
Lecture 8
Dynamic Memory Allocation

CS240

1

Wednesday, February 9, 2011

Memory
Computer programs manipulate an

abstraction of the computer’s
memory subsystem

Wednesday, February 9, 2011

Memory: on the hardware side
3

@ http://computer.howstuffworks.com/computer-memory.htm/printable

Wednesday, February 9, 2011

Memory: on the software side
4

•Each computer programming languages offers a different abstraction
•The goal is to make programming easier and improve portability of

the source code by hiding irrelevant hardware oddities
•Each language offers a memory API -- a set of operations for

manipulating memory

‣ Sample exam question:
- How does the abstraction of memory exposed by the Java programming language differ from

that of the C programming language?

Wednesday, February 9, 2011

Memory: the Java Story
•Memory is a set of objects with

fields, methods and a class +
local variables of a method

•Memory is read by accessing a
field or local variable

•Memory is modified by writing
to a field or local variable

•Location and size of data are
not exposed

•Memory allocation is done by
call in new

‣Question:
- Does main() terminate?

5

public class Main {
	 static public
 void main(String[] a){
	 	 Cell c1, c2 = null;
	 	 while (true) {
	 	 	 c1 = new Cell();
	 	 	 c1.next = c2;
	 	 	 c2 = c1;
	 	 }
	 }
}

class Cell {	Cell next; }
Wednesday, February 9, 2011

Memory: the Java Story
•Memory is a set of objects with

fields, methods and a class +
local variables of a method

•Memory is read by accessing a
field or local variable

•Memory is modified by writing
to a field or local variable

•Location and size of data are
not exposed

•Memory allocation is done by
call in new

‣Question:
- Does main() terminate?

6

public class Main {
	 static public
 void main(String[] a){
	 	 Cell c1, c2 = null;
	 	 while (true) {
	 	 	 c1 = new Cell();
	 	 	 c1.next = c2;
	 	 	 c2 = c1;
	 	 }
	 }
}

class Cell {	Cell next; }
Wednesday, February 9, 2011

Memory: the Java Story
•The semantics of new is as follows:
‣Allocate space for the object’s fields and metadata fields
‣ Initialize the metadata fields
‣ Set all fields to null/zero/false
‣ Invoke the user defined constructor method

7

Heapnext

fieldsmetadata
hash
lock

class +
methods

Wednesday, February 9, 2011

Aparté
•Garbage collection is the technology that gives the illusion of infinite

resources
•Garbage collection or GC is implemented by the programming

language with the help of the compiler
‣ Though for a some well-behaved C programs it is possible to link a special

library that provides most of the benefits of GC

‣Question:
- How does GC work?

8

Wednesday, February 9, 2011

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Wednesday, February 9, 2011

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Wednesday, February 9, 2011

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Wednesday, February 9, 2011

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Wednesday, February 9, 2011

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Wednesday, February 9, 2011

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Wednesday, February 9, 2011

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Wednesday, February 9, 2011

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Wednesday, February 9, 2011

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Wednesday, February 9, 2011

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Wednesday, February 9, 2011

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Wednesday, February 9, 2011

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Wednesday, February 9, 2011

Garbage Collection

thread#2thread#1 heap

Phases

Mutation

Stop-the-world

Root scanning

Marking

Sweeping

Compaction

Wednesday, February 9, 2011

Isn’t this a course about C?
Yes, Virginia

Wednesday, February 9, 2011

Memory: the C Story
•C offers a story both simpler and more complex than Java
•Memory is a sequence of bytes, read/written by providing an address
•Addresses are values manipulated using arithmetic & logic operations
•Memory can be allocated:
‣ Statically
‣Dynamically on the stack
‣Dynamically on the heap

•Types give the compiler a hint how to interpret a memory addresses

18

Heap

0x1000434

Wednesday, February 9, 2011

Static and Stack allocation
•Static allocation

with the keyword
static

•Stack allocation
automatic by the
compiler for local
variables

•printf can
display the
address of any
identifier

19

#include <unistd.h>
#include <stdio.h>

static int sx;
static int sa[100];
static int sy;

int main() {
	 int lx;
	 static int sz;

	 printf("%p\n", &sx);
	 printf("%p\n", &sa);
	 printf("%p\n", &sy);
	 printf("%p\n", &lx);
	 printf("%p\n", &sz);
	 printf("%p\n", &main);

0x100001084
0x1000010a0
0x100001230
0x7fff5fbff58c
0x100001080
0x100000dfc

Wednesday, February 9, 2011

Static and Stack allocation
•Any value can

be turned into a
pointer

•Arithmetics on
pointers
allowed

•Nothing
prevents a
program from
writing all over
memory

20

static int sx;
static int sa[100];
static int sy;

int main() {
 for(p= (int*)0x100001084;
 p <= (int*)0x100001230;
 p++)
 {
 *p = 42;
 }
 printf("%i\n",sx);
 printf("%i\n",sa[0]);
 printf("%i\n",sa[1]);

42
42
42

Wednesday, February 9, 2011

Memory layout
•The OS creates a process by assigning memory and

other resources
•C exposes the layout as the programmer can take the

address of any element (with &)
•Stack:
‣ keeps track of where each active subroutine should return

control when it finishes executing; stores local variables

•Heap:
‣dynamic memory for variables that are created with malloc,

calloc, realloc and disposed of with free

•Data:
‣global and static variables

•Code:
‣ instructions to be executed

Stack

Heap

Code

Data

Virtual
Memory

21

Wednesday, February 9, 2011

Dynamic Memory: The DIY Way
•A simple dynamic

allocation pattern is to
ask the OS for a
chunk of memory
large enough to store
all data needed

•sbrk(size) returns
a chunk of memory of
size words

•The downside is that
the programmer must
keep track of how
memory is used

22

int main() {
 int* x; int* start;
 double* y;
 start = (int*) sbrk(5);
 x = start;
 x = -42; 	 x++; y=(double) x;
 y = 2.1; 	 y++; x=(int) y;
 *x = 42;
 printf("%i\n", *start);
 printf("%i\n", start[0]);
 printf("%i\n", start[1]);
 printf("%i\n", start[2]);
 printf("%i\n", start[3]);
 printf("%i\n", start[4]);
 printf("%i\n", start[5]);
 printf("%f\n",
 (double)(start+1));

-42
-42
-858993459
1073794252
42
0
0
2.100000

Wednesday, February 9, 2011

Dynamic memory management
#include <stdlib.h>

void* calloc(size_t n, size_t s)
void* malloc(size_t s)
void free(void* p)
void* realloc(void* p, size_t s)

•Allocate and free dynamic memory

23

Wednesday, February 9, 2011

Operations with memory

void* memset(void *s, int c, size_t n)
void* memcpy(void *s, const void *s2, size_t n)

•Initializing and copying blocks of memory

24

Wednesday, February 9, 2011

malloc(size_t s)
•Allocates s bytes and returns a pointer to the allocated memory.
•Memory is not cleared
•Returned value is a pointer to alloc’d memory or NULL if the request

fails
•You must cast the pointer

 p = (char*) malloc(10); /* allocated 10 bytes */
 if(p == NULL) { /*panic*/ }

CAN FAIL, CHECK THE RETURNED POINTER NOT NULL

25

Wednesday, February 9, 2011

calloc(size_t n, size_t s)

•Allocates memory for an array of n elements of s bytes each and
returns a pointer to the allocated memory.

•The memory is set to zero
•The value returned is a pointer to the allocated memory or NULL

	 p = (char*) calloc(10,1); /*alloc 10 bytes */
 if(p == NULL) { /* panic */ }

What’s the difference between int array[10] and calloc(10,4)

26

CAN FAIL, CHECK THE RETURNED POINTER NOT NULL

Wednesday, February 9, 2011

free(void* p)
•Frees the memory space pointed to by p, which must have been

allocated with a previous call to malloc, calloc or realloc
•If memory was not allocated before, or if free(p) has already been

called before, undefined behavior occurs.
•If p is NULL, no operation is performed.
•free() returns nothing

 char *mess = NULL;
 mess = (char*) malloc(100);
 …
 free(mess);

FREE DOES NOT SET THE POINTER TO NULL

27

Wednesday, February 9, 2011

realloc(void* p,size_t s)

•Changes the size of the memory block pointed to by p to s bytes
•Contents unchanged to the minimum of old and new sizes
•Newly alloc’d memory is uninitialized.
•Unless p==NULL, it must have been returned by malloc, calloc
or realloc.

•If p==NULL, equivalent to malloc(size)
•If s==0, equivalent to free(ptr)
•Returns pointer to alloc’d memory, may be different from p, or NULL if

the request fails or if s==0
•If fails, original block left untouched, i.e. it is not freed or moved

28

Wednesday, February 9, 2011

memcpy(void*dest,const void*src,size_t n)

•Copies n bytes from src to dest
•Returns dest
•Does not check for overflow on copy

char buf[100];
char src[20] = “Hi there!”;
int type = 9;
memcpy(buf, &type, sizeof(int)); /* copy an int */

memcpy(buf+sizeof(int), src, 10); /*copy 10 chars */

29

Wednesday, February 9, 2011

memset(void *s, int c, size_t n)

•Sets the first n bytes in s to the value of c
‣ (c is converted to an unsigned char)

•Returns s
•Does not check for overflow

	 memset(mess, 0, 100);

30

Wednesday, February 9, 2011

Sizeof matters
•In C, programmers must know the size of data structures
•The compiler provides a way to determine the size of data

31

struct {
 int i; char c; float cv;
} C;

int x[10];
printf("%i\n", (int) sizeof(char));
printf("%i\n", (int) sizeof(int));
printf("%i\n", (int) sizeof(int*));
printf("%i\n", (int) sizeof(double));
printf("%i\n", (int) sizeof(double*));
printf("%i\n", (int) sizeof(x));
printf("%i\n", (int) sizeof(C));

1
4
8
8
8
40
12

Wednesday, February 9, 2011

Sizeof matters
•In C, programmers must know the size of data structures
•The compiler provides a way to determine the size of data

•Do this:

32

int *p = malloc(10 * sizeof(*p));

Wednesday, February 9, 2011

Memory Allocation Problems
•Memory leaks
‣Alloc’d memory not freed appropriately
‣ If your program runs a long time, it will run out of

memory and slow down the system
‣Always add the free on all control flow paths after a

malloc

33

void *ptr = malloc(size);
/*the buffer needs to double*/
size *= 2;
ptr = realloc(ptr, size);
if (ptr == NULL)
 /*realloc failed, original address in ptr
 lost; a leak has occurred*/
 return 1;

Wednesday, February 9, 2011

Memory Allocation Problems
34

•Use after free
‣Using dealloc’d data
‣Deallocating something twice
‣Deallocating something that was not allocated

- Can cause unexpected behavior. For example, malloc can fail if “dead”
memory is not freed.

- More insidiously, freeing a region that wasn’t malloc’ed or freeing a
region that is still being referenced

int *ptr = malloc(sizeof (int));
free(ptr);
ptr = 7; / Undefined behavior */

Wednesday, February 9, 2011

Memory Allocation Problems
•Memory overrun
‣Write in memory that was not allocated
‣ The program will exit with segmentation fault
‣Overwrite memory: unexpected behavior

35

 int*y= …
 int*x= y+10
 for(p= x; p >= y;p++)
 {
 *p = 42;
 }

Wednesday, February 9, 2011

Memory Allocation Problems
•Fragmentation
‣ The system may have enough memory but not in a contiguous region

36

 int* vals[10000];
	
 int i;
	 for (i = 0; i < 10000; i++)
	 	 vals[i] = (int*) malloc(sizeof(int*));

	 for (i = 0; i < 10000; i = i + 2)
	 	 free(vals[i]);

Wednesday, February 9, 2011

A (simple) malloc
37

#define SIZE 10000
#define UNUSED -1

struct Cell { int sz; void* value; struct Cell* next; };

static struct Cell*free, *used;
static struct Cell cells[SIZE / 10];

void init() {
	 void* heap = sbrk(SIZE);
	 int i;
	 for (i = 0; i<SIZE/10; i++) { cells[i].sz=UNUSED; cells[i].next=NULL; }
	 cells[0].sz = 0;
	 free = &cells[0];
	 free->next = &cells[1];
	 free->next->sz = SIZE;
	 free->next->value = heap;
	 free->next->next = NULL;
	 used = &cells[1];
	 used->sz = 0;
	 used->value = (void*) UNUSED;
}

Wednesday, February 9, 2011

A (simple) malloc
38

#define SIZE 10000
#define UNUSED -1

struct Cell { int sz; void* value; struct Cell* next; };

static struct Cell*free, *used;
static struct Cell cells[SIZE / 10];

void init() {
	 void* heap = sbrk(SIZE);
	 int i;
	 for (i = 0; i<SIZE/10; i++) { cells[i].sz=UNUSED; cells[i].next=NULL; }
	 cells[0].sz = 0;
	 free = &cells[0];
	 free->next = &cells[1];
	 free->next->sz = SIZE;
	 free->next->value = heap;
	 free->next->next = NULL;
	 used = &cells[1];
	 used->sz = 0;
	 used->value = (void*) UNUSED;
}

Wednesday, February 9, 2011

A (simple) malloc
39

void* mymalloc(int size) {
	 struct Cell* tmp = free, *prev = NULL;
	 if (size == 0) return NULL;
	 while (tmp != NULL) {
	 	 if (tmp->sz == size) {
	 	 	 prev->next = tmp->next;
	 	 	 tmp->next = used;
	 	 	 used = tmp;
	 	 	 return used->value;
	 	 } else if (tmp->sz > size) {
	 	 	 struct Cell* use = NULL;
	 	 	 int i;
	 	 	 for (i = 0; i < SIZE / 10; i++)
	 	 	 	 if (cells[i].sz == UNUSED) { use = &cells[i]; use->sz = size; }
	 	 	 if (use == NULL) return NULL;
	 	 	 use->next = used;
	 	 	 use->value = tmp->value;
	 	 	 tmp->sz -= size;
	 	 	 tmp->value += size;
	 	 	 return used->value;
	 	 }
	 	 prev = tmp;
	 	 tmp = tmp->next;
	 }
	 return NULL;
}

Wednesday, February 9, 2011

A (simple) malloc
40

void myfree(void* p) {
	 struct Cell *tmp = used, *prev = NULL;
	 while (tmp != NULL) {
	 	 if (tmp->value == p) {
	 	 	 prev->next = tmp-> next;
	 	 	 tmp->next = free;
	 	 	 free = tmp;
	 	 	 free->sz = UNUSED;
	 	 	 return;
	 	 }
	 	 prev = tmp;
	 	 tmp = tmp->next;
	 }
}

Wednesday, February 9, 2011

Dynamic memory: Checklist
•NULL pointer at declaration
•Verify malloc succeeded
•Initialize alloc’d memory
•free when you malloc
•NULL pointer after free

41

Wednesday, February 9, 2011

Readings and exercises for this lecture

K&R Chapter 5.10 for command line
arguments

Write a small program where
you free something twice and
observe the behavior

Write a small program where
you don’t free the allocated
memory and observe the
behavior

42

Wednesday, February 9, 2011

