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CS240: Programming in C

Lecture 6: Recursive Functions 
 C Pre-processor.
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Functions: extern and static

 Functions can be used before they are declared
 static for a function means the function is local 

only to that file
 extern, means that the function was declared in 

another file or the same file but later
 Always put prototype before definition to avoid 

any problems
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Variables

 All variables must be declared before use
 extern has the same meaning as for functions
 static the same when declared outside functions
 static declared within a function ‘has memory’, i.e 

is initialized only the first time the function is 
called

 Don’t use the same names for global and local 
variables
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Passing Parameters

 In C, parameters are passed to functions BY 
VALUE

 Functions create local copies of those variables
 Modifications are not preserved outside the 

functions unless the function is passed 
references to variables
 int swap(int[]) 
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Recursive functions in C

 A function can call itself
 Recursive expression of the function
 Needs a stop condition

Example: compute n!
 int fact(n) {

  if(n<=1)

   return 1;

     else

        return n*fact(n-1);

    }

 Why does it work? 
 Typically used to compute an inductively 

defined property
5
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Induction

 Suppose that P is a predicate on natural 
numbers.
 Suppose P(0) holds
 And, for all i, P(i) => P(i+1)
 Then, P(n) holds for all n.

 Let P be the “factorial property”:
 P(0) = 1

 P(n) = n * P(n-1)
 If we know P(n) then we have an algorithm to 

compute P(n+1)
• simply multiply n * P(n)
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Operationally… it’s all about the 
Stack

 The operating system creates a 
process by assigning memory and 
other resources

 Stack: keeps track of the point to which each active 
subroutine should return control when it finishes 
executing; stores variables that are local to 
functions

 Heap: dynamic memory for variables that are 
created with malloc, calloc, realloc and disposed of 
with free 

 Data: initialized variables including global and static 
variables, un-initialized variables

 Code: the program instructions to be executed

Stack

Heap

Code

Data

Virtual Memory
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Stack

 Logically it’s a LIFO structure
 Two operations: push and pop
 Grows ‘down’ from high-addresses to low
 Operations always happen at the top: push and 

pop, organized 
 It is used to hold “activation frames” that 

represent the state of functions as they execute
 top-most (lowest) frame corresponds to the 

currently executing function

 It stores not only the local variables but also 
the address of the function that needs to be 
executed next
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Example: Linux Process Memory Layout

Unused
0x08048000

Run time heap

Shared libraries

User stack

0x40000000

0xC0000000

Loaded 
from exec

Kernel virtual memory 0xFFFFFFFF
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C Program execution

 PC (program counter or instruction pointer) 
points to next machine instruction to be executed

 Procedure call:
 Prepare parameters

 Save state (SP (stack pointer) and PC) and allocate on 
stack local variables

 Jumps to the beginning of procedure being called

 Procedure return:
 Recover state (SP and PC (this is return address)) from 

stack and adjust stack

 Execution continues from return address
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Stack frame

SP

Parameters

Return address

Stack Frame Pointer

Local variables Stack

Growth

 Parameters for the 
procedure

 Save current PC onto 
stack (return address)

 Save current SP value 
onto stack

 Allocates stack space 
for local variables by 
decrementing SP by 
appropriate amount

11

Tuesday, February 1, 2011



Example: N!

 Observation: n! = n*(n-1)!  and 1! = 1

int fact(n) {
 if(n<=1)
  return 1;
  else
    return n*fact(n-1);
}
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Zooming in …
int factorial(int i) {

 if(i<=1) return 1;  

 else return i*factorial(i-1); 

}

factorial(3)=?
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Zooming in …
int factorial(int i) {

 if(i<=1) return 1;  

 else return i*factorial(i-1); 

}

factorial(3)=?

Local variables for 
main

   NULL

arguments to main

Return address of 
main 

Stack 
bottom
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Zooming in …
int factorial(int i) {

 if(i<=1) return 1;  

 else return i*factorial(i-1); 

}

factorial(3)=? 1. Call factorial(3)

Local variables for
factorial (3)

3

return address in 
main

activation frame
for main

Local variables for 
main

   NULL

arguments to main

Return address of 
main 

Stack 
bottom
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Zooming in …
int factorial(int i) {

 if(i<=1) return 1;  

 else return i*factorial(i-1); 

}

factorial(3)=? 1. Call factorial(3)

Local variables for
factorial (3)

3

return address in 
main

activation frame
for main

2. Call factorial(2) in 
factorial(3)

activation frame
for main

activation frame
for factorial(3)

2

return address in 
factorial(3)

Local variables for
factorial (2)

Local variables for 
main

   NULL

arguments to main

Return address of 
main 

Stack 
bottom
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Function return

caller
   A
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Function return

caller
   A

caller
   A
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Function return

caller
   A

caller
   A

How do we pass 
return values back 
to the caller?

Typically, reserve 
a register for this 
purpose

-- EAX on x86
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Tail Recursion

 Do we always need to build a new stack frame when we make 
a recursive call?

 Notice that nothing interesting happens after the recursive call 
returns

 Control is immediately transferred to the caller’s caller

 The sequence of recursive calls behaves just like a loop

 No need to build up stack since there is no “context” or 
history that’s preserved across calls

 C does not provide support for tail recursion

 Recursion is not the same as looping
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int factorial(int i, int acc) {

 if(i<=1) return acc;  

 else return factorial(i-1,i*acc); 

}

factorial(10,1)
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C Pre-processor

 Additional step before compilation
 Provides two operations

 include 
 define
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#include

 "" starts searching at source program 
location (within same directory); 

 <> follows implementation dependent
 rules; e.g., /usr/include and -I option in 

gcc specified at compilation time
 included file is usually a header (.h) file, 

but can also be a .c file or any other file

=

#include "filename"
#include <filename>
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Example

 You have implemented a program package with a 
set of functions for other programmers to call 

 You distribute the implementation of your code as a 
library 

 You distribute the interface of your code as a header 
file for users of your code to #include, like <stdio.h> 
for the standard I/O library of the libc.a C library 

 The .h file contains, say, prototypes of functions that 
the users will call, and external variables that the 
users can set to control your program’s behavior.
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Macro substitution

 scope is from occurrence of #define to 
corresponding #undef, another #define 
of the same name, or end of file

 simple textual substitution, NO 
LANGUAGE AWARENESS

#define name replacement-text
#undef name
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Examples

 #define STEP 10
 #define forever for (;;)
 #define max(A, B) ((A) > (B) ? (A) : (B))
Parentheses around arguments ensures correct
order of evaluation under substitution

What’s the essential difference between a macro
and a function?

      Lazy vs. strict evaluation

Consider:  #define f(a,b) if (a = 0) b else 0
                  f 1 10/0
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When #defines go wrong

 What’s wrong with 
 
#define square(x) x * x

 Recursive macros?

#define f(x) f((x)-1) * 2)
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Conditional pre-processing

 #ifdef
 #ifndef
 #else
 #elif
 #endif
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Applications of #ifdef: portability

#ifdef SYSV
#define HDR "sysv.h"
#elif defined(BSD)
#define HDR "bsd.h"
#elif defined(MSDOS)
#define HDR "msdos.h"
#else
#define HDR "default.h"
#endif
#include HDR
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Application of #idndef: include files

 To include a include file only once

#idndef _MY_INCLUDE_FILE_
#define _MY_INCLUDE_FILE_
 header file

#endif /* _MY_INCLUDE_FILE_ */
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Application of #ifndef: include files

 To include a include file only once

#ifndef _MY_INCLUDE_FILE_
#define _MY_INCLUDE_FILE_
 header file

#endif /* _MY_INCLUDE_FILE_ */
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Application of #ifdef: Print debug 
information
#ifdef DEBUG
#define DPRINTF(args) printf args
#else
#define DPRINTF(args)
#endif
 Specify how you want to macro to 

expand by specifying the DEBUG 
variable at compilation time in the 
Makefile

 gcc -D option
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Readings for This Lecture

K&R Chapter 4
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