
CS240: Programming in C

Lecture 10:
Review - Structures and Memory Allocation

 Unions

Monday, February 21, 2011

Recap: Structures

 Holds multiple items as a unit
 Treated as scalar in C: can be returned from

functions, passed to functions
 They can not be compared
 A structure can include

 a pointer to itself, but not a member of the same
structure

 a member of another structure, the latter has to
have the prototype declared before

 Allocation of memory for structure’s fields must
respect alignment as dictated by the underlying
architecture

Monday, February 21, 2011

Structure recap

 Member access
 Direct: s.member
 Indirect: s_ptr->member
 Dot operator . has precedence over indirect

access operator ->
• What does s.t->u mean?
• How about (s.t) -> u? Or, s.(t->u)?
• Is there a difference between (*s).t and s->t?

Monday, February 21, 2011

Memory layout for a structure

 Data alignment: when the processor
accesses the memory reads more than
one byte, usually 4 bytes on a 32-bit
platform.

 What if the data structure is not a
multiple of 4? Padding.

 Implementations must typically handle
alignment.

Monday, February 21, 2011

Manipulating Structures
 What happens when a structure is passed as an

argument?

5

#include <stdio.h>

struct Foo {
 int a;
};

struct Foo foo (struct Foo b) {
 b.a = 13;
 return b;
}

int main () {
 struct Foo f;
 f.a = 100;
 foo(f);
 printf("value of structure parameter is %d\n", f.a);
}

What gets printed?

Monday, February 21, 2011

Example (cont)

6

#include <stdio.h>

struct Foo {
 int a;
};

struct Foo foo (struct Foo b) {
 b.a = 13;
 return b;
}

int main () {
 struct Foo f;
 f.a = 100;
 f = foo(f);
 printf("value of structure parameter is %d\n", f.a);
}

Monday, February 21, 2011

Example (cont)

7

#include <stdio.h>

typedef struct {
 int a;
} Foo;

void foo (Foo * b) {
 b->a = 13;
}

int main () {
 Foo f;
 foo(&f);
 printf("value of structure parameter is %d\n", f.a);
}

Recall that C uses a call-by-
value discipline

Use indirection to implicitly
propagate effects

Monday, February 21, 2011

Bit fields

 Structure member variables can be defined
in bits

 Everything about bit fields is machine-
dependent
struct {
 unsigned int is_down : 1;
 unsigned int is_red : 1;
} flags;
flags.is_down = 1;
if (flags.is_red == 0) { ….
}

Monday, February 21, 2011

Memory Management

9

int main() {
 int* x; int* start;
 double* y;
 start = (int*) malloc(5);
 x = start;
 *x = -42; 	
 x++; y=(double*) x;
 *y = 2.1; 	
 y++; x=(int*) y;
 *x = 42;
 printf("%i\n", *start);
 printf("%i\n", start[0]);
 printf("%i\n", start[1]);
 printf("%i\n", start[2]);
 printf("%i\n", start[3]);
 printf("%i\n", start[4]);
 printf("%i\n", start[5]);
 printf("%f\n",
 (double)(start+1));

What does start represent?

422.1-42

x y x

Monday, February 21, 2011

Memory Management

10

	
 char *mess = NULL;
	
 mess = (char*) malloc(100);
	
 …
	
 free(mess);
 …
 *mess = 7;

What is the state of the memory pointed by mess after
free? What happens if mess is accessed after free?

Monday, February 21, 2011

Unions

 They can hold different type of values at
different times

 Definition is similar to a structure BUT
 STORAGE IS SHARED between the

members
 Only one field type stored at a time
 Programmer’s responsibility to keep track of

what it is stored.
 Useful for defining values that range

over different types
 Critically, the memory allocated for these

types is shared
Monday, February 21, 2011

Unions memory layout

 All members have offset zero from the
base

 Size is big enough to hold the widest
member

 The alignment is appropriate for all the
types in the union

Monday, February 21, 2011

Union operations

 Same as structures: The same
operations as the ones permitted on
structures are permitted on unions:
 Assignment,
 Coping as a unit
 Taking the address
 Accessing a member

 Initialize: can be initialized with a value
of the type of its first member.

Monday, February 21, 2011

Example

14

typedef union {
 int units;
 float kgs;
 } amount ;

typedef struct {
 char selling[15];
 float unit_price;
 int unit_type;
 amount how_much;
 } product;

The variable howmuch
can be either an int or a
float depending on the
kind of product

The compiler allocates
the memory necessary
to store the largest
sized type in the union
(here float)

Monday, February 21, 2011

Safety

 C provides no safety guarantees that components
within unions are correctly accessed

15

void foo(amount x) {
 printf("... %d\n", x.units);
}

int main () {
 product p[10];
 p[0].selling = "toys";
 p[0].unit_price = 2.0;
 p[0].unit_type = 10;
 p[0].how_much.kgs = 3.0;
 foo(p[0].how_much)
}

What gets printed?

Monday, February 21, 2011

Example (cont)

16

void checkUnits(int nitems, product* store[]) {
 int i;
 for (i=0; i<nitems; i++) {
 printf("\n%s\n",store[i]->selling);
 switch (store[i]->unit_type) {
 case 1:
 printf("We have %d units for sale\n",store[i]->how_much.units);
 break;
 case 2:
 printf("We have %f kgs for sale\n", store[i]->how_much.kgs);
 break;
 }
 }
}

Create an array that points to different products: product * store[n]
and supply this array as the argument to checkUnits

Monday, February 21, 2011

