
CS240: Programming in C

Lecture 16: Signals

Tuesday, April 12, 2011

Synchronous vs. Asynchronous

 Synchronous action:
• A procedure call: the caller calls the callee and

waits until the callee returns with a result
• A phone call: both parties must be available for the

call to go through.
 An asynchronous action:

• A response from the environment: user types Ctrl-C
while the program runs

• Email or text messages can be sent without the
other party ready to receive

2

Tuesday, April 12, 2011

Dealing with an Asynchronous Action

3

1. Poll: ask the kernel or the OS: did event E take place
since the last time I checked?

2. Handle: inform the kernel that when event E takes place,
do the following ...

Tuesday, April 12, 2011

Kinds of Signals

4

Interrupts. Environment-triggered (SIGINT, Ctrl-C)

Hardware. (SIGSEGV); divide by 0, invalid memory
reference

Software. (SIGPIPE, SIGALRM). Timeout on network
connection, a broken pipe, ...

Tuesday, April 12, 2011

Handling a Signal

 Ignore it.
 Doesn’t always work though (e.g., not a good

idea to ignore a hardware exception...)
 Catch the signal

 setup a signal handler that gets invoked
whenever the signal occurs.

 All signals have a default action
 Most of the time, the default is to kill the

process.

5

Tuesday, April 12, 2011

Generating a signal

• Most common case: kill
#include <signal.h>

 int kill(pid_t pid, int sig);
 /* send signal ‘sig’ to process ‘pid’ */

• raise(signal): generate a signal that is handled by the
program that contains the call to raise.

6

Tuesday, April 12, 2011

signal.h
 Defines a number of common signals

SIGABRT
Abnormal termination, such as instigated by the abort function. (Abort.)
SIGFPE
Erroneous arithmetic operation, such as divide by 0 or overflow. (Floating point
exception.)
SIGILL
An ʻinvalid object programʼ has been detected. This usually means that there is an
illegal instruction in the program. (Illegal instruction.)
SIGINT
Interactive attention signal; on interactive systems this is usually generated by
typing some ʻbreak-inʼ key at the terminal. (Interrupt.)
SIGSEGV
Invalid storage access; most frequently caused by attempting to store some value
in an object pointed to by a bad pointer. (Segment violation.)
SIGTERM
Termination request made to the program. (Terminate.)

7

Tuesday, April 12, 2011

Example

8

#include <stdio.h>
#include <signal.h>

long prev_fact, i;

void SIGhandler(int);

void SIGhandler(int sig) {
 printf("\nReceived a SIGUSR1. The answer is %ld! = %ld\n",
 i-1, prev_fact);
 exit(0);
}

void main(void)
{
 long fact;

 printf("Factorial Computation:\n\n");
 signal(SIGUSR1, SIGhandler);
 for (prev_fact = i = 1; ; i++, prev_fact = fact) {
 fact = prev_fact * i;
 if (fact < 0)
 raise(SIGUSR1);
 else if (i % 3 == 0)
 printf(" %ld! = %ld\n", i, fact);
 }
}

Tuesday, April 12, 2011

Defining a signal handler

9

#include <signal.h>
void (*signal (int sig, void (*func)(int)))(int);

signal is a function pointer to a function that takes as
arguments:

• a signal (represented as an int)
• a handler

and returns a function that takes an int and returns void

The handler is a function pointer to a function that takes an int
and returns void.

Tuesday, April 12, 2011

Signal handler

 signal installs a new handler for the
supplied signal

 It returns the previous value of the
handler as its result
 If no such value exists, it returns SIG_ERR

and sets errno appropriately

10

Tuesday, April 12, 2011

Example

11

static void sig_usr(int); /* one handler for two signals */
int main (void) {
 if (signal(SIGUSR1, sig_usr) == SIG_ERR)
 perror(“cannot catch signal SIGUSR1”);
 if (signal(SIGUSR2, sig_usr) == SIG_ERR)
 perror(“cannot catch signal SIGUSR2”);
 for(;;) pause();
}

static void sig_usr(int signo) {
 /*argument is signal number*/
 if (signo == SIGUSR1)
 printf(“received SIGUSR1\n”);
 else if (signo == SIGUSR2)
 printf(“received SIGUSR2\n”);
 else error(“received signal %d\n”, signo);
return;
}

Tuesday, April 12, 2011

Example

12

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

FILE *temp_file;
void leave(int sig);

main() {
 (void) signal(SIGINT,leave);
 temp_file = fopen("tmp","w");
 for(;;) {
 /*
 * Do things....
 */
 printf("Ready...\n");
 (void)getchar();
 }
 /* can't get here ... */
 exit(EXIT_SUCCESS);
}

/*
 * on receipt of SIGINT,
 * close tmp file */

void leave(int sig) {
 fprintf (temp_file,"\nInterrupted.
 \n");
 fclose(temp_file);
 exit(sig);
}

Tuesday, April 12, 2011

Example using setjmp/longjmp

13

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

int i, j;
long T0;
jmp_buf Env;

void alarm_handler(int dummy)
{
 long t1;

 t1 = time(0) - T0;
 printf("%ld second%s has passed:
 j = %d. i = %d\n", t1,
 (t1 == 1) ? "" : "s", j, i);
 if (t1 >= 8) {
 printf("Giving up\n");
 longjmp(Env, 1);
 }
 alarm(1);
 signal(SIGALRM, alarm_handler);
}

int main()
{

 signal(SIGALRM, alarm_handler);
 alarm(1);

 if (setjmp(Env) != 0) {
 printf("Gave up: j = %d, i = %d\n", j, i);
 exit(1);
 }

 T0 = time(0);

 for (j = 0; j < 10000; j++) {
 for (i = 0; i < 1000000; i++);
 }
}

Tuesday, April 12, 2011

