
1

CS240: Programming in C

Lecture 6: Recursive Functions
 C Pre-processor.

1

Tuesday, February 1, 2011

Functions: extern and static

 Functions can be used before they are declared
 static for a function means the function is local

only to that file
 extern, means that the function was declared in

another file or the same file but later
 Always put prototype before definition to avoid

any problems

2

Tuesday, February 1, 2011

Variables

 All variables must be declared before use
 extern has the same meaning as for functions
 static the same when declared outside functions
 static declared within a function ‘has memory’, i.e

is initialized only the first time the function is
called

 Don’t use the same names for global and local
variables

3

Tuesday, February 1, 2011

Passing Parameters

 In C, parameters are passed to functions BY
VALUE

 Functions create local copies of those variables
 Modifications are not preserved outside the

functions unless the function is passed
references to variables
 int swap(int[])

4

Tuesday, February 1, 2011

Recursive functions in C

 A function can call itself
 Recursive expression of the function
 Needs a stop condition

Example: compute n!
 int fact(n) {

 if(n<=1)

 return 1;

 else

 return n*fact(n-1);

 }

 Why does it work?
 Typically used to compute an inductively

defined property
5

Tuesday, February 1, 2011

Induction

 Suppose that P is a predicate on natural
numbers.
 Suppose P(0) holds
 And, for all i, P(i) => P(i+1)
 Then, P(n) holds for all n.

 Let P be the “factorial property”:
 P(0) = 1

 P(n) = n * P(n-1)
 If we know P(n) then we have an algorithm to

compute P(n+1)
• simply multiply n * P(n)

6

Tuesday, February 1, 2011

Operationally… it’s all about the
Stack

 The operating system creates a
process by assigning memory and
other resources

 Stack: keeps track of the point to which each active
subroutine should return control when it finishes
executing; stores variables that are local to
functions

 Heap: dynamic memory for variables that are
created with malloc, calloc, realloc and disposed of
with free

 Data: initialized variables including global and static
variables, un-initialized variables

 Code: the program instructions to be executed

Stack

Heap

Code

Data

Virtual Memory

7

Tuesday, February 1, 2011

Stack

 Logically it’s a LIFO structure
 Two operations: push and pop
 Grows ‘down’ from high-addresses to low
 Operations always happen at the top: push and

pop, organized
 It is used to hold “activation frames” that

represent the state of functions as they execute
 top-most (lowest) frame corresponds to the

currently executing function

 It stores not only the local variables but also
the address of the function that needs to be
executed next

8

Tuesday, February 1, 2011

Example: Linux Process Memory Layout

Unused
0x08048000

Run time heap

Shared libraries

User stack

0x40000000

0xC0000000

Loaded
from exec

Kernel virtual memory 0xFFFFFFFF

9

Tuesday, February 1, 2011

C Program execution

 PC (program counter or instruction pointer)
points to next machine instruction to be executed

 Procedure call:
 Prepare parameters

 Save state (SP (stack pointer) and PC) and allocate on
stack local variables

 Jumps to the beginning of procedure being called

 Procedure return:
 Recover state (SP and PC (this is return address)) from

stack and adjust stack

 Execution continues from return address

10

Tuesday, February 1, 2011

Stack frame

SP

Parameters

Return address

Stack Frame Pointer

Local variables Stack

Growth

 Parameters for the
procedure

 Save current PC onto
stack (return address)

 Save current SP value
onto stack

 Allocates stack space
for local variables by
decrementing SP by
appropriate amount

11

Tuesday, February 1, 2011

Example: N!

 Observation: n! = n*(n-1)! and 1! = 1

int fact(n) {
 if(n<=1)
 return 1;
 else
 return n*fact(n-1);
}

12

Tuesday, February 1, 2011

Zooming in …
int factorial(int i) {

 if(i<=1) return 1;

 else return i*factorial(i-1);

}

factorial(3)=?

13

Tuesday, February 1, 2011

Zooming in …
int factorial(int i) {

 if(i<=1) return 1;

 else return i*factorial(i-1);

}

factorial(3)=?

Local variables for
main

 NULL

arguments to main

Return address of
main

Stack
bottom

13

Tuesday, February 1, 2011

Zooming in …
int factorial(int i) {

 if(i<=1) return 1;

 else return i*factorial(i-1);

}

factorial(3)=? 1. Call factorial(3)

Local variables for
factorial (3)

3

return address in
main

activation frame
for main

Local variables for
main

 NULL

arguments to main

Return address of
main

Stack
bottom

13

Tuesday, February 1, 2011

Zooming in …
int factorial(int i) {

 if(i<=1) return 1;

 else return i*factorial(i-1);

}

factorial(3)=? 1. Call factorial(3)

Local variables for
factorial (3)

3

return address in
main

activation frame
for main

2. Call factorial(2) in
factorial(3)

activation frame
for main

activation frame
for factorial(3)

2

return address in
factorial(3)

Local variables for
factorial (2)

Local variables for
main

 NULL

arguments to main

Return address of
main

Stack
bottom

13

Tuesday, February 1, 2011

Function return

caller
 A

14

Tuesday, February 1, 2011

Function return

caller
 A

caller
 A

14

Tuesday, February 1, 2011

Function return

caller
 A

caller
 A

How do we pass
return values back
to the caller?

Typically, reserve
a register for this
purpose

-- EAX on x86

14

Tuesday, February 1, 2011

Tail Recursion

 Do we always need to build a new stack frame when we make
a recursive call?

 Notice that nothing interesting happens after the recursive call
returns

 Control is immediately transferred to the caller’s caller

 The sequence of recursive calls behaves just like a loop

 No need to build up stack since there is no “context” or
history that’s preserved across calls

 C does not provide support for tail recursion

 Recursion is not the same as looping

15

int factorial(int i, int acc) {

 if(i<=1) return acc;

 else return factorial(i-1,i*acc);

}

factorial(10,1)

Tuesday, February 1, 2011

C Pre-processor

 Additional step before compilation
 Provides two operations

 include
 define

16

Tuesday, February 1, 2011

#include

 "" starts searching at source program
location (within same directory);

 <> follows implementation dependent
 rules; e.g., /usr/include and -I option in

gcc specified at compilation time
 included file is usually a header (.h) file,

but can also be a .c file or any other file

=

#include "filename"
#include <filename>

17

Tuesday, February 1, 2011

Example

 You have implemented a program package with a
set of functions for other programmers to call

 You distribute the implementation of your code as a
library

 You distribute the interface of your code as a header
file for users of your code to #include, like <stdio.h>
for the standard I/O library of the libc.a C library

 The .h file contains, say, prototypes of functions that
the users will call, and external variables that the
users can set to control your program’s behavior.

18

Tuesday, February 1, 2011

Macro substitution

 scope is from occurrence of #define to
corresponding #undef, another #define
of the same name, or end of file

 simple textual substitution, NO
LANGUAGE AWARENESS

#define name replacement-text
#undef name

19

Tuesday, February 1, 2011

Examples

 #define STEP 10
 #define forever for (;;)
 #define max(A, B) ((A) > (B) ? (A) : (B))
Parentheses around arguments ensures correct
order of evaluation under substitution

What’s the essential difference between a macro
and a function?

 Lazy vs. strict evaluation

Consider: #define f(a,b) if (a = 0) b else 0
 f 1 10/0

20

Tuesday, February 1, 2011

When #defines go wrong

 What’s wrong with

#define square(x) x * x

 Recursive macros?

#define f(x) f((x)-1) * 2)

21

Tuesday, February 1, 2011

Conditional pre-processing

 #ifdef
 #ifndef
 #else
 #elif
 #endif

22

Tuesday, February 1, 2011

Applications of #ifdef: portability

#ifdef SYSV
#define HDR "sysv.h"
#elif defined(BSD)
#define HDR "bsd.h"
#elif defined(MSDOS)
#define HDR "msdos.h"
#else
#define HDR "default.h"
#endif
#include HDR

23

Tuesday, February 1, 2011

Application of #idndef: include files

 To include a include file only once

#idndef _MY_INCLUDE_FILE_
#define _MY_INCLUDE_FILE_
 header file

#endif /* _MY_INCLUDE_FILE_ */

24

Tuesday, February 1, 2011

Application of #ifndef: include files

 To include a include file only once

#ifndef _MY_INCLUDE_FILE_
#define _MY_INCLUDE_FILE_
 header file

#endif /* _MY_INCLUDE_FILE_ */

Tuesday, February 1, 2011

Application of #ifdef: Print debug
information
#ifdef DEBUG
#define DPRINTF(args) printf args
#else
#define DPRINTF(args)
#endif
 Specify how you want to macro to

expand by specifying the DEBUG
variable at compilation time in the
Makefile

 gcc -D option

26

Tuesday, February 1, 2011

Readings for This Lecture

K&R Chapter 4

27

Tuesday, February 1, 2011

