
Suresh Jagannathan Lecture 1/ Spring 2011 1

CS240: Programming in C

Lecture 1: Class overview.

1

Saturday, January 8, 2011

History
 The world in 1969

 Fortran, PL/1 and Cobol were the primary
“high-level” programming languages
available.

 Assembly language the choice for high-
performance applications

 Operating systems
• A golden age
• Advent of paging, segmentation, virtual memory,

and access-control file systems

2

Saturday, January 8, 2011

Multics
 An advanced operating system

developed at MIT, GE and Bell Labs.
 Precursor to many of the ideas found in

Unix
 process as a locus of control
 tree-structured file system
 advanced access control
 generalized device abstraction
 command interpreter

 Written almost entirely in PL/1 and BCPL

3

Saturday, January 8, 2011

Target hardware environment
 Port to DEC PDP-7

 8K 18-bit memory
 no useful software
 port written in assembler

 First high-level language on Unix
 TMG: a language for writing compilers

• primitive support for context-free syntax
 First general-purpose high-level language

 B: C without types
 interpreted
 ran in 8K bytes of memory

4

Saturday, January 8, 2011

Circa 1970 - 1971
 Unix had developed a sizable user base
 B was too slow; assembler too painful

 string manipulation painful on byte-oriented
machines

 no floating-point
 pointers were not easily manipulable

• a pointer was an index into an array of words
 Extend B with (richer) types

 Further additions of record types and typed
arrays

 Unified type syntax

5

Saturday, January 8, 2011

By 1973
 Preprocessor
 Integration with underlying system

services
 file system

 Macros
 Unix kernel rewritten for the PDP-11 in C

 portable I/O package
 From 1973 to 1978 ...

 more types
 expanded libraries and environment
 emphasis on portability

6

Saturday, January 8, 2011

Reasons for its success...
 Success of Unix
 It’s quite simple and surprisingly uniform

 declarations mimic expressions
 supports low-level reasoning

• pointers and arrays as index into regions of
memory, generalized casts

 supports high-level reasoning
• types and operators well-defined
• static compilation

 useful set of libraries to enable portability and
interaction with a real environment

 Extraordinarily stable
 no major change since 1983

7

Saturday, January 8, 2011

What’s not to like?
 Programming model close to the machine

 no abstraction
• no objects, modules, datatypes, ...

 why is abstraction important?
 No safety

 “Well-typed programs don’t go wrong” doesn’t
apply here.

 Easy to generate security vulnerabilities
• buffer overflows, unwanted overwriting of memory

 No automatic memory management
 Is programming mathematics or

engineering?
8

Saturday, January 8, 2011

Why learn C, on balance

 Power/performance: low-level control over
the OS.

 Understanding: understand better the
interaction between machine and software:
 C as the expression of a low-level virtual

machine
 Betterment: gain a better appreciation of

high-level programming languages
 C is not a panacea
 “With power comes responsibility”

9

Saturday, January 8, 2011

Requirements

 Learning how to program is achieved
by DOING the PROJECTS

 Mandatory class and lab attendence
 YOU HAVE TO SUBMIT ALL PROJECTS
 You will not get a grade unless you submit all

projects (with at least an attempt to solve it)

10

Saturday, January 8, 2011

Course information

 Meetings
 MW:3:30 - 4:20pm, SMTH 108, Jan 10 - Apr. 30

 Professor contact info:
 Office: LWSN 3141J
 Email: suresh@cs.purdue.edu
 Office hours: MW 2:30 - 3:30 or by appointment

 TA:
 TBA

 Class webpage
 http://www.cs.purdue.edu/homes/suresh/cs240-spring2011

11

Saturday, January 8, 2011

http://www.cs.purdue.edu/homes/suresh/cs240-spring2011
http://www.cs.purdue.edu/homes/suresh/cs240-spring2011

Class attendance and taking notes

 REQUIRED !!!
 If you need to miss class, let me know
 Slides will be made available online

before lecture but YOU ARE
STRONGLY RECOMMENDED TO
TAKE NOTES

12

Saturday, January 8, 2011

Grading policy

 Programming
 Labs 15%
 Projects 30%

 Exams
 Midterm 1 15%
 Midterm 2 15%
 Final 25%

13

Saturday, January 8, 2011

Lecture 1/ Spring 2010

Reference material

 The C Programming
Language, Brian W.
Kerninghan and Dennis
M. Ritchie, 2nd Edition

 Lecture slides posted
online

14

Saturday, January 8, 2011

Readings for this lecture

Chapter 1: Introduction

15

Saturday, January 8, 2011

Terminology

 What’s a computer?
 What is hardware/software
 What’s an algorithm ?
 What’s a program?
 What’s a library?
 What’s an operating system?
 What’s a programming language ?

 Machine language
 Assembly language
 High-level language

16

Saturday, January 8, 2011

Computer architecture

Memory

CPU

Storage

External I/O
Devices

keyboard,
mouse

Network

DisplayCPU...

17

Saturday, January 8, 2011

HARDWARE

OPERATING SYSTEM

APPLICATIONS
(Programs)

System Layers

18

Saturday, January 8, 2011

HARDWARE

OPERATING SYSTEM

APPLICATIONS
(Programs)

System Layers

18

Saturday, January 8, 2011

HARDWARE

OPERATING SYSTEM

APPLICATIONS
(Programs)

 Software
that allows
multiple
users/app
to share
efficiently
and easily
a computer

System Layers

18

Saturday, January 8, 2011

Operating System

 Management of the processes and their
access to resources
 Memory
 CPU access
 I/O
 Network
 Other devices

 Interaction with the user
 Graphic interface
 Other devices

19

Saturday, January 8, 2011

Algorithm/Program

 Algorithm: procedure for solving a
problem in finite steps

 Program: set of instructions to the CPU,
stored in memory, read and executed by
the CPU
 Differentiate between the abstract (algorithm)

and concrete (program source) description of
a computation

 Differentiate between the concrete description
of a computation and its execution (translated
machine code) on hardware

20

Saturday, January 8, 2011

Machine and assembly language

 Machine language : binary information,
specific to a CPU
 How a CPU interprets data: e.g. how are memory

addresses represented, how is an instruction
coded, etc

 This is the binary or executable code
 Assembly language: easier to write for

people, using symbols, requires an assembler
 Still need to think in terms of low level CPU steps
 Still hardware-specific

21

Saturday, January 8, 2011

High-level language

 Closer to human language
 How much closer?

 Needs a compiler to convert it to machine
language
 Demands precision in its definition

 One can write programs in many high-level
languages for the same CPU
 What does this imply about the kinds of computation a

HLL can (or cannot) perform?
 More portable (more details later)

22

Saturday, January 8, 2011

