
CS240: Programming in C

Lecture 7: Structures

Wednesday, February 9, 2011

C Structures

 Functions: allow us to organize the
structure of the code

 Structures: allow us to organize
variables in a more logical way

Structures in C are named
collections of one or more related
variables, possibly of different types

Wednesday, February 9, 2011

Java vs C Structures: Example

In C:
struct Slot {
 int x;
 int y;
 int direction;
};

Java Example:
class Slot {
 int x;
 int y;
 int direction;
methods ...
}

Slot is the name (tag) of the structure
x, y, direction are members of the structure

Of course, no inheritance, associated (private) methods

Wednesday, February 9, 2011

Structures and types

 Tag name used after struct introduces a
new datatype

 sizeof operator works on struct
 Continuing the example from previous

slide …
 struct Slot s1, s2;

struct tag {
 list of variables
}

Wednesday, February 9, 2011

Accessing members of a structure

Consider declarations
struct Slot s1, s2;
int i;

Allowed
i = s1.x;

Wednesday, February 9, 2011

Structures and pointers

 We can define pointers to structures
 struct Slot * s1_ptr = NULL;

 struct Slot s2, s1;

 Operate with them
 s1_ptr = &s2;
 s1 = s2;

Wednesday, February 9, 2011

Struct and sizeof

 If the structure contains dynamically allocated
members, the size of whole struct may not equal
sum of its parts

 struct word {
 char * c;
 int length;
 }
 Sizeof(struct word) will return …8 bytes. But if

char points to some arbitrary string, then the
total memory associated with the struct is
obviously bigger.

 Internal padding

Wednesday, February 9, 2011

Padding

8

1.struct Example
2.{
3. int a;
4. char b;
5. int c;
6.};
7.

What is sizeof(Example)?

What is sizeof(a)+sizeof(b)+sizeof(c)?

Wednesday, February 9, 2011

Structures and … structures

 A structure can contain a member of
another structure

 struct Position{
 int x;
 int y
}
struct Slot {
 struct Position pos;
 int direction;
}

Access x via : slot.pos.x

Wednesday, February 9, 2011

Structures and … structures

 A structure can not refer itself (contain a
member of the same structure) UNLESS
it is a pointer – such structures are called
self-referential (or recursive) structures.

 struct tnode {
 char * word;
 int count;
 struct tnode *left;
 struct tnode *right;

 }

Wednesday, February 9, 2011

Recursive structures

11

struct regression
{
 int int_member;
 struct regression self_member;
};

What’s wrong with this definition?

Wednesday, February 9, 2011

Structures and functions

 Structures can be initialized, copied,
taking its address and accessing its
members;

 They can not be compared
 Eq vs equal: Do two structures represent the

same object vs. Do two structures have the
same value

 Functions can return structure instances
 What is the cost in terms of memory

allocation, copying, and performance?
 What’s the difference between arrays and

structures in this sense?

Wednesday, February 9, 2011

Structures and functions

struct point {

 int x;
 int y
}

struct point createpoint(int x, int y) {

 struct point temp;

 temp.x = x;
 temp.y = y;
 return temp;

}

struct point p1 = createpoint(0, 0);
Wednesday, February 9, 2011

Typedef

 Allows us to create new data name
types;

typedef int Length;
Length l1, l2;

Wednesday, February 9, 2011

Typedef and structures

typedef struct {
 int x;
 int y;
} Position;

Notice the difference. NO struct needed
when using the type.

Position p1, p1;

Wednesday, February 9, 2011

Readings and exercises for this lecture

K&R Chapter 6 till 6.7

Wednesday, February 9, 2011

