
CS240: Programming in C

Lecture 11: Function Pointers

Sunday, March 20, 2011

Abstractions in Programming

 How are abstractions manifested in languages?
 As structures that encapsulate code and data providing

information hiding
• E.g., a Java class

 As program structures that refactor common usage patterns
• E.g., a sorting routine that can sort lists of different types

 The two notions are obviously related
 public C m1(C’ o) { ... o.m(...) ...}

• Can be applied to any object of instantiated from class C’
or its subclasses

• The context in which M is applied must be one that
expects objects of type C or any of its superclasses

Sunday, March 20, 2011

Abstractions in C

 C doesn’t provide data abstractions like
Java classes
 There is no easy or obvious way to package

related data and code within a single structure
• Hard to enforce information hiding

 But, it does a provide a useful refactoring
mechanism
 Functions are the most obvious example

• They abstract a computation over input arguments
• What kinds of arguments can these be?

3

Sunday, March 20, 2011

Types and Computation

 Functions can be abstracted over
 basic types (e.g., int, float, double,...)
 structured types (e.g., structs, unions, ...)

 These types can be thought of as primitive data abstractions
 They represent a set of values along with operations on them

 What about functions themselves?
 They’re obviously a form of abstraction

• Rather than representing a set of values, they represent a
set of computations abstracted over arguments of a fixed
type

• There is exactly one operation allowed on function types:
application

Sunday, March 20, 2011

Types
 Following this line of thought:

 A type (or a data abstraction) is a set of values
equipped with a set of operations on those values

 A function is a computation abstracted over the
types defined by its inputs

 Hence, a function is an abstraction: it represents
the set of values produced by the computation it
defines when instantiated with specific
arguments.
• Thus, its type is characterized by its argument

types and the result of its computation
 Hence, functions should be allowed to be abstracted

over function types, just as they are allowed to be
abstracted over primitive and structure types

5

Sunday, March 20, 2011

Concretely ...

 C permits functions (more accurately,
function pointers) to be treated like any
other data object
 A function pointer can be supplied as an

argument
 Returned as a result
 Stored in any array
 Compared, etc.

 Main caveat:
 Cannot deference the object pointed to by a

function pointer on the left-hand side of an
assignment

6

Sunday, March 20, 2011

Motivation (again)

 Provides a means to abstract more complex
forms of computations
 Computations that are abstract over other

computations as well as other data
 Unlike other languages that support function

abstraction, C supports this notion in a very
restrictive and uninspired way
 See Scheme, Haskell, ML, ... as examples of

languages in which functions are truly first-
class

 How are methods treated in Java? What
forms of (if any) of function abstraction does it
support?

7

Sunday, March 20, 2011

Example

 We’ll consider ways that we can perform
operations on a list of integers

8

struct List {
 int node;
 struct List * next;
};

Sunday, March 20, 2011

Generating a list

 Our first task is to figure out a scheme to
populate a list with values

9

struct List *makeList(int n) {
 int i;
 struct List * l;
 struct List * l1 = NULL;
 for (i = 0; i < n; i++) {
 l = malloc(sizeof(struct List));
 l->node = i+1;
 l->next = l1;
 l1 = l;
 };
 return l;
}

Given a number n,
build a list of length n
where the ith element of
the list contains n-i+1

Sunday, March 20, 2011

Generating a list (cont)

 Here’s another definition

10

struct List *makeList1(int n) {
 int i;
 struct List * l;
 struct List * l1 = NULL;
 for (i = 0; i < n; i++) {
 l = malloc(sizeof(struct List));
 l->node = n-i;
 l->next = l1;
 l1 = l;
 };
 return l;
}

Given a number n,
build a list of length n
where the ith element of
the list contains i

Sunday, March 20, 2011

Generating a list
 We can imagine many different ways of

populating a list
 The overall control structure remains the same
 Only the computation responsible for producing the

next element changes
 How can we refactor (or abstract) the

definition so that we can reuse the same
control structure for the different kinds of lists
we might want?

11

Sunday, March 20, 2011

Function Pointers
 Supply a function pointer that points to the

function responsible for computing the value
of list elements

12

int add (int m) {
 static int n = 0;
 n++;
 return m-n+1;
}

int minus(int m) {
 static int n = 0;
 n++;
 return n;
}

The expression *add or *minus
returns a pointer to the code
represented by add and minus,
resp.

Sunday, March 20, 2011

Abstraction revisited

13

struct List *makeGenList (int n, int (*f)(int)) {
 int i;
 struct List * l;
 struct List * l1 = NULL;
 for (i = 0; i < n; i++) {
 l = malloc(sizeof(struct List));
 l->node = (*f)(n);
 l->next = l1;
 l1 = l;
 };
 return l;
}

Expects a function pointer that
points to a function which yields
an int, and which expects an int
argument

Applies (invokes) the function
pointed to by f with argument n

makeGenList(10,(*minus));
makeGenList(10,(*plus))

Can create lists with different
elements (but same structure)
without changing underlying
implementation

Sunday, March 20, 2011

Next step...
 Now that we can generate lists that hold different kinds of

related values, we define abstractions that compute over lists

14

int fold (int (*f) (int , int), struct List * l, int acc)
{
 if (l == NULL) {
 return acc;
 }
 else {
 int x = l->node;
 fold (f, l->next, (*f)(x,acc));
 }
}

a list of integers
an accumulator

Each recursive call to fold performs an operation on the current list
element and the current accumulator; the result becomes the new value of
the accumulator in the next call

A function pointer that operates over pairs of
integers and returns an integer

Sunday, March 20, 2011

Using fold

15

int sum (int x, int y) {
 return x + y;
}

int mult (int x, int y) {
 return x * y;
}

int maximum (int x, int y) {
 if (x > y) { return x; }
 else return y;
}!

int main () {
 int s,m,max;
 struct List *l;
 l = makeGenList(10, (*minus));
 s = fold((*sum),l,0);
 m = fold((*mult),l,1);
 max = fold((*maximum),l,0);
}

Each computation (sum, mult, max, ...) expressed using the
same definition (fold)

Sunday, March 20, 2011

Another Example: map

 Fold allows the expression of a function over the
collection of elements defined by the list (e.g., sum,
mult, max, ...)

 C’s type system conspires against (obviously) richer
kinds of operations
 The accumulator must be an int
 Can circumvent the type system using casts (next

lecture), but this is quite unsafe
 Instead of accumulating a result based on the

collection, suppose we want to apply a function to
each element in the list?
 Such operations are called maps

16

Sunday, March 20, 2011

Map

17

struct List* map(int(*f) (int), struct List *l)
{
 if (l == NULL)
 { return l; }
 else
 { struct List * l1;
 l1 = malloc(sizeof(struct List));
 l1->node = (*f)(l->node);
 l1->next = map((*f), l->next);
 }
}

A function pointer that
points to a function which
takes an integer argument
and produces an integer
result

Apply the function pointed to by f to
the current list element

Recursively apply map to the rest of the list

Sunday, March 20, 2011

Map (cont)

18

int add (int m) {
 return m+1;
}

int minus(int m) {
 return m-1;
}

int even(int x) {
 if (x%2 == 0)
 { return 1; }
 else { return 0; }
}

int main () {
 int a,m,e;
 struct List *l, *evList,
 *addList, *minusList;

 l = makeGenList(10,...);

 evList = map((*even),l);
 addList = map ((*add),l);
 minusList = map ((*minus),l);

Sunday, March 20, 2011

Example

19

enum TYPE{SQUARE,RECT,CIRCLE,POLYGON};

struct! shape {
 float params[MAX];
 enum TYPE type;
 };

void draw (struct!shape∗ ps) {
 switch(ps−>type) {
 case SQUARE: draw_square (ps) ; break ;
 case RECT: draw_rect (ps) ; break ;
...

Sunday, March 20, 2011

Arrays of function pointers

20

void (∗fp [4])(struct shape∗ ps) =
 { &draw_square, &draw_rec, &draw_circle ,&draw_poly };

which is the same as:

void (∗fp [4])(struct shape∗ ps) =
 { (*draw_square), (*draw_rec), (*draw_circle) ,(*draw_poly) };

void draw (struct! shape∗ ps) {
 (∗fp[ps−>type])(ps); /∗ call the correct function∗/
}

Sunday, March 20, 2011

Counters

21

Defining a counter:

int count1 = 0;

int countn = 0;

int count (int *x) {
 return ++(*x);
}

int count (int *x) {
 static count = 0;
 return ++(*x);
}

Not modular: need to define
a global variable for each counter

Hides the counter variable, but
can’t generate multiple counters

Sunday, March 20, 2011

What’s the problem ...

 A counter generator needs to have its
own copy of the counter.

 In Java, a counter generator would be a
class whose instances have their own
copy of the counter value

 What do we need to do to express
similar functionality in C?

22

Sunday, March 20, 2011

Closures

23

typedef void * (*generic_function)(void *, ...);
typedef struct {
 generic_function function;
 void *environment;
} closure;

To a first approximation, think of a counter object as having
two parts - (1) the code that implements the counter, and (2)
the “environment” that holds the counter value

args

environment

Sunday, March 20, 2011

Void types

24

A void type represents a type that has no elements.

A pointer to a void type points to a value that has no type.

This means there are no allowable operations on them.

Need to cast void pointers to a pointer of a concrete type in
order to access the target value.

One useful application of void pointers is to pass “generic”
parameters to a function

Sunday, March 20, 2011

Void types (cont)

25

void f (void* data, int psize)
{
 if (psize == sizeof(char))
 { char* pchar; pchar=(char*)data; ++(*pchar); }
 else if (psize == sizeof(int))
 { int* pint; pint=(int*)data; ++(*pint); }
}

int main ()
{
 char a = 'x';
 int b = 1602;
 f (&a,sizeof(a));
 f (&b,sizeof(b));
 return 0;
}

What is the value of *a
and *b after the two
calls to f?

Sunday, March 20, 2011

Void types

26

void pointers can be used to point to any data type •
 int x; void∗ p=&x; /∗points to int ∗/ •
 float f;void∗p=&f;/∗points to float∗/

• void pointers cannot be dereferenced.
 The pointers should always be cast before dereferencing.
 void∗p; printf("%d",∗p);/∗invalid∗/
 void∗ p; int ∗px=(int∗)p; printf ("%d",∗px); /∗valid ∗/

Sunday, March 20, 2011

Counters revisited

27

int nextval(void *environment);

closure make_counter(int startval)
{
 closure c;

 int *value = malloc(sizeof(int));
 *value = startval;

 c.function = (generic_function)nextval;
 c.environment = value;

 return c;
}

Sunday, March 20, 2011

Counter generator

28

int nextval(void *environment)
{
 int *value = environment;

 (*value)++;

 return (*value);
}

Sunday, March 20, 2011

Using the generator

29

int main()
{
 /* Create the two closures */
 closure my_counter = make_counter(2);
 closure my_other_counter = make_counter(3);

 /* Run the closures */
 printf("The next value is %d\n",
 ((generic_function)my_counter.function)
 (my_counter.environment))
 printf("The next value is %d\n",
 ((generic_function)my_other_counter.function)
 (my_other_counter.environment));
 printf("The next value is %d\n",
 ((generic_function)my_counter.function)
 (my_counter.environment));

 return 0;
}

Sunday, March 20, 2011

