:
- How does GC work?

8
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Garbage Collection
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Isn’t this a course about C?
Yes, Virginia
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Memory: the C Story
•C offers a story both simpler and more complex than Java
•Memory is a sequence of bytes, read/written by providing an address
•Addresses are values manipulated using arithmetic & logic operations
•Memory can be allocated:
‣ Statically
‣Dynamically on the stack
‣Dynamically on the heap

•Types give the compiler a hint how to interpret a memory addresses

18

Heap

0x1000434
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Static and Stack allocation
•Static allocation 

with the keyword 
static

•Stack allocation 
automatic by the 
compiler for local 
variables

•printf can 
display the 
address of any 
identifier

19

#include <unistd.h>
#include <stdio.h>

static int sx;
static int sa[100];
static int sy;

int main() {
	 int lx;
	 static int sz;

	 printf("%p\n", &sx);
	 printf("%p\n", &sa);
	 printf("%p\n", &sy);
	 printf("%p\n", &lx);
	 printf("%p\n", &sz);
	 printf("%p\n", &main);

0x100001084
0x1000010a0
0x100001230
0x7fff5fbff58c
0x100001080
0x100000dfc
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Static and Stack allocation
•Any value can 

be turned into a 
pointer

•Arithmetics on 
pointers 
allowed

•Nothing 
prevents a 
program from 
writing all over 
memory

20

static int sx;
static int sa[100];
static int sy;

int main() {
  for(p= (int*)0x100001084; 
      p <= (int*)0x100001230;
      p++) 
 {
    *p = 42;
  }
  printf("%i\n",sx);
  printf("%i\n",sa[0]);
  printf("%i\n",sa[1]);

42
42
42

Wednesday, February 9, 2011



Memory layout
•The OS creates a process by assigning memory and 

other resources
•C exposes the layout as the programmer can take the 

address of any element (with &)
•Stack: 
‣ keeps track of where each active subroutine should return 

control when it finishes executing; stores local variables

•Heap: 
‣dynamic memory for variables that are created with malloc, 

calloc, realloc and disposed of with free 

•Data: 
‣global and static variables

•Code: 
‣ instructions to be executed

Stack

Heap

Code

Data

Virtual 
Memory

21
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Dynamic Memory: The DIY Way
•A simple dynamic 

allocation pattern is to 
ask the OS for a 
chunk of memory 
large enough to store 
all data needed

•sbrk(size) returns 
a chunk of memory of 
size words

•The downside is that 
the programmer must 
keep track of how 
memory is used

22

int main() {
 int* x; int* start;
 double* y;
 start = (int*) sbrk(5);
  x = start;
 *x = -42; 	 x++; y=(double*) x;
 *y = 2.1; 	 y++; x=(int*) y;
 *x = 42;
 printf("%i\n", *start);
 printf("%i\n", start[0]);
 printf("%i\n", start[1]);
 printf("%i\n", start[2]);
 printf("%i\n", start[3]);
 printf("%i\n", start[4]);
 printf("%i\n", start[5]);
 printf("%f\n", 
    *(double*)(start+1));

-42
-42
-858993459
1073794252
42
0
0
2.100000
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Dynamic memory management
#include <stdlib.h> 

void* calloc(size_t n, size_t s)
void* malloc(size_t s)
void  free(void* p)
void* realloc(void* p, size_t s)

•Allocate and free dynamic memory

23
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Operations with memory

void* memset(void *s, int c, size_t n)
void* memcpy(void *s, const void *s2, size_t n)

•Initializing and copying blocks of memory

24
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malloc(size_t s)
•Allocates s bytes and returns a pointer to the allocated memory.
•Memory is not cleared
•Returned value is a pointer to alloc’d memory or NULL if the request 

fails
•You must cast the pointer
 
 p = (char*) malloc(10); /* allocated 10 bytes */
  if(p == NULL) { /*panic*/ }

CAN FAIL, CHECK THE RETURNED POINTER NOT NULL

25
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calloc(size_t n, size_t s)

•Allocates memory for an array of n elements of s bytes each and 
returns a pointer to the allocated memory. 

•The memory is set to zero
•The value returned is a pointer to the allocated memory or NULL

	 p = (char*) calloc(10,1); /*alloc 10 bytes */
  if(p == NULL) { /* panic */ }

What’s the difference between int array[10] and calloc(10,4)

26

CAN FAIL, CHECK THE RETURNED POINTER NOT NULL
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free(void* p) 
•Frees the memory space pointed to by p, which must have been 

allocated with a previous call to malloc, calloc or realloc 
•If memory was not allocated before, or if free(p) has already been 

called before, undefined behavior occurs. 
•If p is NULL, no operation is performed. 
•free() returns nothing

 char *mess = NULL;
 mess = (char*) malloc(100);
 …
 free(mess);

FREE DOES NOT SET THE POINTER TO NULL

27
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realloc(void* p,size_t s)

•Changes the size of the memory block pointed to by p to s bytes
•Contents unchanged to the minimum of old and new sizes
•Newly alloc’d memory is uninitialized. 
•Unless p==NULL, it must have been returned by  malloc, calloc 
or realloc. 

•If p==NULL, equivalent to malloc(size)
•If s==0, equivalent to free(ptr)
•Returns pointer to alloc’d memory, may be different from p, or NULL if 

the request fails or if s==0
•If fails, original block left untouched, i.e. it is not freed or moved

28
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memcpy(void*dest,const void*src,size_t n)

•Copies n bytes from src to dest
•Returns dest
•Does not check for overflow on copy

char buf[100];
char src[20] = “Hi there!”;
int type = 9;
memcpy(buf, &type, sizeof(int)); /* copy an int */

memcpy(buf+sizeof(int), src, 10); /*copy 10 chars */

29

Wednesday, February 9, 2011



memset(void *s, int c, size_t n)

•Sets the first n bytes in s to the value of c 
‣ (c is converted to an unsigned char)

•Returns s
•Does not check for overflow 

	 memset(mess, 0, 100);

30
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Sizeof matters
•In C, programmers must know the size of data structures
•The compiler provides a way to determine the size of data 

31

struct {
 int i; char c; float cv;
} C;

int x[10];
printf("%i\n", (int) sizeof(char));
printf("%i\n", (int) sizeof(int));
printf("%i\n", (int) sizeof(int*));
printf("%i\n", (int) sizeof(double));
printf("%i\n", (int) sizeof(double*));
printf("%i\n", (int) sizeof(x));
printf("%i\n", (int) sizeof(C));

1
4
8
8
8
40
12
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Sizeof matters
•In C, programmers must know the size of data structures
•The compiler provides a way to determine the size of data

•Do this: 

32

int *p = malloc(10 * sizeof(*p));
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Memory Allocation Problems
•Memory leaks
‣Alloc’d memory not freed appropriately
‣ If your program runs a long time, it will run out of 

memory and slow down the system
‣Always add the free on all control flow paths after a 

malloc

33

void *ptr = malloc(size);
/*the buffer needs to double*/
size *= 2;
ptr = realloc(ptr, size);
if (ptr == NULL) 
  /*realloc failed, original address in ptr
   lost; a leak has occurred*/
  return 1;
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Memory Allocation Problems
34

•Use after free
‣Using dealloc’d data
‣Deallocating something twice
‣Deallocating something that was not allocated

- Can cause unexpected behavior. For example, malloc can fail if “dead” 
memory is not freed.

- More insidiously, freeing a region that wasn’t malloc’ed or freeing a 
region that is still being referenced

int *ptr = malloc(sizeof (int));
free(ptr);
*ptr = 7; /* Undefined behavior */
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Memory Allocation Problems
•Memory overrun
‣Write in memory that was not allocated 
‣ The program will exit with segmentation fault
‣Overwrite memory: unexpected behavior

35

 int*y= … 
 int*x= y+10 
 for(p= x; p >= y;p++) 
 {
    *p = 42;
 }
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Memory Allocation Problems
•Fragmentation
‣ The system may have enough memory but not in a contiguous region

36

  int* vals[10000];
	
  int i;
	 for (i = 0; i < 10000; i++)
	 	 vals[i] = (int*) malloc(sizeof(int*));

	 for (i = 0; i < 10000; i = i + 2)
	 	 free(vals[i]);
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A (simple) malloc
37

#define SIZE 10000
#define UNUSED -1

struct Cell { int sz; void* value; struct Cell* next; };

static struct Cell*free, *used;
static struct Cell cells[SIZE / 10];

void init() {
	 void* heap = sbrk(SIZE);
	 int i;
	 for (i = 0; i<SIZE/10; i++) { cells[i].sz=UNUSED; cells[i].next=NULL; }
	 cells[0].sz = 0;
	 free = &cells[0];
	 free->next = &cells[1];
	 free->next->sz = SIZE;
	 free->next->value = heap;
	 free->next->next = NULL;
	 used = &cells[1];
	 used->sz = 0;
	 used->value = (void*) UNUSED;
}
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A (simple) malloc
38

#define SIZE 10000
#define UNUSED -1

struct Cell { int sz; void* value; struct Cell* next; };

static struct Cell*free, *used;
static struct Cell cells[SIZE / 10];

void init() {
	 void* heap = sbrk(SIZE);
	 int i;
	 for (i = 0; i<SIZE/10; i++) { cells[i].sz=UNUSED; cells[i].next=NULL; }
	 cells[0].sz = 0;
	 free = &cells[0];
	 free->next = &cells[1];
	 free->next->sz = SIZE;
	 free->next->value = heap;
	 free->next->next = NULL;
	 used = &cells[1];
	 used->sz = 0;
	 used->value = (void*) UNUSED;
}
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A (simple) malloc
39

void* mymalloc(int size) {
	 struct Cell* tmp = free, *prev = NULL;
	 if (size == 0) return NULL;
	 while (tmp != NULL) {
	 	 if (tmp->sz == size) {
	 	 	 prev->next = tmp->next;
	 	 	 tmp->next = used;
	 	 	 used = tmp;
	 	 	 return used->value;
	 	 } else if (tmp->sz > size) {
	 	 	 struct Cell* use = NULL;
	 	 	 int i;
	 	 	 for (i = 0; i < SIZE / 10; i++)
	 	 	 	 if (cells[i].sz == UNUSED) { use = &cells[i]; use->sz = size; }
	 	 	 if (use == NULL) return NULL;
	 	 	 use->next = used;
	 	 	 use->value = tmp->value;
	 	 	 tmp->sz -= size;
	 	 	 tmp->value += size;
	 	 	 return used->value;
	 	 }
	 	 prev = tmp;
	 	 tmp = tmp->next;
	 }
	 return NULL;
}
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A (simple) malloc
40

void myfree(void* p) {
	 struct Cell *tmp = used, *prev = NULL;
	 while (tmp != NULL) {
	 	 if (tmp->value == p) {
	 	 	 prev->next = tmp-> next;
	 	 	 tmp->next = free;
	 	 	 free = tmp;
	 	 	 free->sz = UNUSED;
	 	 	 return;
	 	 }
	 	 prev = tmp;
	 	 tmp = tmp->next;
	 }
}
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Dynamic memory: Checklist
•NULL pointer at declaration
•Verify malloc succeeded
•Initialize alloc’d memory
•free when you malloc
•NULL pointer after free

41
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Readings and exercises for this lecture

K&R Chapter 5.10 for command line 
arguments

Write a small program where 
you free something twice and 
observe the behavior

Write a small program where 
you don’t free the allocated 
memory and observe the 
behavior

42
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