
CS240: Programming in C

Lecture 17: Threads

Monday, April 18, 2011



Concurrency and Parallelism

2

• Concurrency is concerned with the management of 
logically simultaneous activities

• Best-fit job scheduling
• event handling (GUI)
• web server

• Parallelism is concerned with performance of concurrent 
activities

• weather forecasting
• simulations

Monday, April 18, 2011



Why Concurrency?

● In a serial environment, consider the following 
simple example of a server, serving requests 
from clients (e.g., a web server and web clients)

t = 0t = 0

request 1request 2

Non-concurrent
serial server

Monday, April 18, 2011



Let us process requests serially

t = 6

t = 0
request 1request 2

request 1request 2

t = 8
request 1request 2

Total completion time = 8 units, Average service time = (6 + 8)/2 = 7 units

Monday, April 18, 2011



Try a concurrent server now!

t = 0

request 1

request 2

t = 1

request 1

request 2

t = 2

request 1

request 2

Monday, April 18, 2011



We reduced mean service time!

t = 3

t = 4

t = 8

Total completion time = 8 units, Average service time = (4 + 8)/2 = 6 units

Monday, April 18, 2011



Why Concurrency?
● The lesson from the example is quite simple:

− Not knowing anything about execution times, we can 
reduce average service time for requests by 
processing them concurrently!

● But what if I knew the service time for each 
request?
− Would “shortest job first” not minimize average service 

time anyway?
− Aha! But what about the poor guy standing at the back 

never getting any service (starvation/ fairness)?

Monday, April 18, 2011



Why Concurrency?

● Notions of service time, starvation, and fairness 
motivate the use of concurrency in virtually all 
aspects of computing:
− Operating systems are multitasking
− Web/database services handle multiple concurrent 

requests
− Browsers are concurrent
− Virtually all user interfaces are concurrent

Monday, April 18, 2011



Why Concurrency?

● In a parallel context, the motivations for 
concurrency are more obvious:
− Concurrency + parallel execution = performance

Monday, April 18, 2011



What is Parallelism?
● Traditionally, the execution of concurrent tasks on 

platforms capable of executing more than one 
task at a time is referred to as “parallelism”

● Parallelism integrates elements of execution  -- 
and associated overheads

● For this reason, we typically examine the 
correctness of concurrent programs and 
performance of parallel programs.

Monday, April 18, 2011



Why Parallelism?

● We can broadly view the resources of a 
computer to include the processor, the 
data-path, the memory subsystem, the disk, 
and the network.

● Contrary to popular belief, each of these 
resources represents a major bottleneck.

● Parallelism alleviates all of these 
bottlenecks.

Monday, April 18, 2011



12

SCC
24 dual cores

Azul
864 cores
16 x 54 cores

How should we program these kinds of machines?

AMD
32 dual cores

Modern Architectures

Monday, April 18, 2011



A Process

13

stack

text

data

heap

program 
instructions

static variables
symbols

Registers

Process ID
Group ID

Files
Locks
Sockets
Signals

Monday, April 18, 2011



Threads and Processes
− Thread: an independent (concurrent) unit of 

execution that shares many resources with other 
threads

− Process: an independent (concurrent) unit of 
execution that is isolated from all other processes 
and shares no resources

− Resources:
● Instructions
● Registers
● Stack
● Heap
● File descriptors
● Shared libraries
● Program instructions 14

Monday, April 18, 2011



Threads within a Process

15

stack

text

data

heap

program 
instructions

static variables
symbols

Process ID
Group ID

Files
Locks
Sockets

Registers and Signals

Monday, April 18, 2011



Threads
 Exists within a process

 But, independent control flow
 share common process resources (like the 

heap and file descriptors)
• changes made by one thread visible to others
• pointers have meaning across threads
• two threads can concurrently read and write to the 

same memory location
 Maintain their own stack pointer
 Registers
 Pending and blocked signals
 Can be scheduled by the operating 

system 16

Monday, April 18, 2011



Desired structure

17

Programs can be decomposed into discrete (mostly) 
independent tasks

The points where they overlap should be easily discerned 
and amenable for protection

Three basic structures

master-worker 
result-oriented
pipeline-oriented

Monday, April 18, 2011



Architectural abstraction
 Shared memory

 Every thread can observe actions of other threads on non-
thread-local data (e.g., heap)

 Data visible to multiple threads must be protected 
(synchronized) to ensure the absence of data races
• A data race consists of two concurrent accesses to the 

same shared data by two separate threads, at least one 
of which is a write

 Thread safety
 Suppose a program creates n threads, each of which calls 

the same procedure found in some library
 Suppose the library modifies some global (shared) data 

structure
 Concurrent modifications to this structure may lead to data 

corruption

18

Monday, April 18, 2011



Example

19

THREAD 1               THREAD 2
a = data;              b = data;
a++;                   b++;
data += a;             data += b;

Assuming data = 0 initially, can data be 1 after the 
program completes?

Monday, April 18, 2011


