
CS240: Programming in C

Lecture 5: Functions. Scope.

1

Sunday, January 23, 2011

Functions: Explicit declaration

 Declaration, definition, use, order
matters.

 Declaration: defines the interface of a
function; i.e., number and types of
parameters, type of return value

 A C PROTOTYPE gives an explicit
declaration

 void solve(int [], int, int);
Prototypes improve safety and robustness

 Improved interaction with the type-checker
2

Sunday, January 23, 2011

Functions: Implicit declaration

 First use of a function without a
preceding prototype declaration implicitly
declares the function

 If prototype follows the first use, error will
say prototype is wrong

Put prototypes of function at the
beginning of the source file!

3

Sunday, January 23, 2011

Functions: Definition
 DEFINITION gives the implementation of

a function

int my_strlen(char s[]) {
 int i = 0;
 while(s[i] != ‘\0’)
 ++i;

 return i;
}

Are functions a form of abstraction?
 The notion of an abstraction is a central concept in

programming languages
4

Sunday, January 23, 2011

int my_strlen(char* s) {
 int i = 0;

 while(*(s+i) != ‘\0’)
 ++i;
 return i;
}

5

Sunday, January 23, 2011

int my_strlen(char* s) {
 int i = 0;

 while(*(s+i) != ‘\0’)
 ++i;
 return i;
} What does this signify?

5

Sunday, January 23, 2011

Extern modifier

 Placed before a function declaration ensures
that caller params are interpreted correctly

 extern void solve(int [], int, int);

 Actual function definition may be in another
source file, but can also be later in the same
file

 Often appears in header files, and included
by callee and all the callers

6

Sunday, January 23, 2011

Static modifier

 Placed before a function declaration or
definition declares a local function

 static void solve(int [], int, int);

 Limits use / visibility of function to the
local file

 Functions without static are global; i.e.,
visible to all other source files

7

Sunday, January 23, 2011

Return statement

 return [(] [expression] [)];
 Terminates the execution of a function

and returns control to the calling function
 Parenthesis are optional
 Converted to declared return type
 Return without expression gives garbage

if return type is not void
 Return value can be ignored by caller

8

Sunday, January 23, 2011

Examples

void my_printf() {
 if(…)
 return;
 ….
}

int min(int a, int b) {
 return ((a < b) ? a : b);
}

9

Sunday, January 23, 2011

Variables: Declaration

 Declaration specifies type of variable
 extern modifier possible
 extern int fahr;
 Actual variable definition may be in

another source file, although it can also
be in the same file

 Unlike functions, variables cannot be
used before declaration

10

Sunday, January 23, 2011

Variables: Definition

 Definition allocates storage for the
variable

 extern int i; // declaration

 extern char msg[]; // array declaration doesn’t need
dimension

 int i; // both declaration and definition

 int i = 10; // var definition can be initialized

 // but extern declarations should not

 char msg[100]; // array definition must have
dimension

 There should be one and only one
definition of a variable among all source
files that make up a C Program

11

Sunday, January 23, 2011

Static modifier

 If variable is not inside a block, means
the scope of the variable is local to the
source file

 If variable is inside a function, means
variable is initialized only on first call,
and survives across function calls;

12

Sunday, January 23, 2011

Static modifier: Example

int good_memory(void) {

 static int val = 10;

 printf("val %d\n", val++);

}

int bad_memory(void) {

 int val = 10;

 printf("val %d\n", val++);

}

What is the result of good_memory invoked twice?
What about bad_memory?

13

Sunday, January 23, 2011

Variables visibility
{

int i;

printf(“%d\n”, i);
}

Braces delimit blocks, variables declared within
a block ‘live’ only for the duration of the block

Storage for i can be conceptually reclaimed
after block exits
 registers
 stack 14

Sunday, January 23, 2011

Parameter passing
 ALL C parameters are passed by value
 A callee’s copy of the param is made on

function entry, initialized to value passed
from caller

 Updates of param inside callee made only to
callee’s copy

 Caller’s copy is not changed (i.e., updates to
param not visible after return)

 What are the implications of using call-by-value?
Why did C not adopt a call-by-reference strategy?
What does e.g., Java do?

15

Sunday, January 23, 2011

What’s wrong with this code?

void swap(int a, int b){
 int tmp;
 tmp = a;
 a = b;
 b = tmp;
}

int x = 10;
int y = 20;

swap(x,y)

16

Sunday, January 23, 2011

What’s wrong with this code?

void swap(int a, int b){
 int tmp;
 tmp = a;
 a = b;
 b = tmp;
}

int x = 10;
int y = 20;

swap(x,y)

 10 20

x y

 10 20

a b

16

Sunday, January 23, 2011

How does this fix the problem?

17

void swap(int* a, int* b){
 int tmp;
 tmp = *a;
 *a = *b;
 *b = tmp;
}

Call swap(&x,&y) for integers x and y

 10 20

x y

a b

Sunday, January 23, 2011

Fixing the problem

 Although caller’s param can not be changed by
the callee, what’s "referenced" by the param can

 void swap2(int vec[]) {

 int tmp;

 tmp = vec[0];

 vec[0] = vec[1];

 vec[1] = tmp;

 }

 int main() {

 int vec[2] = {10, 20};

 swap2(vec);

 return 0;

 }

18

Sunday, January 23, 2011

20

Readings for This Lecture

K&R Chapter 4

19

Sunday, January 23, 2011

