
CS240: Programming in C

Lecture 13: File I/O

Monday, March 28, 2011

How should C programs interact with
the outside?
 Communicate via “standard” input and

“standard” output
 Typically bound to the display

 Use redirection to read or write to a file
 a.out < inputfile
 a.out > outputfile

• when we use printf(), the results are written to
outputfile rather than displayed on the screen.

 a.out < inputfile > outputfile

2

Monday, March 28, 2011

More general approach ...

 Redirection is really part of the operating
system, not part of the C language

 But, C provides a set of library functions
for performing I/O

 We’ve used one such library extensively:
 stdio.h

• provides operations to read (getchar) and write
(putchar) characters, print formatted strings (printf),
read formatted strings (scanf), etc.

3

Monday, March 28, 2011

Stdio.h

 Also provides more general operations
on files.

 A file is an abstraction of a non-volatile
memory region:
 its contents remain even after the program

exits
 C exposes the file abstraction using the FILE

type:
• FILE *fp // *fp is a pointer to a file

 Can only access the file using the interfaces
provided by the language

4

Monday, March 28, 2011

File Systems

5

File system: specifies how the information is organized
on the disk and can be accessed
 Directories
 Files
In UNIX the following are files
 Peripheral devices (keyboard, screen, etc.)
 Pipes (inter process communication)
 Sockets (communication via computer networks)
Files representation
 Text files (human readable format)
 Binaries (for example executables files)

Monday, March 28, 2011

System Calls

6

 System calls: services provided by
the operating system.

 C Library provides support such that
a user can invoke system calls
through C functions.

 Example:
 I/O operations (I/O access is slower than

memory access)
 Memory allocation

Monday, March 28, 2011

File manipulation

 Three basic actions:
 “open” the file: make the file available for

manipulation
 read and write its contents

• No guarantee that these operations actually
propagate effects to the underlying file system

 “close” the file: enforce that all the effects to
the file are “committed”

7

Monday, March 28, 2011

File Descriptors
Any opened file has associated a non-
negative integer called file descriptor.

For each program the operating system
opens implicitly three files: standard
input, standard output and standard error,
that have associated the file descriptors
0, 1, 2

Monday, March 28, 2011

6

File descriptors

 Primitive, low-level interface to input
and output operations.

 Must be used for control operations
that are specific to a particular kind of
device.

Monday, March 28, 2011

Streams

 Higher-level interface, layered on top of the
primitive file descriptor facilities.

 More powerful set of functions for performing
actual input and output operations than the
corresponding facilities for file descriptors.

 It is implemented in terms of file descriptors
 the file descriptor can be extracted from a stream and

then perform low-level operations directly on the file
descriptor

 a file can be open as a file descriptor and then make a
stream associated with that file descriptor.

Monday, March 28, 2011

Opening a file

11

FILE* fopen(const char* filename, const char* mode)

• mode can be “r” (read), “w” (write), “a” (append)
• returns NULL on error (e.g., improper permissions)
• filename is a string that holds the name of the file on disk

int fileno(FILE *stream)

• returns the file descriptor associated with stream

Monday, March 28, 2011

Example

12

FILE *ifp, *ofp;
char *mode = "r";
char outputFilename[] = "out.list";

ifp = fopen("in.list", mode);

if (ifp == NULL) {
 fprintf(stderr, "Can't open input file in.list!\n");
 exit(1);
}

ofp = fopen(outputFilename, "w");

if (ofp == NULL) {
 fprintf(stderr, "Can't open output file %s!\n",
 outputFilename);
 exit(1);
}

Monday, March 28, 2011

Reading a file
 Can use fscanf

 Just like scanf, but requires an extra first
parameter, a FILE *, for the file to be read or
written

 Returns the special value EOF when it
encounters the end of file

 Returns in the normal case the number of
values it could read

13

fscanf(ifp, “<format string>”, inputs)

Monday, March 28, 2011

Example

 Suppose in.list contains

 To read elements from this file, we might
write

 Can check against EOF:

14

foo 70
bar 50

fscanf(ifp, “%s %d”, name, count)

while (fscanf(ifp, “%s %d”, name, count) != EOF)

Monday, March 28, 2011

Testing against EOF

 Ill-formed input might not cause
comparison with EOF to succeed
 fscanf returns the number of successful

matched items

 Can also use feof:

15

while (fscanf(ifp, “%s %d”, name, count) == 2)

while (!feof(ifp) {
 if (fscanf(ifp, “%s %d”, name, count) !=2)
 break;
 fprintf(ofp, <format string>, <control arguments>)
}

Monday, March 28, 2011

Closing a file
 fclose(ifp); fclose(ofp);
 Why do we need to close a file?

 File systems typically buffer output
• fprintf(ofp, “Some text”)

 There is no guarantee that the string has
actually been written out to disk

 Could be stored in a file buffer (or cache)
maintained in memory

 The buffer is flushed when the file is
closed, or when it becomes full.

16

Monday, March 28, 2011

File pointers

 Three special file pointers:
 stdin (standard input)
 stdout (standard output)
 stderr (standard error)

 Typically stdin is associated with the keyboard
device

 stdout and stderr are associated with the
display
 redirecting stdout doesn’t redirect stderr
 a.out > outfile

 Can be used wherever a regular FILE * is
expected 17

Monday, March 28, 2011

Other file operations

 Remove file from the file system:

 Rename file

 Create temporary file (removed when
program terminates)

18

int remove (const char * filename)

int rename (const char * oldname,
 const char * newname)

FILE * tmpfile (void)

Monday, March 28, 2011

Raw I/O
 Read at most nobj items of size size from stream into

ptr

 feof and ferror used to test end of file

 Write at most nobj items of size size from ptr onto
stream

19

size_t fread(void* ptr, size_t size, size_t nobj, FILE * stream)

size_t fwrite(const void* ptr, size_t size, size_t nobj, FILE * stream)

Monday, March 28, 2011

File Position
 Set file position in the stream. Subsequent reads and

writes begin at this location
 Origin can be SEEK_SET, SEEK_CUR ,SEEK_END for

binary files
 For text streams, offset must be zero (or a value returned

by ftell -- next slide)

20

int fseek(FILE * stream, long offset, int origin)

Monday, March 28, 2011

File Position
 Return the current position within the

stream

 Sets the file to the beginning of the file

 see page 247-248 in the text

21

long ftell(FILE * stream)

void rewind(FILE * stream)

Monday, March 28, 2011

Example

22

#include <stdio.h>

int main() {
 long fsize;
 FILE *f;

 f = fopen(“log”, “r”);

 /* compute the size of the file */
 fseek(f, 0, SEEK_END) ;

 fsize = ftell(f) ;
 fprintf(stderr, “file size is: %d\n”, fsize);

 fclose(f);
 return 0;

}

Monday, March 28, 2011

Text Stream I/O Read

23

 Read the next character from the stream and return it as
an unsigned char cast to an int, or EOF

 Reads in at most one less than size characters from the
stream and stores them into the buffer pointed to by s;
the buffer is null-terminated. Stop on EOF or error

int fgetc(FILE * stream)

char* fgets(char *s, int size, FILE *stream)

Monday, March 28, 2011

Text Stream I/O write

24

 Writes the character c cast to an unsigned char to
stream and return the unsigned char cast to int.

 Writes the string s to the stream without null
terminating; returns a non-negative number (typically 0)
on success, or EOF on error

int fputc (int c, FILE * stream)

int fputs(const char *s, FILE *stream)

Monday, March 28, 2011

File Descriptors

25

 A handle to access a file (or I/O device),
like the file pointer in streams

 It is a small non-negative integer used in
same open / read-write / close paradigm

 Returned by the open system call; all
active opens have distinct file descriptors

 Once a file is closes, fd can be reused
 Same file can be opened several times,

and be associated with multiple fd’s

Monday, March 28, 2011

Management functions

#include <unistd.h>
int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);

int creat(const char *pathname, mode_t mode);
Flags: O_RDONLY, O_WRONLY or O_RDWR bitwise OR with
O_CREAT, O_EXCL, O_TRUNC, O_APPEND, O_NONBLOCK,
O_NDELAY

int close(int fd);
FD IS an INT (file descriptor) not a FILE* !!!!!

26

Monday, March 28, 2011

Read/Write

#include <unistd.h>
ssize_t read(int fd, void *buf, size_t count);

ssize_t write(int fd, const void *buf, size_t count);

fd is a descriptor, _not_ FILE pointer

Returns number of bytes transferred, or -1 on error
Normally waits until operation is enabled (e.g., there are
bytes to read), except under O_NONBLOCK and
O_NDELAY (in which case, returns immediately with
‘‘try again’’ error condition)

27

Monday, March 28, 2011

Example

#include <fcntl.h>

#include <stdlib.h>

#include <stdio.h>

int main() {

 int f1, f2;

 int n;

 char buf[100];

 f1 = open("log1", O_RDONLY);

 f2 = open("log2", O_RDONLY);

 fprintf(stderr, "Log1 file descriptor is: %d\n", f1);

 fprintf(stderr, "Log2 file descriptor is: %d\n", f2);

 close(f1);

 close(f2);

 f2 = open("log2", O_RDONLY);

 fprintf(stderr, "Opening again log2, notice the new file descriptor: %d\n", f2);

 close(f2);

 return 0;

}
28

Monday, March 28, 2011

