
CS240: Programming in C

Lecture 3: More on Types 

Sunday, January 16, 2011



Type representation and 
enforcement
#include <stdio.h>

int main () {
   short s = 9;
   long  l = 32768;
  
   printf("%d\n", s);

    s = l;
    printf("%d\n", s);

    return 0;
}

short can store -32768 to 32767

Sunday, January 16, 2011



Type representation and 
enforcement
#include <stdio.h>

int main () {
   short s = 9;
   long  l = 32768;
  
   printf("%d\n", s);

    s = l;
    printf("%d\n", s);

    return 0;
}

short can store -32768 to 32767

-32768

Sunday, January 16, 2011



Pointers

 The address of a location in memory is also a type 
based on what is stored at that memory location
 char * is “a pointer to char” or the address of memory where a 

char is stored
 int * points to a location in memory where a int is stored
 float * points to a location in memory where a float is stored

 We can do operation with this addresses
 The size of an address is platform dependent, on 

many is 32 bits.

…10101101
0xbffffaab

Sunday, January 16, 2011



& and *

 Given a variable v
   &v means the address of v

 Given a pointer ptr
*ptr means the value stored at the 

address specified by ptr

All variables are associated with an address (a memory 
location).  Both the contents of the location as well as the 
location itself are manipulable.

Sunday, January 16, 2011



Example
#include <stdio.h>

int main() {

  char      c;

  char *    c_ptr = &c;

  printf(" Size of char *:    %d (bytes)\n", sizeof(c_ptr));

  printf(" Address of c is:   %p  \n", &c);

  printf(" Value of c_ptr is: %p  \n", c_ptr);

  return 0;

}  

Sunday, January 16, 2011



Example
#include <stdio.h>

int main() {

  char      c;

  char *    c_ptr = &c;

  printf(" Size of char *:    %d (bytes)\n", sizeof(c_ptr));

  printf(" Address of c is:   %p  \n", &c);

  printf(" Value of c_ptr is: %p  \n", c_ptr);

  return 0;

}  

 Size of char *:    8 (bytes)

 Address of c is:   0x7fff5fbff62f  

 Value of c_ptr is: 0x7fff5fbff62f

Sunday, January 16, 2011



Arrays of characters

char c[10];

for (i=0; i < 10; i++) {

 printf(“%c\n”, c[i]);

}

&c[0] or c  (the name of the array) represents the start 
memory address  where the array is stored in the memory

char *p = &c[0];  

First element of the array starts at 
index 0, in this case c[0]

Sunday, January 16, 2011



Arrays of characters

char c[10];
char *p = &c[0];  
char t;

for (i=0; i < 10; i++) {
 c[i] = ‘a’;
}
c[5] = ‘b’;

What’s the address of c[5]? 

Sunday, January 16, 2011



Pointer vs. what’s stored at the 
address indicated by a pointer
#include <stdio.h>

int main() {

  char    c;

  char *  c_ptr = &c;

  char    array[5];

  array[2] = 'b';

  c_ptr = array;

  printf("Address where array start:               %p\n", array);

  printf("Value of variable c_ptr:                 %p\n", c_ptr);

  printf("Value stored at the address c_ptr+2:     %c\n", *(c_ptr+2));

  return 0;

}

Sunday, January 16, 2011



Pointer vs. what’s stored at the 
address indicated by a pointer
#include <stdio.h>

int main() {

  char    c;

  char *  c_ptr = &c;

  char    array[5];

  array[2] = 'b';

  c_ptr = array;

  printf("Address where array start:               %p\n", array);

  printf("Value of variable c_ptr:                 %p\n", c_ptr);

  printf("Value stored at the address c_ptr+2:     %c\n", *(c_ptr+2));

  return 0;

}

Address where array start:                0x7fff5fbff620
Value of variable c_ptr:                      0x7fff5fbff620
Value stored at the address c_ptr+2:     b

Sunday, January 16, 2011



Constant variables

 Declaring some variable with const means 
that its value can not be modified

 const int no = 100;
 Alternative is to use #define
 #define NO 100
 Is there any difference?

 #define is a macro -- evaluated at compile-time
 can you declare a pointer to a constant? to a 

#define?
 typechecking?

 enum boolean{ NO, YES};
Sunday, January 16, 2011



Strings

 In C a string is stored as an array of 
characters, terminated with null, 0, hex 00 or 
‘\0’

 The array has to have space for null
 Function strlen returns the length of the string 

excluding the string terminator 

ALWAYS MAKE SURE YOU DON’T GO 
BEYOND THE SIZE OF THE ARRAY – 1; 
the last item in the array should be the 

null string terminator

Sunday, January 16, 2011



Example

#include<stdio.h>

const int MAX=10;

int main() {

      char s[MAX];

       int i;

       s[MAX-1] = 0;

       for(i=0; i<MAX-1; i++) {

           s[i] = ‘a’;

        }

  s[0] = ‘b’;

    printf("%s\n", s);

    return 0;

}
Sunday, January 16, 2011



Example

#include<stdio.h>

const int MAX=10;

int main() {

      char s[MAX];

       int i;

       s[MAX-1] = 0;

       for(i=0; i<MAX-1; i++) {

           s[i] = ‘a’;

        }

  s[0] = ‘b’;

    printf("%s\n", s);

    return 0;

}

baaaaaaaa

Sunday, January 16, 2011



What’s wrong with this code?

Consider the following declaration

const int MAX=10;

int main() {

char s[MAX];

 
 ….
What’s wrong in each of the following:

(1)     s[MAX] = 0;

(2)

        for(i=1; i<=MAX; i++) {

              s[i] = ‘a’;

        }

         printf("%s\n", s);

(3)     MAX = 12;

baaaaaaaaaÀ_ÿ

Sunday, January 16, 2011



Strlen vs sizeof
#include<stdio.h>

#include<string.h>

const int MAX = 10;

int main() {

  char s[MAX];

  int len, size, i;

  s[0] = 'a';

  s[1] = '\0';

  len = strlen(s);

  size = sizeof(s);

  printf("len: %d characters, size: %d bytes\n", len, size);

  printf("The content of array s is: ");

  for(i=0; i< MAX; i++) {

    printf("%X  ", s[i]);

  }

  printf("\n");

  return 0;

}
Sunday, January 16, 2011



Strlen vs sizeof
#include<stdio.h>

#include<string.h>

const int MAX = 10;

int main() {

  char s[MAX];

  int len, size, i;

  s[0] = 'a';

  s[1] = '\0';

  len = strlen(s);

  size = sizeof(s);

  printf("len: %d characters, size: %d bytes\n", len, size);

  printf("The content of array s is: ");

  for(i=0; i< MAX; i++) {

    printf("%X  ", s[i]);

  }

  printf("\n");

  return 0;

}

len: 1 characters, size: 10 bytes

The content of array s is: 61  0  FFFFFFBF  5F  FFFFFFFF  7F  0  0  60  7  

Sunday, January 16, 2011



Operations with strings

 strlen
 strncpy vs strcpy
 strncmp vs strcmp
 /usr/include/string.h

int strlen(char s[]) {

 int i = 0;
 while(s[i] != ‘\0’)
  ++i;
   return i;
}

Why can’t we simply 
copy strings using 
assignment?
     s  = t

“Incompatible types in 
assignment”

Sunday, January 16, 2011



Readings for this lecture

K&R Chapter 1 and 2

READ string related 
functions

Sunday, January 16, 2011


