
CS240: Programming in C

Lecture 3: More on Types 
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Type representation and 
enforcement
#include <stdio.h>

int main () {
   short s = 9;
   long  l = 32768;
  
   printf("%d\n", s);

    s = l;
    printf("%d\n", s);

    return 0;
}

short can store -32768 to 32767
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Type representation and 
enforcement
#include <stdio.h>

int main () {
   short s = 9;
   long  l = 32768;
  
   printf("%d\n", s);

    s = l;
    printf("%d\n", s);

    return 0;
}

short can store -32768 to 32767

-32768
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Pointers

 The address of a location in memory is also a type 
based on what is stored at that memory location
 char * is “a pointer to char” or the address of memory where a 

char is stored
 int * points to a location in memory where a int is stored
 float * points to a location in memory where a float is stored

 We can do operation with this addresses
 The size of an address is platform dependent, on 

many is 32 bits.

…10101101
0xbffffaab
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& and *

 Given a variable v
   &v means the address of v

 Given a pointer ptr
*ptr means the value stored at the 

address specified by ptr

All variables are associated with an address (a memory 
location).  Both the contents of the location as well as the 
location itself are manipulable.
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Example
#include <stdio.h>

int main() {

  char      c;

  char *    c_ptr = &c;

  printf(" Size of char *:    %d (bytes)\n", sizeof(c_ptr));

  printf(" Address of c is:   %p  \n", &c);

  printf(" Value of c_ptr is: %p  \n", c_ptr);

  return 0;

}  
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Example
#include <stdio.h>

int main() {

  char      c;

  char *    c_ptr = &c;

  printf(" Size of char *:    %d (bytes)\n", sizeof(c_ptr));

  printf(" Address of c is:   %p  \n", &c);

  printf(" Value of c_ptr is: %p  \n", c_ptr);

  return 0;

}  

 Size of char *:    8 (bytes)

 Address of c is:   0x7fff5fbff62f  

 Value of c_ptr is: 0x7fff5fbff62f
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Arrays of characters

char c[10];

for (i=0; i < 10; i++) {

 printf(“%c\n”, c[i]);

}

&c[0] or c  (the name of the array) represents the start 
memory address  where the array is stored in the memory

char *p = &c[0];  

First element of the array starts at 
index 0, in this case c[0]
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Arrays of characters

char c[10];
char *p = &c[0];  
char t;

for (i=0; i < 10; i++) {
 c[i] = ‘a’;
}
c[5] = ‘b’;

What’s the address of c[5]? 
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Pointer vs. what’s stored at the 
address indicated by a pointer
#include <stdio.h>

int main() {

  char    c;

  char *  c_ptr = &c;

  char    array[5];

  array[2] = 'b';

  c_ptr = array;

  printf("Address where array start:               %p\n", array);

  printf("Value of variable c_ptr:                 %p\n", c_ptr);

  printf("Value stored at the address c_ptr+2:     %c\n", *(c_ptr+2));

  return 0;

}
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Pointer vs. what’s stored at the 
address indicated by a pointer
#include <stdio.h>

int main() {

  char    c;

  char *  c_ptr = &c;

  char    array[5];

  array[2] = 'b';

  c_ptr = array;

  printf("Address where array start:               %p\n", array);

  printf("Value of variable c_ptr:                 %p\n", c_ptr);

  printf("Value stored at the address c_ptr+2:     %c\n", *(c_ptr+2));

  return 0;

}

Address where array start:                0x7fff5fbff620
Value of variable c_ptr:                      0x7fff5fbff620
Value stored at the address c_ptr+2:     b
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Constant variables

 Declaring some variable with const means 
that its value can not be modified

 const int no = 100;
 Alternative is to use #define
 #define NO 100
 Is there any difference?

 #define is a macro -- evaluated at compile-time
 can you declare a pointer to a constant? to a 

#define?
 typechecking?

 enum boolean{ NO, YES};
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Strings

 In C a string is stored as an array of 
characters, terminated with null, 0, hex 00 or 
‘\0’

 The array has to have space for null
 Function strlen returns the length of the string 

excluding the string terminator 

ALWAYS MAKE SURE YOU DON’T GO 
BEYOND THE SIZE OF THE ARRAY – 1; 
the last item in the array should be the 

null string terminator
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Example

#include<stdio.h>

const int MAX=10;

int main() {

      char s[MAX];

       int i;

       s[MAX-1] = 0;

       for(i=0; i<MAX-1; i++) {

           s[i] = ‘a’;

        }

  s[0] = ‘b’;

    printf("%s\n", s);

    return 0;

}
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Example

#include<stdio.h>

const int MAX=10;

int main() {

      char s[MAX];

       int i;

       s[MAX-1] = 0;

       for(i=0; i<MAX-1; i++) {

           s[i] = ‘a’;

        }

  s[0] = ‘b’;

    printf("%s\n", s);

    return 0;

}

baaaaaaaa
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What’s wrong with this code?

Consider the following declaration

const int MAX=10;

int main() {

char s[MAX];

 
 ….
What’s wrong in each of the following:

(1)     s[MAX] = 0;

(2)

        for(i=1; i<=MAX; i++) {

              s[i] = ‘a’;

        }

         printf("%s\n", s);

(3)     MAX = 12;

baaaaaaaaaÀ_ÿ
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Strlen vs sizeof
#include<stdio.h>

#include<string.h>

const int MAX = 10;

int main() {

  char s[MAX];

  int len, size, i;

  s[0] = 'a';

  s[1] = '\0';

  len = strlen(s);

  size = sizeof(s);

  printf("len: %d characters, size: %d bytes\n", len, size);

  printf("The content of array s is: ");

  for(i=0; i< MAX; i++) {

    printf("%X  ", s[i]);

  }

  printf("\n");

  return 0;

}
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Strlen vs sizeof
#include<stdio.h>

#include<string.h>

const int MAX = 10;

int main() {

  char s[MAX];

  int len, size, i;

  s[0] = 'a';

  s[1] = '\0';

  len = strlen(s);

  size = sizeof(s);

  printf("len: %d characters, size: %d bytes\n", len, size);

  printf("The content of array s is: ");

  for(i=0; i< MAX; i++) {

    printf("%X  ", s[i]);

  }

  printf("\n");

  return 0;

}

len: 1 characters, size: 10 bytes

The content of array s is: 61  0  FFFFFFBF  5F  FFFFFFFF  7F  0  0  60  7  
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Operations with strings

 strlen
 strncpy vs strcpy
 strncmp vs strcmp
 /usr/include/string.h

int strlen(char s[]) {

 int i = 0;
 while(s[i] != ‘\0’)
  ++i;
   return i;
}

Why can’t we simply 
copy strings using 
assignment?
     s  = t

“Incompatible types in 
assignment”
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Readings for this lecture

K&R Chapter 1 and 2

READ string related 
functions
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