
Efficient CNG Indexing in Location-aware Sevices

Yuni Xia Sunil Prabhakar
Department of Computer Science

Purdue University, West Lafayette, IN 47906, USA�
xia, sunil � @cs.purdue.edu

Abstract

In this paper, we propose and evaluate a new in-memory
index structure for efficient processing of range queries over
moving objects. Traditional spatial index approaches suffer
from the need for frequent updates and therefore result in
poor performance in moving object environments. To re-
duce the number of updates, many existing approaches use
a linear function to represent the movement of objects, but
for numerous real applications, the movements of objects
are too complicated to be represented as a simple linear
function. The index structure we propose has two levels.
The lower level consists of a number of cluster nodes, each
of which is in charge of a group of moving objects and can
dynamically adjust its location and covering range accord-
ing to the movement of the objects. The upper level makes
use of a grid index to support querying evaluation. With
our approach, no assumption is required about the maxi-
mum velocity of objects and it is not necessary for objects
to move according to some well-behaved patterns.

1 Introduction

The advances of wireless communications technologies,
personal locator technology and global positioning systems
enable a wide range of location-aware services. Current
location-aware services support proximity-based queries in-
cluding map viewing and navigation, driving directions,
searches for restaurants and hotels, weather and traffic in-
formation. They include GPS based systems like Vindigo
and SnapTrack and cell-phone based systems like True-
Position and Cell-Loc. These technologies are the foun-
dation for pervasive location-aware environments and ser-
vices. Such services have the potential to improve the qual-
ity of life by adding location-awareness to virtually all ob-
jects of interest such as humans, cars, laptops, eyeglasses,
canes, desktops, pets, wild animals, bicycles, and buildings.
Applications can range from proximity-based queries on
non-mobile objects, locating lost or stolen objects, tracing

small children, helping the visually challenged to navigate,
locate, and identify objects around them. The demand for
storing, updating and processing continuously moving data
arises in a large number of such applications.

In this paper, we address the problem of indexing con-
tinuously moving objects, which could be critical for eval-
uating queries in response to the movement of objects with
near real-time responses. Traditional spatial index struc-
tures such as Rtree are not appropriate for indexing moving
objects because the location changes of objects may cause
splitting or merging the nodes constantly or even rebuilding
from time to time. To reduce the number of index updates,
many previous schemes use a simple linear function to de-
scribe the movements of the objects, where the index and
the database are updated only when the parameters of the
linear function change. However, in reality, the movements
of objects are far too complicated to be accurately repre-
sented as a linear function that changes infrequently.

We propose a general dynamic structure to efficiently in-
dex the positions of the moving objects and reduce the up-
dating cost to a great extent. This indexing structure has
two levels. The lower level consists of a number of clus-
ter nodes, each of which is in charge of a group of moving
objects and can dynamically adjust its location, covering
range and shape according to the movement of the objects.
The upper level makes use of a grid index. With the self-
adaptive cluster nodes of the lower level, the index updat-
ing overhead caused by object movements is significantly
reduced. While the grid indexing of the upper level greatly
speeds up various queries such as range/point and nearest-
neighbor queries and it could also be very helpful for se-
lectivity estimations for spatial-temporal queries and aggre-
gated queries. We call this index structure CNG(Cluster
Node and Grid) indexing. Other index structures includ-
ing Quadtree and Rtree are also investigated and our results
show that CNG indexing achieves a better overall perfor-
mance than existing approaches in most cases.

The rest of the paper proceeds as follows: Related work
is discussed in Section 2. In Section 3, we introduce the ba-
sic idea and the structure of CNG indexing. we also present

1

the details of its updating and query processing. Section 4
presents experimental evaluation of the proposed approach
and Section 5 concludes the paper.

2 Related Work

Developing efficient index structure is an important re-
search issue of moving object databases. As a naive ap-
proach, multi-dimensional spatial index structures can be
used for indexing the positions of moving objects. Numer-
ous index structures have been proposed for indexing multi-
dimensional data. [2] did a good survey of these indexing
schemes. Recently, in [4] Kanth et al. argue that R-trees
are generally better than Quadtrees and Oracle now recom-
mends use of only the R-tree. Although traditional spatial
index structures can be used, they are not efficient for in-
dexing the positions of moving objects because of frequent
and numerous updating operations in moving environment.

Some new index structures have been proposed for in-
dexing moving objects recently. These index structures can
be classified into the two type: index the trajectories (his-
tories) and index the current positions of objects. Our ap-
proach belongs to the latter category.

In this category, most approaches describe moving ob-
ject’s location by a linear function, and only when the pa-
rameters of the function change, for example, when the
moving object changes its speed or direction, the database is
updated. Saltenis et al. [9] proposed the time-parameterized
R-tree (TPR-tree). In this scheme, the position of a mov-
ing point was represented by a reference position and a
corresponding velocity vector. When splitting nodes, the
TPRtree considers both the positions of the moving points
and their velocities. Kollios et al. [6] proposed an efficient
indexing scheme using partition trees. Tayeb et al. [10]
introduced the issue of indexing moving objects to query
the present and future positions . They proposed PMR-
Quadtree for indexing moving objects. Agarwal et al.[1]
proposed various schemes based on the duality and they
developed an efficient indexing scheme to answer approx-
imate nearest-neighbor queries. The problem of all these
techniques is that there are hardly exist a good function for
describing the objects’ movements in reality. In many ap-
plications, the movement of objects is complicated and non-
linear. In such situations, the approaches based on a linear
function cannot work efficiently. Approximation technique
using threshold has been proposed to reduce the updating
cost. However, this approximation technique can decrease
the accuracy, it is not appropriate for the applications that
requires a high precision.

In [8], we propose two approaches, namely Query In-
dexing (QI) and Velocity-Constrained Indexing (VCI), for
indexing moving objects. Both approaches achieve signif-
icant improvements over traditional approaches. However,

Grid 00 Grid 50

Grid 55Grid 05

 CN1

 CN2

 CN3

 Obj1

 Obj3

 Obj4

...

...

...

 CN1

Obj1

Obj2 Obj3

 CN2

Obj4

 CN3

Figure 1. CNG Index

Query Indexing cannot efficiently handle the arrival of new
queries, while the VCI index does not have good perfor-
mance when the number of concurrent queries is large. In
[3], several in-memory moving object index structures are
investigated and the results show that using a grid-like struc-
ture gives the best performance. The evaluation is this paper
is also based on Query Indexing(QI).

3 CNG indexing

In this section, we present our index technique, called
CNG indexing. It is a general dynamic structure for index-
ing moving objects. In our work, no assumption is made
about the future positions of objects. It is not necessary for
objects to move according to well-behaved patterns. And
there are no restrictions, like the maximum velocity, placed
on objects either. We will first introduce the basic idea of
CNG index. followd by its structure. We also present the
index updating algorithm and query processing procedure.

3.1 Basic Idea

The CNG index we propose is an in-memory structure.
Disk-based indexing may not suit the need for real-time
continuous execution of queries over large amount of mov-
ing objects. Besides, the dropping main memory costs
makes main memory evaluation feasible. In [3], several in-
memory moving object index structures are investigated and
a grid-like structure gives the best performance. However,
for grid indexing, since the space is uniformly partitioned
without considering the topography, objects may frequently
move from one grid to another grid or move back and forth
between two grids. The index updating cost can be high due
to the frequent operation of deleting an object from the ob-
ject list of one grid and insert the object into another grid.

2

To reduce the updating cost, we hope to first find the natural
clusters of objects, create a number of Cluster Nodes(CN).
Each CN is in charge of a group of objects that fall in its
covering range. When object moves, it reports its move-
ment to the corresponding cluster nodes (CN). The CNs up-
date the object records with latest positions. As long as the
object does not move out of the CN’s covering range, no
other operation needs to be performed, otherwise, the ob-
ject might be deleted from its current CN and be inserted
into another CN. If the CNs are properly selected and re-
flects the objects’ behavior, objects will tend to stay in its
CN for a large periods of time, which could significantly
reduce the index updating cost.

The CNG index is a two-level structure. The lower level
mainly handles object movements while the upper level
support query processing. As figure 1 shows, the lower level
of the CNG index structure consists of a number of cluster
nodes, which divide-and-conquer all moving objects. The
upper level is a grid index, which is a two dimensional ar-
ray of cells. This grid structure can efficiently handle range
and point queries.

3.2 Index Structure

Figure 2 shows the structure of CNG index. The whole
space is divided into grids. In the Figure 1 example, the
space is divided into a 5*5 grids. Each grid has pointers
which point to the cluster nodes whose covering ranges in-
tersect with the grid. For example, grid10 and grid11 both
intersect with Cluster Node CN3, therefore, they have point-
ers point to CN3. Since there could be overlaps between the
covering ranges of cluster nodes, one grid can have multiple
pointers that point to different cluster nodes. Each cluster
node has an array of objects. All objects in the array are in
the covering range of that cluster node. As Figure 2 shows,
Cluster Node 1(CN1) pointers to an array which contains
obj1, obj2, etc.

3.3 Index Updating

At each cycle, objects report their new positions to the
corresponding cluster nodes. If an object’s new position
is still within the covering range, the cluster node updates
the record of that object with its new position. If the ob-
ject moves out of the covering range, the cluster node can
choose either expand its current covering range, or to pass
it to another cluster node, depending on which cluster node
needs expanding the least to contain the new position.

If the object should be passed to another cluster node,
then, the current cluster node will delete the object from its
object array and the new cluster node will insert it into its
array. If the number of objects one cluster node contains
is too large, which might slow down the query, a cluster

 CN1

 CN2

 CN3

 Obj1

 Obj3

 Obj4

...

...
10

55

 Obj2 ...

11

...

...

Cluster Node Object

Grid

03

02

01

00

Figure 2. Index Structure

node can split into two. Also, If the number of objects one
cluster node contains is getting very small, we can merge
it with neighboring cluster nodes. When cluster nodes are
split or merged or expanded, the pointers between grids and
cluster nodes should be updated so that grids always points
to the relevant set of cluster nodes.

Unlike the MBR(Minimal Bounding Rectangle) in
Rtree, the covering ranges of cluster nodes are not minimal
so the chances that objects move out of the current covering
range can be smaller. Therefore, the coordination overhead
between cluster nodes and the updating cost will be less.

Algorithm: CN Updates
Procedure Updates(Oid, newPos)
Input: an object’s ID oid, the new position newpos
begin
1: E = GetEntry(oid);
2: if newpos in CN.range then
3: E.pos = newpos;
4: else
5: CNnum = LeastExpand(newpos);
6: if (CNnum == currentCNnum) then
7: E.pos = newpos;
8: ExpandRange(newpos);
9: else
10: Delete(oid);
11: CN[CNnum].insert(oid, newpos);
end

Since CNG index is a simple two-level structure, this up-
dating process is much simpler than that of the Rtree and the
Quadtree in terms of the amount of computation and opera-
tions need to be performed.

If most objects within a cluster node move in the same
direction and roughly at the safe speed, we can move the

3

��

��

Grid 00 Grid 50

Grid 55Grid 05

 CN1

Obj1

Obj2 Obj3

 CN2

Obj4

 CN3

Q1

Figure 3. Query Processing

cluster node correspondingly, which could reduce the up-
dating cost even more. In our current implementation, we
have not included this feature yet.

3.4 Query Processing

To process a range query or a point query, the search
starts with the grids, find the grids that relevant to the query.
For example, as shown in Figure 3, Q1 is a range query
represented by the dark area. Q1 intersects with grid30, grid
40, grid31 and grid41. According to the pointers between
grids and cluster nodes, we find that cluster nodes CN3 is
related. Search the object array of cluster node CN3 and
find the objects that fall in the range Q1. This grid index
can also be very helpful for nearest-neighbor queries and
aggregate queries.

4 Experimental Evaluations

In this section, we present the results of some experi-
ments to analyze the performance of our index structure
with respect to updating and searching performance. We
compare our index with the Quadtree and Rtree. Both the
Quadtree and Rtree use Lazy Update approach [7] for better
updating performance. Experiments show that comparing
with disk-based Rtree and Quadtree, CNG indexing is al-
ways much better in terms of both index updating and query
processing. In order to make a fair comparison, we com-
pare the performance of CNG indexing with memory-based
Rtree and Quadtree. The results report the actual execution

CNG

������ Rtree
Quadtree

������
������

	�		�	
	�		�	

�

�

�

�

���������
���

���������
���������
���������

���
���
���

��

���������
���������
���������
���������
���������
���������

������
������
������
������
������
���

������
������
������
������
������
���

����������������������������������

15

20

25

200K 500K 1M100K

10

5

0

Number of Objects

T
im

e
(s

e
c
s)

Figure 4. Index Updating time

time for the various cases. The experimental settings are
described first, followed by the results and discussion.

4.1 Experimental Setup

In all our experiments, we used a 1Ghz Pentium III ma-
chine with 2GB of memory. This machine has 32K of level
1 cache, of which 16K is for instructions and 16K for data,
and 256K level 2 cache. Due to the unavailability of actual
object movement data, we used a synthetic dataset gener-
ated by the City Simulator, developed at IBM Almaden [5].
City Simulator is a scalable, three-dimensional model city
that enables creation of dynamic spatial data simulating the
motion of up to 1 million people. It is designed to gener-
ate realistic data for evaluation of database algorithms for
indexing and storing dynamic location data.

We generate 4 datasets with 100K, 200K, 500K and 1M
objects respectively. Each cycle consists of two steps: up-
dating index and evaluation queries. The performance of
each step is measured separately. In each graph, we present
the results for 100k, 200k, 500K, and 1M objects. The num-
ber of queries is 100K. The � -axis gives the number of cy-
cles for which the tests were run, and the � -axis gives the
actual total execution times observed. We test the perfor-
mance for 20 cycles and compute the average value.

4.2 Comparing Efficiency of Indexes

In the first experiment, we compared the four approaches
in terms of the time to process updating operations for ob-
jects in each cycle. Figure 4 shows that for index updat-
ing, the CNG index performs much better than Quadtree
and Rtree. For example, for 100,000 objects, it takes 1.15
seconds for Quadtree and 1.53 seconds for Rtree to perform
the updating, while it only cost the CNG indexing 0.13 sec-
onds. For 1 million objects, Quadtree takes around 20.3

4

Quadtree

CNG

������ Rtree

���
�
���������
���������
������

���������
���������
������

	�		�	
	�		�	

�

�

�

�

�������������������������

�������������������������

����������������������������������

���������
���������
���������
���������
���������
������

������
������
������

������
������
������

���

���

��

��6

8

10

12

100K 200K 500K 1M

T
im

e
(s

e
c
s)

Number of Objects

4

2

0

Figure 5. Query Evaluation time

seconds and Rtree needs 16.7 seconds for updating, while
CNG takes only 5.5 seconds. Generally, the updat time for
CNG indexing is only 8% to 35% of the Quadtree and Rtree.

In the second experiment, we measured the performance
for range queries. The number of queries is fixed at
100,000. Query windows are uniformly distributed in the
space. Figure 5 shows the result for this experiment. As
in Figure 5, the Quadtree outperforms both Rtree and CNG
in searching performance, while CNG performs a little bit
better than Rtree. The query evaluation time for Quadtree
is almost always around half of that of the Rtree. For ex-
ample, for 1 million objects, it takes quadtree 5.3 seconds
to evaluation all queries, while Rtree takes about 10.5 sec-
onds. CNG takes 9.1 seconds.

Figure 6 shows the total cost of the four schemes in each
cycle by adding up their updating cost and the searching
cost. For 100K objects, the performance of the Quadtree is
the best. For the 200K, 500K, 1M cases, CNG outperforms
both the Quadtree and the Rtree. As the number of objects
grow higher, the difference between the Quadtree/Rtree and
the CNG index becomes more significant. For example, for
200K objects, CNG is 27% better than the Quadtree and
33% better than the Rtree, while for 1M objects, CNG’s
performance is 44% and 46% better than the Quadtree and
the Rtree respectively. This shows that CNG is an scalable
and efficient index structure.

5 Conclusions

Traditional spatial index structures do not work well in
moving object environments, which are characterized by
large numbers of continuously moving objects and concur-
rent active queries over these objects. The need for frequent
index updating results in poor performance. Some early
techniques try to reduce the number of updates by approx-

Rtree
CNG

������ Quadtree

��
�
��
� ������

������

������
������

�����������������������������������
�����������������������������������

 � � � � � � � � � � � �

!�!!�!
!�!!�!
!�!!�!

"�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�"

#�##�##�#
#�##�##�#
#�##�##�#
#�##�##�#
#�##�#

$�$$�$
$�$$�$
$�$$�$
$�$$�$
$�$$�$
$�$$�$

%�%%�%
%�%%�%
%�%%�%
%�%%�%
%�%%�%
%�%%�%

&�&�&

'�''�''�'
'�''�''�'
'�''�''�'
'�''�''�'
'�''�''�'
'�''�''�'
'�''�''�'
'�''�''�'

(�((�((�(
(�((�(
)�))�))�)
)�))�)

15

20

25

30

100K 200K 500K 1M

T
im

e
(s

e
c
s)

Number of Objects

10

5

0

Figure 6. Total time

imating the movement of moving objects as a linear func-
tion, but the movement of real objects are too complicated
to be described as a linear function.

We present a novel CNG indexing technique for scalable
execution. CNG index is a two-level index structure. The
self-adaptive dynamic cluster node of the lower level han-
dle the movements of the objects and significantly reduce
the index updating cost. The grid indexing of the upper
level is a simple but very efficient structure for speeding up
the query. Our experiments demonstrate that CNG Index-
ing achieves significant improvement over the traditional
approaches in terms of index updating and has a better over-
all performance in most cases.

References

[1] P. K. Agarwal, L. Arge, and J. Erickson. Index-
ing moving points. In Symposium on Principles of
Database Systems, pages 175–186, 2000.

[2] V. Gaede and O. Günther. Multidimensional access
methods. ACM Computing Surveys, 30(2):170–231,
1998.

[3] D. V. Kalashnikov, S. Prabhakar, S. Hambrusch, and
W. Aref. Efficient evaluation of continuous range
queries on moving objects. In DEXA 2002, Proc. of
the 13th International Conference and Workshop on
Database and Expert Systems Applications, Aix en
Provence, France, September 2–6 2002.

[4] K. V. R. Kanth, S. Ravada, and D. Abugov. Quadtree
and R-tree indexes in oracle spatial: a comparison us-
ing GIS data. Proceedings of ACM SIGMOD Confer-
ence, 2002.

5

[5] J. Kaufman, J. Myllymaki, and J. Jackson.
City simulator developed by IBM Almaden.
http://www.alphaworks.ibm.com/tech/citysimulator.

[6] G. Kollios, D. Gunopulos, and V. J. Tsotras. On in-
dexing mobile objects. In Proceedings of the Eigh-
teenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, May 31 - June
2, 1999, Philadelphia, Pennsylvania, pages 261–272.
ACM Press, 1999.

[7] D. Kwon, S. J. Lee, and S. Lee. Indexing the current
positions of moving objects using the lazy update r-
tree. 3rd International Conference on Mobile Data
Management, Jan 2002.

[8] S. Prabhakar, Y. Xia, D. Kalashnikov, W. Aref, and
S. Hambrusch. Query indexing and velocity con-
strained indexing: Scalable techniques for continu-
ous queries on moving objects. IEEE TC 2002, IEEE
Transactions on Computers, Special section on data
management and mobile computing, 51(10):1124–
1140, Oct. 2002.

[9] S. Saltenis, C. Jensen, S. Leutenegger, and M. Lopez.
Indexing the position of continuously moving ob-
jects. Proceedings of ACM SIGMOD Conference,
pages 261–272, 2000.

[10] J. Tayeb, O. Ulusoy, and O. Wolfson. A quadtree-
based dynamic ttribute indexing method. The Com-
puter Journal, pages 185–200, 1998.

6

