
1

CS240: Programming in C

Lecture 2: Overview

1

Monday, January 17, 2011

Programming Model
 How does C view the world?

code

MemoryStack

Globals

2

Monday, January 17, 2011

Programming Model
 Execution mediated via a stack

 function calls and returns
 local variables

 Variables name memory and globals
 contents of memory contain values or references

(pointers) to other pieces of memory

v1 v2

v3

stack frame
 “context”

Memory
3

Monday, January 17, 2011

Programming Model

 Imperative
 Program execution defined by effects on memory and

globals
 Control-flow expressed primarily through:
• loops and iteration
• conditionals
• “heavyweight” function calls

 Variables are containers for values
• x = 3 -- x is a memory cell that holds 3; it’s not the

same as 3
• referential transparency (or lack thereof)

 Aggregate structures (records, arrays) define contiguous
(potentially variable-sized) regions of memory

4

Monday, January 17, 2011

Types

 Abstractly, we can think of a type as a set
of values and operations on those values
 in Java, a type is a class that represents a set

comprising the fields of the object and its
methods

 In C, types have a much less rigid
definition
 a convenient way of reasoning about memory

layout
 all values (regardless of their type) have a

common representation as a sequence of bytes
in memory

5

Monday, January 17, 2011

Types
 Reflects underlying machine model

 There are base types (int, char, ...)
 There are pointers to base types (*int, *char,...)
 There are pointers to pointers to base types (**int,

**char, ...) and so on
 Arrays and structs provide a way of aggregating and

naming regions of memory
 Functions have types that reflect their input/output

behavior:
int f (char c[])

return type argument type

We can have pointers to functions just as we have
pointers to base types. But, functions are not values....

6

Monday, January 17, 2011

Why understanding types matter …

 Types define an abstraction or
approximation of a computation....
 what is a specification?

 More practically, there are implicit
conversions that take place and they
may result in truncation, and ...

 Some data types are not interpreted the
same on different platforms, they are
machine-dependent

7

Monday, January 17, 2011

Type representation

 How is data represented in memory?

 Data unit is bytes, for representing positive
and negative values, 1 bit is used for
representing sign

 The address of the location of memory
where the data is stored is also a number
and a type (it is a pointer)

…

8 bits = byte (28 = 256 different values)

10101101
0xbffffaab

8

Monday, January 17, 2011

Type representation

 char: 1 byte
 int: an integer, the size of integers on that machine

 typically 4 bytes
 float: single-precision floating point

 typically 4 bytes
 1 sign bit, 8 bit exponent, 24 bit significand

 double: double-precision floating point
 typically 8 bytes
 1 sign bit, 11 bit exponent, 52 bit significand

9

Monday, January 17, 2011

Basic types

Type Size (byes) Value

char 1 -128 to 127
short(int) 2 -32768 to 32767
long(int) 4 or 8 You compute 
int Machine

dependent
unsigned char 1 0 to 255
unsigned short 2 0 to 65535
unsigned long 4 You compute 
float 4
double 8
long double 12

sizeof(x) returns the size in bytes.
10

Monday, January 17, 2011

Integers

 Its size depends on the machine architecture
(often 4 bytes).

 For portability purposes, many programs
define int32 as a 4 bytes int and work with
this type instead of int.

 Additional types:
 short int or short (2 bytes)
 long int or long (4 bytes)

11

Monday, January 17, 2011

Signed vs. unsigned

 Other types:
 unsigned char
 unsigned int

 The range of int values that can be represented
if size of int is 4 bytes ?
 signed: -2^31 to 2^31 - 1 (two’s complement)
 unsigned: 0 to 2^32

12

Monday, January 17, 2011

Characters representation

 ASCII code (American Standard Code for
Information Interchange): defines 128
character codes (from 0 to 127),

 In addition to the 128 standard ASCII codes
there are other 128 that are known as
extended ASCII, and that are platform-
dependent.

 Examples:
 The code for ‘A’ is 65
 The code for ‘a’ is 97
 The code for ‘0’ is 48

13

Monday, January 17, 2011

Static libraries

 Library:
 file containing several object files used as a single

entity in the linking phase of a program.
 the library is indexed, so it is easy to find symbols

(functions, variables) in them.
 Static libraries: collections of object files that

are linked into the program during the linking
phase of compilation.

Examples:
 Unix: XXX.a
 Windows: XXX.lib

14

Monday, January 17, 2011

Static vs. shared libraries

 Shared libraries:
 Only one copy of the library is stored in memory

at any given time (use less memory to run our
programs, the executable files are much smaller).

 Slightly slower start of the program.
 Static libraries:

 Each process has its own copy of the static
libraries is using, loaded in memory.

 Executable files linked with static libraries are
bigger.

15

Monday, January 17, 2011

Shared libraries

 Shared libraries (dynamic libraries) are linked
into the program in two stages.
 During compilation time, the linker verifies that all

the symbols (functions, variables) required by the
program, are either linked into the program, or in
one of its shared libraries. The object files from
the dynamic library are not inserted into the
executable file.

 When the program is started, a program in the
system (called a dynamic loader or linker) checks
out which shared libraries were linked with the
program, loads them to memory, and attaches
them to the copy of the program in memory.

16

Monday, January 17, 2011

libc

 C Standard library – is an interface standard
which describes a set of functions and their
prototype used to implement common
operations

 Libc – is the implementation of the C
Standard library on UNIX systems

libc is linked in by default as a
shared library

17

Monday, January 17, 2011

Let’s speak C – Hello World

#include<stdio.h>
int main() {
 /* every program must have a main */
 printf("Hello world!\n");

 return 0;
}

gcc –c hello.c /* compile*/
gcc –o hello hello.o /* link */
OR
gcc hello.c /* compile and link */

18

Monday, January 17, 2011

Main function

 Every C program has to have a main
 It has to be declared int main for portability
 Returning 0 means the program exited OK
 The return value is interpreted by the

operating system
 Main takes arguments:

 We will see later how to pass parameters to a
program using main

19

Monday, January 17, 2011

More C…

#include <stdio.h>

int main() {
 int c;

 c = getchar();
 while(c != EOF) {
 putchar(c);
 c = getchar();
 }
 return 0;
}

20

Monday, January 17, 2011

‘Making’ our coding life easier…

 Source and header files compiled in object files and
then linked in an executable. Requires linking with
other external libraries. For complex projects, need
for an organized and efficient way to do this.

 The make utility
 automatically determines which pieces of a large program

need to be recompiled and issues commands to recompile
them.

 can be used with any programming language (not only C)
whose compiler can be run with a shell command.

 not limited to programs: documentation, distribution.

21

Monday, January 17, 2011

Running make

 Write a make file, the default name is ‘‘Makefile`` that
describes the relationships among files in the
program and provides commands for updating each
file.

 Then run from the shell the command:

 make
 make –f Makefile_name

 The `make' program uses the Makefile data base
and the last-modification times of the files to decide
which of the files need to be updated. For each of
those files, it issues the commands recorded in the
data base.

22

Monday, January 17, 2011

An example of a Makefile

edit : main.o command.o display.o utils.o
 gcc -o edit main.o command.o display.o \
 utils.o

main.o : main.c defs.h

 gcc -c main.c
command.o : command.c defs.h command.h

 gcc -c command.c
display.o : display.c defs.h

 gcc -c display.c
utils.o : utils.c defs.h

 gcc -c utils.c
clean :

• C files: main.c, command.c, display.c, utils.c
• H files: defs.h, command.h This is a tab

23

Monday, January 17, 2011

Variables and implicit rules

 It is not necessary to spell out the commands for
compiling the individual C source files, `make' can
figure them out: it has an "implicit rule" for updating a
`.o' file from a correspondingly named
`.c' file using a `gcc -c' command.

 To simplify writing make files, one can define
variables:

OBJS = main.o command.o display.o utils.o
…
edit : $(OBJS)

 cc -o edit $(OBJS)

24

Monday, January 17, 2011

all: hello

hello : helloworld.o
 gcc -o hello helloworld.o

helloworld.o : helloworld.c
 gcc -c helloworld.c

clean:
 rm hello helloworld.o

25

Monday, January 17, 2011

Some portability issues

 Representation issues
 Endianess
 Integer representation
 Size
 Alignment

 Standard libraries
 Sometimes the functions that have the same

functionality have different names/parameters on
different platforms; Use the right one

 Include the right header files
 Link with the right libraries

26

Monday, January 17, 2011

Byte order

 Different systems store multibyte values
(for example int) in different ways.
 HP, Motorola 68000, and SUN systems

store multibyte values in Big Endian order:
stores the high-order byte at the starting
address

 Intel 80x86 systems store them in Little
Endian order: stores the low-order byte at
the starting address.

 Data is interpreted differently on
different hosts.

27

Monday, January 17, 2011

Printf format

c Character
d or i Signed decimal integer
f Decimal floating point
s String of characters
u Unsigned decimal integer
x Unsigned hexadecimal integer
p Pointer address

NOTE: read printf man pages for additional formats

28

Monday, January 17, 2011

What will this program output?

#include <stdio.h>
int main() {
 char c = ‘a’;

 printf(”%c %d %x \n", c, c, c);

 return 0;
}

29

Monday, January 17, 2011

What will this program output?

#include <stdio.h>
int main() {
 char c = ‘a’;

 printf(”%c %d %x \n", c, c, c);

 return 0;
}

29

a 97 61

Monday, January 17, 2011

What can go wrong?

include <stdio.h>
int main () {
 short s = 9;
 long l = 32768;
 printf("%d\n", s);
 s = l;
 printf("%d\n", s);

 return 0;
}

30

Monday, January 17, 2011

What can go wrong?

include <stdio.h>
int main () {
 short s = 9;
 long l = 32768;
 printf("%d\n", s);
 s = l;
 printf("%d\n", s);

 return 0;
}

30

9
-32768

Monday, January 17, 2011

