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Abstractions in Programming

 How are abstractions manifested in languages?
 As structures that encapsulate code and data providing 

information hiding
•  E.g., a Java class

 As program structures that refactor common usage patterns
•  E.g., a sorting routine that can sort lists of different types

 The two notions are obviously related
 public C m1(C’ o) { ... o.m(...) ...}

• Can be applied to any object of instantiated from class C’ 
or its subclasses

• The context in which M is applied must be one that 
expects objects of type C or any of its superclasses
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Abstractions in C

 C doesn’t provide data abstractions like 
Java classes
 There is no easy or obvious way to package 

related data and code within a single structure
• Hard to enforce information hiding

 But, it does a provide a useful refactoring 
mechanism
 Functions are the most obvious example

• They abstract a computation over input arguments
• What kinds of arguments can these be?
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Types and Computation

 Functions can be abstracted over 
 basic types (e.g., int, float, double,...)
 structured types (e.g., structs, unions, ...)

 These types can be thought of as primitive data abstractions
 They represent a set of values along with operations on them

 What about functions themselves?
 They’re obviously a form of abstraction

• Rather than representing a set of values, they represent a 
set of computations abstracted over arguments of a fixed 
type

• There is exactly one operation allowed on function types: 
application
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Types
 Following this line of thought:

 A type (or a data abstraction) is a set of values 
equipped with a set of operations on those values

 A function is a computation abstracted over the 
types defined by its inputs

 Hence, a function is an abstraction: it represents 
the set of values produced by the computation it 
defines when instantiated with specific 
arguments.
• Thus, its type is characterized by its argument 

types and the result of its computation
 Hence, functions should be allowed to be abstracted 

over function types, just as they are allowed to be 
abstracted over primitive and structure types

5
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Concretely ...

 C permits functions (more accurately, 
function pointers) to be treated like any 
other data object
 A function pointer can be supplied as an 

argument
 Returned as a result
 Stored in any array
 Compared, etc.

 Main caveat:
 Cannot deference the object pointed to by a 

function pointer on the left-hand side of an 
assignment

6
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Motivation (again) 

 Provides a means to abstract more complex 
forms of computations
 Computations that are abstract over other 

computations as well as other data
 Unlike other languages that support function 

abstraction, C supports this notion in a very 
restrictive and uninspired way
 See Scheme, Haskell, ML, ... as examples of 

languages in which functions are truly first-
class

 How are methods treated in Java?  What 
forms of (if any) of function abstraction does it 
support?

7
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Example

 We’ll consider ways that we can perform 
operations on a list of integers

8

struct List {
  int node;
  struct List * next;
};

Sunday, March 20, 2011



Generating a list

 Our first task is to figure out a scheme to 
populate a list with values

9

struct List *makeList(int n) {
  int i; 
  struct List * l;
  struct List * l1 = NULL;
  for (i = 0; i < n; i++) {
    l = malloc(sizeof(struct List));
    l->node = i+1;
    l->next = l1;
    l1 = l;
  };
  return l;
}

Given a number n,
build a list of length n 
where the ith element of 
the list contains n-i+1
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Generating a list (cont)

 Here’s another definition
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struct List *makeList1(int n) {
  int i; 
  struct List * l;
  struct List * l1 = NULL;
  for (i = 0; i < n; i++) {
    l = malloc(sizeof(struct List));
    l->node = n-i;
    l->next = l1;
    l1 = l;
  };
  return l;
}

Given a number n,
build a list of length n 
where the ith element of 
the list contains i
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Generating a list
 We can imagine many different ways of 

populating a list
 The overall control structure remains the same
 Only the computation responsible for producing the 

next element changes
 How can we refactor (or abstract) the 

definition so that we can reuse the same 
control structure for the different kinds of lists 
we might want?

11
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Function Pointers 
 Supply a function pointer that points to the 

function responsible for computing the value 
of list elements

12

int add (int m) {
  static int n = 0;
  n++;
  return m-n+1;
}

int minus(int m) {
  static int n = 0;
  n++;
  return n;
}

The expression *add or *minus
returns a pointer to the code 
represented by add and minus, 
resp.
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Abstraction revisited

13

struct List *makeGenList (int n, int (*f)(int)) {
  int i; 
  struct List * l;
  struct List * l1 = NULL;
  for (i = 0; i < n; i++) {
    l = malloc(sizeof(struct List));
    l->node = (*f)(n);
    l->next = l1;
    l1 = l;
  };
  return l;
}

Expects a function pointer that 
points to a function which yields 
an int, and which expects an int 
argument

Applies (invokes) the function 
pointed to by f with argument n

makeGenList(10,(*minus));
makeGenList(10,(*plus))

Can create lists with different 
elements (but same structure) 
without changing underlying 
implementation
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Next step...
 Now that we can generate lists that hold different kinds of 

related values, we define abstractions that compute over lists

14

int fold ( int (*f) (int , int), struct List * l, int acc ) 
{
  if (l == NULL) {
    return acc;
  } 
  else {
    int x = l->node;
    fold (f, l->next, (*f)(x,acc));
  }
}

a list of integers
an accumulator

Each recursive call to fold performs an operation on the current list 
element and the current accumulator; the result becomes the new value of 
the accumulator in the next call

A function pointer that operates over pairs of 
integers and returns an integer
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Using fold

15

int sum (int x, int y) {
  return x + y;
}

int mult (int x, int y) {
  return x * y;
}

int maximum (int x, int y) {
  if (x > y) { return x; }
  else return y;
}!

int main () {
  int s,m,max;
  struct List *l;  
  l = makeGenList(10, (*minus));
  s = fold((*sum),l,0);
  m = fold((*mult),l,1);   
  max = fold((*maximum),l,0);   
} 

Each computation (sum, mult, max, ...) expressed using the 
same definition (fold)

Sunday, March 20, 2011



Another Example: map

 Fold allows the expression of a function over the 
collection of elements defined by the list (e.g., sum, 
mult, max, ...)

 C’s type system conspires against (obviously) richer 
kinds of operations 
 The accumulator must be an int
 Can circumvent the type system using casts (next 

lecture), but this is quite unsafe
 Instead of accumulating a result based on the 

collection, suppose we want to apply a function to 
each element in the list?
 Such operations are called maps

16
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Map

17

struct List* map( int(*f) (int), struct List *l) 
{
  if (l == NULL) 
    { return l; }
  else 
    { struct List * l1;
      l1 = malloc(sizeof(struct List));
      l1->node = (*f)(l->node);
      l1->next = map( (*f), l->next);
    }
}

A function pointer that 
points to a function which 
takes an integer argument 
and produces an integer 
result

Apply the function pointed to by f to 
the current list element

Recursively apply map to the rest of the list
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Map (cont)
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int add (int m) {
  return m+1;
}

int minus(int m) {
  return m-1;
}

int even(int x) {
  if (x%2 == 0) 
    { return 1; }
  else { return 0; }
}

int main () {
  int a,m,e;
  struct List *l, *evList, 
         *addList, *minusList;
   
  l = makeGenList(10,...);

  evList = map( (*even),l);
  addList = map ((*add),l);
  minusList = map ((*minus),l);
  ....
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Example
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enum TYPE{SQUARE,RECT,CIRCLE,POLYGON}; 

struct! shape {
     float params[MAX]; 
     enum TYPE type;
 }; 

void draw ( struct!shape∗ ps ) {
   switch(ps−>type) {   
      case SQUARE: draw_square ( ps ) ; break ;
      case RECT: draw_rect ( ps ) ; break ;
...
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Arrays of function pointers

20

void (∗fp [4])( struct shape∗ ps) = 
     { &draw_square, &draw_rec, &draw_circle ,&draw_poly }; 

which is the same as:

void (∗fp [4])( struct shape∗ ps) = 
     { (*draw_square), (*draw_rec), (*draw_circle) ,(*draw_poly) };

void draw ( struct!  shape∗ ps ) {   
    (∗fp[ps−>type])(ps); /∗ call the correct function∗/
}
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Counters

21

Defining a counter:

int count1 = 0;
  ....
int countn = 0;

int count (int *x) {
   return ++(*x);
}

int count (int *x) {
   static count = 0;
   return ++(*x);
}

Not modular: need to define
a global variable for each counter

Hides the counter variable, but 
can’t generate multiple counters
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What’s the problem ...

 A counter generator needs to have its 
own copy of the counter.

 In Java, a counter generator would be a 
class whose instances have their own 
copy of the counter value

 What do we need to do to express 
similar functionality in C?

22
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Closures

23

typedef void * (*generic_function)(void *, ...);
typedef struct {
   generic_function function;
   void *environment;
} closure;

To a first approximation, think of a counter object as having 
two parts - (1) the code that implements the counter, and (2) 
the “environment” that holds the counter value

args

environment
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Void types

24

A void type represents a type that has no elements.

A pointer to a void type points to a value that has no type.

This means there are no allowable operations on them.

Need to cast void pointers to a pointer of a concrete type in 
order to access the target value.

One useful application of void pointers is to pass “generic” 
parameters to a function
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Void types (cont)

25

void f (void* data, int psize)
{
  if ( psize == sizeof(char) )
  { char* pchar; pchar=(char*)data; ++(*pchar); }
  else if (psize == sizeof(int) )
  { int* pint; pint=(int*)data; ++(*pint); }
}

int main ()
{
  char a = 'x';
  int b = 1602;
  f (&a,sizeof(a));
  f (&b,sizeof(b));
  return 0;
}

What is the value of *a 
and *b after the two 
calls to f?
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Void types

26

void pointers can be used to point to any data type •
        int x; void∗ p=&x; /∗points to int ∗/ • 
        float f;void∗p=&f;/∗points to float∗/

• void pointers cannot be dereferenced. 
  The pointers should always be cast before dereferencing. 
      void∗p; printf("%d",∗p);/∗invalid∗/
      void∗ p; int ∗px=(int∗)p; printf ("%d",∗px); /∗valid ∗/
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Counters revisited

27

int nextval(void *environment);

closure make_counter(int startval)
{
   closure c;

   int *value = malloc(sizeof(int));
   *value = startval;

   c.function = (generic_function)nextval;
   c.environment = value;

   return c;
}
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Counter generator
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int nextval(void *environment)
{
   int *value = environment;

   (*value)++;

   return (*value);
}
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Using the generator
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int main()
{
   /* Create the two closures */
   closure my_counter = make_counter(2);
   closure my_other_counter = make_counter(3);

   /* Run the closures */
   printf("The next value is %d\n", 
    ((generic_function)my_counter.function)
    (my_counter.environment))
   printf("The next value is %d\n", 
     ((generic_function)my_other_counter.function)   
     (my_other_counter.environment));
   printf("The next value is %d\n", 
     ((generic_function)my_counter.function)
     (my_counter.environment));

   return 0;
}
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