
Load Shedding in Stream Databases: A Control-Based
Approach

Yi-Cheng Tu† Song Liu‡ Sunil Prabhakar† Bin Yao‡

†Department of Computer Sciences ‡School of Mechanical Engineering
Purdue University Purdue University

250 N. University St. 140 S. Intramural Drive
West Lafayette, Indiana, USA West Lafayette, Indiana, USA
{tuyc, sunil}@cs.purdue.edu {liu1, byao}@purdue.edu

ABSTRACT
In Data Stream Management Systems (DSMSs), query pro-
cessing has to meet various Quality-of-Service (QoS) require-
ments. In many data stream applications, processing delay is
the most critical quality requirement since the value of query
results decreases dramatically over time. The ability to re-
main within a desired level of delay is significantly hampered
under situations of overloading, which are common in data
stream systems. When overloaded, DSMSs employ load
shedding in order to meet quality requirements and keep
pace with the high rate of data arrivals. Data stream appli-
cations are extremely dynamic due to bursty data arrivals
and time-varying data processing costs. Current approaches
ignore system status information in decision-making and
consequently are unable to achieve desired control of qual-
ity under dynamic load. In this paper, we present a quality
management framework that leverages well studied feedback
control techniques. We discuss the design and implementa-
tion of such a framework in a real DSMS - the Borealis
stream manager. Our data management framework is built
on the advantages of system identification and rigorous con-
troller analysis. Experimental results show that our solution
achieves significantly fewer QoS (delay) violations with the
same or lower level of data loss, as compared to current
strategies utilized in DSMSs. It is also robust and bears
negligible computational overhead.

1. INTRODUCTION
Applications related to processing of data streams have

attracted a great deal of attention from the database com-
munity. With great social/economical interests, these appli-
cations flourish in a number of fields such as environment
monitoring, system diagnosis, financial analysis, and mo-
bile services. Unlike traditional data that are mostly static,
stream data are produced continuously (e.g., from a sensor
network) and are generally too large to be kept in storage

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

after being processed. Furthermore, most queries against
stream data are persistent queries that continuously output
results as they are produced. In recent years, a number
of Data Stream Management Systems (DSMSs) have been
developed [3, 1, 12, 8].

Query processing in DSMSs has to meet various quality1

requirements [3]. Similar to those in other real-time applica-
tions, quality in DSMSs describes the timeliness, reliability,
and precision in data processing. Important quality param-
eters in DSMSs include: processing delay, data loss ratio,
sampling rate, etc. A salient feature of DSMSs is the real-
time constraints associated with query processing. In many
applications of DSMS, query results are required to be de-
livered before either a firm (e.g., tracking of stock prices) or
soft (e.g., network monitoring for intrusion detection) dead-
line. Therefore, processing delay is the most critical quality
parameter in these applications. On the other hand, users
may accept query processing at different levels of accuracy
as a result of lost or incomplete data [18, 21]. This provides
us with optimization opportunities to trade those quality
parameters (e.g., loss ratio, sampling rate) that are less im-
portant for shorter delays in case of congestion.

It is difficult to provide delay guarantees in a DSMS due
to physical resource limitations and the unpredictable pat-
tern of resource usage by streams. In practice, a DSMS
could easily accommodate hundreds or even thousands of
streams. Delay requirements may be violated even with
careful query optimization and admission control, which are
the first line of defense against overloading and generally
based on static estimations of each stream’s resource con-
sumption. The runtime fluctuations of application resource
usage (e.g., bursty arrivals) may cause temporary conges-
tion that interferes with real-time data processing. Under
this situation, we need to dynamically adjust application be-
havior by reducing its non-critical quality parameters. For
example, we can increase data loss rate by load shedding
[21] or reduce the window size for windowed operations [4].
We call such adjustment of application parameters adapta-
tion. Streaming data are intrinsically dynamic in terms of
their bursty arrival patterns and ever-changing tuple pro-
cessing costs [25, 19]. Thus, an adaptation architecture
should promptly detect the change of quality by continu-
ously monitoring the system and determine whether adap-
tation should be performed.

1In this paper , the words ‘QoS’ and ‘quality’ are used inter-
changeably.

787

While maintaining processing delays under an appropri-
ate level, degradation of other quality should also be con-
trolled. For example, we can always achieve low delays by
constantly discarding most of the load. However, query ac-
curacy decreases unnecessarily due to excessive load shed-
ding. It would be desirable to achieve low delays while min-
imizing data loss. Attempting to solve this problem, cur-
rent DSMSs employ simple and intuitive strategies to make
important adaptation decisions such as the time and mag-
nitude of load shedding. For example, the following load
shedding algorithm is used (explicitly) in Aurora [21] and
(implicitly) in STREAM [6].

1 for every T time units
2 if measured load L is greater than CPU capacity L0

3 do shedding load with amount L − L0

4 else allow L0 − L more load to be admitted

Figure 1: Load shedding algorithm in Aurora

The idea behind this algorithm is: QoS degrades when
the load injected into the system is higher than its pro-
cessing capacity. To maintain QoS under overloading, we
only need to make the input load smaller than capacity L0.
However, in a dynamic environment where the input rate
keeps changing, this approach may either make the DSMS
unstable (i.e., QoS deviates unboundedly from the desirable
value) or overreact by discarding too much load. In Section
4.3.1, we elaborate on this issue.

To remedy the above problems in a systematic way, how-
ever, is not trivial. Firstly, we need to understand the na-
ture of the DSMS’s response to changes of inputs. Specifi-
cally, a quantitative model that describes how adaptation of
stream behavior affects quality (delay) is needed. Secondly,
our adaptation algorithm should be robust, meaning that
its performance should not be affected by patterns of load
fluctuations and cost variations. Another challenge is the
design of the monitoring process: it should be light-weight
and still able to effectively capture changes of status.

In this paper, we present our approach to address the
above challenges. Our solution takes advantage of proven
techniques from the field of control theory. Feedback control
is extensively utilized in the fields of mechanical, chemical,
and aeronautical engineering to deal with systems that are
subject to unpredictable dynamics [11]. In this work, we
view quality-driven load shedding in DSMS as a feedback
control problem and solve it with a controller designed from
a dynamic DSMS model we develop. Specifically, this paper
makes the following contributions:

1. We develop a dynamic model to describe the relation-
ship between average tuple delays and input rate of a
DSMS. From this model, we propose the idea of con-
trolling the somewhat unmeasurable delay signal by
manipulating the number of outstanding data items;

2. We design a controller to make load shedding decisions
via rigorous analysis of the system model. By exploit-
ing results from control theory, our design achieves
guaranteed system performance;

3. We implement and evaluate our load shedding frame-
work on a real DSMS. By working on a real system, we
achieve better understanding of the DSMS model and

obtain more convincing results supporting the validity
of our approach; and

4. We identify several problems that are unique in the
control of DSMS load shedding and propose system-
specific strategies to solve these problems.

The rest of this paper is organized as follows: we compare
our work with related research efforts in Section 2. Section 3
describes the basic DSMS model and problem formulation.
Details of our feedback control framework are presented in
Section 4. We show experimental results in 5 and conclude
the paper in Section 6.

2. COMPARISON TO RELATED WORK
Current efforts on DSMSs have addressed system archi-

tecture [7, 12], query processing [10], query optimization
[23], and operator scheduling [5]. Relatively less attention
has been paid to the development of a unified framework to
support QoS.

Load shedding has been extensively utilized to deal with
overloading in DSMSs [21, 6]. Ref. [6] discusses load shed-
ding strategies that minimize the loss of accuracy of aggrega-
tion queries. In the LoadStar system [9], statistical models
are utilized to maximize the quality of stream mining results
when load shedding has to be performed. Earlier work on
QoS-driven load shedding in the context of the Aurora [21]
DSMS (now evolving to the Borealis project [2]) is closely
related to our study in this paper. In [21], three critical ques-
tions about load shedding are raised: when, where, and how
much to shed. To answer these questions, Aurora checks sys-
tem load periodically and triggers shedding when excessive
load is detected. A precomputed Load Shedding Roadmap
(LSRM) that holds possible shedding plans is used to deter-
mine where to shed load. Given the amount of total load to
shed, the LSRM finds the best plan to accomplish this such
that system utility loss (due to lost data) is minimized.

The Aurora/Borealis work focuses more on the question
‘where to shed load’ (i.e., construction of LSRM) than the
questions of ‘when’ and ‘how much’. As shown in Fig. 1, it
uses a heuristic to determine the amount of load shedding
and handles processing delays implicitly. The system does
not provide information about how the monitoring period T
is set. In this paper, we concentrate on the control of de-
lay QoS under heavy fluctuations/bursts and time-varying
processing costs of data inputs, which are common in data
stream applications. For this purpose, we need to find a so-
lution that is different from the Aurora load shedder shown
in Fig. 1. In other words, our work aims to provide better
answers to the questions of when and how much to shed load.
Our solution can also be used to guide quality adaptation
mechanisms other than load shedding.

Another strategy to deal with system overloading is to
downgrade the accuracy in query processing. In [20], data
tuples are routed to a data triage when long processing de-
lays are observed.

Control-theoretic approaches have been used to solve var-
ious problems in the areas of networking [15], real-time sys-
tems [17], and multimedia [16]. Our work differs signifi-
cantly from these efforts: first, we address different problems
with a different system to be controlled. For example, [17]
focuses on deadline misses in a real-time resource scheduler
and [16] discusses precision in a video tracking application.
Control theory is basically a collection of many mathemat-

788

� ��

�� ��

���	
�

����

��

�� ���

�

�

�

�

�

�

��

�����

��	����

�������

��	������

�

Figure 2: A general system model of DSMS.

ical tools for analyzing system features and designing con-
trollers towards guaranteed performance. Therefore, appli-
cation of control theory to different problems and systems
are not straightforward as the choice of appropriate control
techniques are essential. Controller design and performance
depend heavily on the dynamic model of the system of inter-
est. Derivation of such models is generally non-trivial and
involves various techniques for different systems. In a word,
the results in above studies give little insights on how our
problem can be solved as distinct systems and control tar-
gets are involved. Second, we raise several DSMS-specific
issues in this paper (Section 4.5) and provide solutions to
these problems. From a control theory viewpoint, these is-
sues bring new challenges that are never before addressed in
traditional control applications.

We have presented the idea of control-based load shedding
in a short paper [22] where we found that even a crude con-
troller outperforms the ad hoc method. However, we only
validate our idea with a simulator in [22] therefore the real
challenges of QoS control in real-world systems (i.e., contri-
butions listed in Section 1) are not addressed.

3. DSMS MODEL, PROBLEM DESCRIP-
TION, AND NOTATIONS

In this paper, we study load shedding under a push-based
DSMS model, which is a generalization of those of the sys-
tem models of the STREAM [4] and Aurora [3] stream man-
agers. In this model, each query plan consists of a number
of operators connected to form a branched (e.g., I and III
in Fig. 2) or unbranched (e.g., II in Fig. 2) execution path.
Multiple queries form a network of operators so that they
can share computations. Multi-stream joins are performed
over a sliding window whose size is specified by the applica-
tion either in number of tuples or time. Data from a stream
can enter any number of entry points in the query network.
Each operator has its own queue to hold unprocessed inputs
and a scheduler determines the processing order of operators
at runtime.

With respect to a data tuple, processing delay is defined as
the time elapsed since it arrives at the network buffer of the
query engine till it leaves the query network2. For example,
data from stream source S1 in Fig. 2 departs either after be-
ing discarded by the filter operator 4 or entering an output
stream after operator 11. For data that could enter multiple
execution paths, we can choose the longest path to record
its departure time (e.g., 2-6-9-11 or 3-7-10-12 for S2 data
in Fig. 2). Processing delay consists of CPU time spent to

2Here we ignore network delays. This can be justified by the
use of networks where transmission delays are either effectively
controlled or significantly smaller than our control target.

Table 1: Notations and symbols.
Symbol Definition z-domain

k discrete time index -
T control period -
yd target value for delays -
H CPU power for query processing -
y processing delay Y (z)

fin data input rate Fin(z)
fout data output rate Fout(z)
u controller output U(z)
v desired data input rate -
c per-tuple processing cost -
q number of outstanding tuples Q(z)

C(z) controller transfer function C(z)
G(z) system (DSMS) transfer function G(z)

execute the operators and time spent in queues3. We target
a system where data tuples arrive in a dynamic pattern such
that future data rates are unpredictable. Furthermore, the
expectation of per-tuple CPU cost changes over time. Varia-
tions in CPU cost arise from changes in factors such as query
network structure (due to addition/deletion of queries), and
operator selectivity [21]. In this paper, we assume such vari-
ations happen less frequently than the fluctuations of data
arrival rates. We believe this is a reasonable assumption as
none of the above factors would change abruptly.

Load shedding is performed to reverse the increase of pro-
cessing delays due to overloading. We allow the system ad-
ministrator to specify a target delay time yd. The goal is
to maintain the average processing delay of data tuples that
arrive within a small time window T (we will discuss more
about the choice of T later) to be under yd. We accomplish
this by dynamically dropping load from the system in case
of overloading. The problem is how to derive the right time
and amount of load shedding such that data loss is as low as
possible. The selection of shedding locations is not a focal
point of this study. However, our framework is designed to
work with current strategies that construct shedding plans
such as the current load shedder in Borealis.

Symbols used throughout this paper are listed in Table 1.

4. FEEDBACK CONTROL-BASED LOAD
SHEDDING FRAMEWORK

4.1 Overview
The term control generally refers to the operations to ma-

nipulate particular feature(s) (i.e., output signal) of a pro-
cess by adjusting inputs into the process. The main compo-
nents of a feedback control system form a feedback control
loop, as shown in Fig. 3. The runtime operations of this
loop are performed as follows: a monitor measures the out-
put signal of the plant, which is the system to be controlled;
The measurements are sent to a controller,which compares
the output signal with a target value and maps the differ-
ence between them (i.e., control error) to a control signal;
An actuator adjusts the behavior of the plant according to
the control signal. The goal of the control operations is to

3This implies that CPU power is the bottleneck, which is a rea-
sonable assumption [21]. We understand that limited memory
could result in blocking of data processing. However, this should
have little effect on our problem because our goal is to control
overloading so that the system runs in a zone without such non-
linearities.

789

Controller
Actuator

(Load Shedder)

Plant
(DSMS)

Monitor

Disturbances

Target output
(yd)

error

Control signal
(u)

Output signal
(y)+ -

Figure 3: The feedback control loop.

overcome the effects of system and environmental uncertain-
ties named disturbances. Readers interested in more details
on control theory can refer to [11].

The above general model can be translated into a con-
crete model that serves as a blueprint for our load shedding
framework. We still use Fig. 3 to illustrate this. Note that
the shaded boxes represent new components that are not
found in existing DSMSs. The plant to be controlled is the
query engine of the DSMS and the actuator is the exist-
ing load shedding algorithm that adjusts load injected into
the plant. In addition, we have a monitor that measures the
output signal and a controller to generate the control signal.
The unpredictable arrival patterns and processing costs are
all treated as disturbances. In this loop, the output signal
is the processing delay of tuples, denoted as y and the con-
trol signal (i.e., controller output and system input) is the
desirable incoming data rate u.

We can easily see that the most critical part of the con-
trol loop is the controller, which determines the quantity
of the input signal (to DSMS) based on the control error.
The beauty of control theory is that it provides a series of
mathematical tools to design and tune the controller in or-
der to obtain guaranteed performance under disturbances.
In the following, we discuss the design of our feedback con-
trol, which consists of two phases: system modeling (Section
4.2) and controller design (Section 4.4). We use the open-
source Borealis data stream manager [2], whose query engine
is derived from Aurora [3], as our experimental system.

4.2 System Modeling
An accurate mathematical model of the plant is of great

importance to control system design. In this study, the
model we are interested in is one that describes the rela-
tionship between the delay time y and the incoming data
flow rate fin. Due to the complexity of the controlled sys-
tem, we may not be able to derive a model solely based on
rigorous analysis. In this case, we can use system identifica-
tion techniques to study system dynamics experimentally.

First of all, the expectation of per-tuple processing cost
c can be precisely estimated in the current Borealis system.
Readers can refer to Section 4.2 of [21] for details. For now,
we assume c is a constant. We will discuss the effects of this
assumption in Section 4.4.

The current version of Borealis uses a round robin pol-
icy to schedule operators and place intermediate results in
waiting queues of individual operators. These queues ex-
tract input in a first-in-first-out (FIFO) manner therefore
we see no priorities assigned to tuples as a result. Let us
first consider an ideal situation: all tuples in the network
share the same query paths and the system has the same
inflow and outflow rates. If there are q outstanding data
tuples in the query network when a tuple A enters, the total
processing delay of A is

y = (q + 1)c (1)

Cost Factor
y

Integration+

fout

_
fin q

Figure 4: Database model structure.

The reason for this is: when A sits in the queue of any
operator, it will not be processed until all of the q tuples are
cleared from that queue. If the execution path of A consists
of n operators, a total number of nq+n operators would have
been executed by the system when A is finished. The cost of
the n operators in a path is c therefore the total cost becomes
(q + 1)c. Among the total time of qc + c, qc is time spent in
waiting queues and c is the processing time of A itself. In
other words, it is equivalent to processing tuples as a whole
(rather than by operators) in the order they arrive. The
outstanding tuples can be regarded as entries in a virtual
FIFO queue with length q.

In practice, we cannot use Eq.(1) to model delay time of
individual tuples because the execution paths for different
tuples are different. For example, if a tuple is discarded by a
selection operator in the early part of its possible path, it has
a shorter delay as compared to one that passes the selection
box. Fortunately, instead of delay time y of single tuples, we
are interested in the average delay time of a series of tuples
arriving in a period of time4. Let us denote the length of
this period, which is called control period or sampling period,
as T and the average delay of tuples within the kth period
as y(k). We propose the following generalization of Eq.(1):

y(k) =
c

H
q(k − 1) (2)

where q(k − 1) is the virtual queue length at period k − 1
and H (named headroom factor) is the fraction of processing
power used for query processing. We always have H < 1
as resources must be consumed for running the operating
system and other maintenance tasks. Note that we ignored
the processing time in Eq.(2) because it is a constant and is
much smaller than the waiting time (as well as the control
target) in practice. The intuition behind Eq.(2) is: we can
study data tuples with execution paths of the same length in
a group. The same reasoning to generate Eq.(1) holds true
for each such group: a tuple A will not leave the network
until all other tuples in its group (that entered the network
before A) are processed. Taking a weighted average of all
such groups, each of which can be described by Eq.(1), we
get a form that is close to Eq.(2). This leads to a system
model for Borealis as shown in Fig. 4: the incoming data
flow fin less the data processing rate fout is accumulated in
the virtual queue. Therefore the queue length before period
k, q(k − 1), is equal to the integration of fin − fout at all
times before the k-th period. Eq.(2) becomes:

y(k) =
c · T

H

X

i<k

[fin(i) − fout(i)].

Model verification. As Eq.(1) is an intuitive result, we
need to verify it by experiments. The verification is done

4To guarantee delays for individual tuples, real-time sched-
ulers [14] are generally deployed. Interestingly, in our sys-
tem, if we can guarantee average delays, those for individual
tuples can also be well maintained as the round robin policy
is a ‘fair’ policy.

790

 0

 100

 200

 300

 400

 500

 0 10 20 30 40 50

∆y

Time (s)

fin = 190
fin = 200
fin = 300

 0

 1000

 2000

 3000

 4000

y
(m

s)

fin = 150
fin = 190
fin = 200
fin = 300

 0

 100

 200

 300

 400

 500
f in

 (
tu

pl
es

/s
)

A

B

C

fin = 150
fin = 190
fin = 200
fin = 300

Figure 5: System responses to step inputs.

experimentally in accordance of system identification tech-
niques. We feed the Borealis system with synthetic data
streams having various arrival patterns and record responses
in terms of delay time y. To set the cost factor c to a con-
stant, we construct a Borealis query network with a number
of (14 in this case, details omitted due to space limitations)
operators, each of which has a fixed CPU cost. Then we
generate stream data whose values follow uniform distribu-
tions to fix the selectivity of all filtering operators. By doing
these, the average CPU cost of the query network becomes
stable. In Fig. 5, we report system responses to a stream
whose arrival rates follow a step function of time (i.e., rate
starts at very low level and jumps to a high value at the
10-th second, as shown in Fig. 5A). It is shown in Fig. 5B
that, when fin is less than 190 tuples per second, all data
can be processed immediately and a constant processing de-
lay is observed. This implies that the per-tuple CPU cost is
approximately 1000.0/190 = 5.26ms as 190 can be viewed
as the threshold load that equals the CPU processing ca-
pacity (i.e. fin = fout = 190/sec assuming H = 1). On the
other hand, when fin exceeds 190/sec, i.e., more data enter-
ing the system than the CPU can handle, data accumulates
in the virtual queue and delay y keeps increasing. This con-
firms the existence of the integration part in the proposed
model. Fig. 5C shows the changing rate of y (calculated
by ∆y = y(k) − y(k − 1)). The fact that ∆y converges
quickly to a stable value means that there is either no other
dynamics or unknown dynamics with insignificant effects in
the proposed model.

To further verify the model and determine the model pa-
rameter, we compare the real y(k) values and the calculated
y(k) values based on our system model in Eq.(2). We collect
q(k) values at runtime to calculate y(k). The results of ex-
periments using the same step inputs as before are plotted
in Fig. 6. According to Fig. 6A, the values given by our
model fits the real data very well for all three choices of H.
However, if we magnify the difference between calculated
and real values (Fig. 6B), we can see that, with H = 0.97,
modeling errors are far less than those with the other two
values of H.

We also test the system with sinusoidal inputs and similar

4
2
0

-2
-4

 0 10 20 30 40 50 60 70 80
Time (s)

B. Modeling error (sec)

 0

 20

 40

 60

A. Real values (sec)
H = 0.95
H = 0.97
H = 1.00

Real

Figure 6: Model verification with step inputs.

4
2
0

-2
-4

 0 50 100 150 200
Time (s)

B. Modeling error (sec)

 0

 20

 40

A. Real values (sec)
H = 0.95
H = 0.97
H = 1.00

Real

Figure 7: Model verification with sinusoidal inputs.

results are obtained (Fig. 7). In this set of experiments, the
incoming data rate fin changes sinusoidally within the range
of [0, 400]. Small, periodical modeling errors can be seen.
This means that there are probably unknown dynamics that
our model fails to capture. This is not surprising due to the
complexity of the Borealis system. As we shall see later,
feedback controllers, if properly designed, have the power to
reduce the effects of modeling errors, especially those that
impose small errors such as the one we observe here.

Model transform. For the convenience of control analysis,
we transform Eq.(2) to a model in the z-domain5:

Y (z) =
c

H
Q(z) =

c · T

H(z − 1)

ˆ

Fin(z) − Fout(z)
˜

(3)

where Y (z), Q(z), Fin(z) and Fout(z) are z-transforms of
signals y(k), q(k), fin(k) and fout(k), respectively. Thus,
the transfer function of the (Borealis) system in Fig. 4 is:

G(z) =
c · T

H(z − 1)
. (4)

4.3 Why feedback control?
Before going into the design of controller, we identify

some of the problems of non-feedback-control strategies and
briefly discuss the basic ideas of feedback control theory.

4.3.1 Problems of current load shedding solution
The existing load shedding strategy (Fig. 1) suffers from

poor performance as detailed in the following examples.

5The z-transform is a mathematical tool that transforms
difference equations to algebraic equations [11], similar to
the Laplace transform used for differential equations. From
now on, all control-related analysis in this paper will be
performed in the z-domain.

791

L0

fin(t4) - fin(t3)

L0

La

Lb

S(2)

S(3)

t1 t2 t3 t4 t5

L0

La

Lb

t1 t2 t3 t4 t5 t1 t2 t3 t4 t5

A B C

Figure 8: Different cases in which open-loop control has poor performance.

Example 1. Instability when incoming data rate increases
monotonically. During certain period of time, the incoming
data rate may keep increasing as shown in Fig. 8A. This
is very typical in data stream systems. In this case, we are
not shedding enough load: at any time ti, we decide to shed
load with amount Lti

−L0 in the next period yet the incom-
ing load in the next period Lti+1

is greater than Lti
. As a

result, more and more tuples are accumulated in the DSMS
and system output y may increase unboundedly.

Example 2. Convergence to wrong value in response to
step changes. As illustrated in Fig. 8B, when the incoming
data rate undergoes a step change from La to a much larger
value Lb, queue length will increase by Lb − La. If the in-
coming rate stays on Lb, no further increase of queue length
will occur and system output y(k) stabilizes. However, y(k)
could converge to a value that is higher than the target value
yd. And the system is unable to self-correct the deviation.

Example 3. Unnecessary data loss. When the incoming
data rate changes from a stable small value La to a higher
value Lb that is slightly greater than L0, the algorithm will
discard data with amount of Lb − L0 (Fig. 8C). However,
more data should be allowed to enter the DSMS because
there are no outstanding tuples before the change. In this
case, although the delay time y(k) is smaller or better than
the target value yd, the extra data loss is unnecessary.

The above three cases do not occur just in the Aurora
method. Any method that does not use system output in
decision-making could face the same or similar problems.

a+dm1/a
y

di do

a+d
m

K
_

yr

d
i

d
o

Controller System

Controller System

r
A

B

Figure 9: Block diagrams of generic open-loop (A)
and closed-loop (B) control systems.

4.3.2 Open-loop vs. closed-loop
The unique feature of feedback control is that the output

signal is used (as feedback) in generating the control signal.
As there exists a complete loop (Fig. 9B) in the system block
diagram, feedback control is also called closed-loop control.
In contrast, strategies such as the one shown in Fig. 1 are
open-loop control: system output or state information is not
used in the controller, therefore it forms an open loop from

the reference value to the system output (Fig. 9A). Here
r is the reference input or desired system output, y is the
actual system output, a is the system model, dm, di and
do represent modeling error, input disturbance and output
disturbance. Relating this to our problem, the fluctuations
of data arrival rates are modeled as input disturbances and
the variable processing costs (c) as modeling errors.

In an ideal case, when there are no model uncertainties
(i.e., dm = 0), no input or output disturbances (i.e., di =
do = 0), the best open-loop controller would be 1/a given
the nominal system model a. This is because we have y =
r 1

a
a = r, hence the output signal is exactly the reference

value. However, in the real world, there are always modeling
errors and input/output disturbances, therefore the open-
loop system output y is:

y =

„

r

a
+di

«

(a+dm)+do = r+r
1

a
dm+(a+dm)di+do (5)

From (5), it is obvious that the open-loop system output
is subject to modeling error dm, input disturbance di and
output disturbance do, and there is no way to reduce their
effects. On the other hand, in a closed-loop system where the
feedback controller K is also designed based on the nominal
system model a, we have

[(r − y)K + di](a + dm) + d0 = y,

and the system output y becomes

y =
K(a + dm)

1 + K(a + dm)
r+

(a + dm)

1 + K(a + dm)
di+

1

1 + K(a + dm)
do

If the controller K is chosen large enough, i.e. K >> 1
and K(a + dm) >> 1, the closed-loop system output y is
approximately:

y ≈ r +
1

K
di +

1

K
do (6)

Clearly, the effects of modeling error dm, input and output
disturbances di and do can be reduced by a factor of 1/K.

The above simple examples show why closed-loop control
is better than open-loop control. In summary, the main
advantage of closed-loop control over open-loop control is
the reduction of the effects of modeling error, input and
output disturbances therefore it can be exploited to handle
dynamics in our load shedding problem.

4.4 Controller design
In Section 4.3.1, we demonstrated the shortcomings of

open-loop solutions. However, even with the system model,
it is still not clear how to use system output to make control
decisions such that problems like the one in Example 1 do

792

G(z)
y

C(z)

fout

_
yd

_

e u v+

Figure 10: Control system block diagram.

not occur. In this section, we discuss how to design con-
trollers with guaranteed performance. We start this section
by introducing our basic design of controller and continue
with Section 4.5 to address some DSMS-specific challenges.
The basic control scheme is illustrated in Fig. 10, where
yd is the preset reference value for delay time, e = yd − y
is the error signal, and u represents the controller output
(with the same unit as inflow rate fin). The meaning of u
is: the increase of the number of outstanding tuples (i.e.,
size of the virtual queue) allowed in the next control period.
Therefore, we denote v = u + fout as the desired data flow
rate to the database as fout tuples will leave the queue.

4.4.1 Design based on pole placement
For a dynamic system, continuous or discrete, one can use

system poles to determine its dynamic characteristics. Sys-
tem poles are the roots of the denominator polynomial of
the transfer function and zeros are the roots of the numer-
ator polynomial. The location of the system poles can tell
how fast the system responds to an input and how well the
response would be [11].

Pole placement design, one of the most important con-
troller design techniques, is to add additional poles and/or
zeros into the closed-loop system so that the closed-loop sys-
tem may have desired performance. If a raw system G(z) =
B(z)
A(z)

has poles as the roots of A(z) = 0, the closed-loop sys-

tem, after adding a feedback controller C(z) = N(z)
D(z)

, has a

closed-loop transfer function C(z)G(z)
1+C(z)G(z)

= N(z)B(z)
D(z)A(z)+N(z)B(z)

.

Hence the closed-loop system has poles that are the roots of
D(z)A(z) + N(z)B(z) = 0. Clearly, the system poles have
been moved from A(z) = 0 in the raw system to D(z)A(z)+
N(z)B(z) = 0 in the closed-loop system. System perfor-
mance can be significantly improved by correct selection of

C(z) = N(z)
D(z)

.

The closed-loop performance is evaluated by the speed
and smoothness, or convergence rate and damping, of sys-
tem’s response to disturbances. The closer the system poles
are to 0, the faster the system response. Although it is theo-
retically possible to set the closed-loop poles at 0 and make
the system respond very fast, it is practically not a good
idea due to the large control authority needed for fast re-
sponse. In our case, it means that if we want the system
respond too fast, we may sometimes have to shed too much
data. System damping is another important metric to evalu-
ate closed-loop performance. Smaller damping means more
severe oscillation, which is not desirable. When damping is
less than 0.7, there exist visible oscillations in the system
step response; when damping is bigger than 1, there is no
oscillation but the system response becomes slow. Usually
we choose the damping between 0.7 and 1.

With the above considerations, we develop the following
feedback controller. The detailed design procedure can be

G(z)
y

C(z)

fout

_
yd

_

e u v+

y
y

Figure 11: Control system with estimated feedback.

found in Appendix A.

u(k) =
H

cT
[b0e(k) + b1e(k − 1)] − au(k − 1) (7)

where a, b0, and b1 are controller parameters that can be
obtained by solving Eq.(15) and Eq.(16) in Appendix A.

Handling time-varying characteristics of the plant. As
time goes by, the average processing cost also changes. Let
us denote the per-tuple cost at period k as c(k). As our cur-
rent controller is designed assuming constant c, we introduce
modeling errors to the closed-loop by allowing c to change
over time. As mentioned in Section 3, we assume the value
of c(k) changes slowly over time, at least compared to mov-
ing of data arrival rates. Under this situation, we normally
believe the system is still stable with the existing basic con-
troller. Due to its closed-loop nature, the controller should
be able to compensate for the effects of such dynamics. Our
experimental results (Section 5.1) provides strong evidence
favoring this claim. We leave a systematic solution to handle
fast-changing c as future work.

4.5 DSMS-specific issues
Whereas the Borealis system model seems to have a simple

dynamic structure (Eq.(3)), the control of the system is far
from trivial. In addition to the basic controller design, we
also have to address the following practical issues.

4.5.1 Unavailability of real-time output measurement.
Accurate measurements of system output in real-time is

essential in control system design. Unfortunately, this re-
quirement is not met in our system because the output signal
is the delay time. The output measurement is not only de-
layed, but also delayed by an unknown amount (the amount
is the output itself!). To be more specific, the output signal
of our controller should be the delay of tuples that have just
entered the system when we calculate u(k). However, at
time k, we can only measure the delay of those that entered
the system some time ago. This is a very interesting chal-
lenge to control theory as it does not exist in conventional
control systems where the controlled signal can always be
measured when we need it.

Given the output signal is not measurable when it is needed,
can we derive it from the current system status? The answer
is ‘yes’ and it comes right from the system model. We can
easily modify the Borealis system to accurately record the
number of outstanding data tuples (virtual queue length)
q(k − 1). This can be done by just counting all the in-
flow/outflow tuples. We already know that at any time,
c(k) values can be accurately estimated. Therefore, instead
of using a measurement of delay y as the feedback signal,
we use an estimation of y that is derived from Eq.(2):

ŷ(k) = q(k − 1)
c(k)

H
. (8)

Naturally, Eq.(8) adds estimation errors to the closed-loop.

793

We denote the estimation error as ỹ = y − ŷ. Fortunately,
our controller is still found to be robust by the following
argument. When estimated output ŷ is used as feedback
signal, the original control system becomes the one shown
in Fig. 11. The output of the closed loop system is hence
described by:

Y (z) =
C(z)G(z)

1 + C(z)G(z)
Yd(z) −

C(z)G(z)

1 + C(z)G(z)
Ỹ (z) (9)

The closed-loop system is still stable as long as ỹ is bounded,
which is always true. The Yd term in Eq.(9) shows that the
output of the closed-loop system still tracks the target signal
with desired damping and convergence rate. However, the
accuracy is compromised due to the introduction of estima-
tion errors (the Ỹ term in Eq.(9)).

4.5.2 Load shedder (actuator) design
Given the desired data flow rate v(k) obtained from the

controller, the task of the load adaptor is to cut the incoming
data stream (with rate fin) such that the the actual number
of tuples accepted into the system is close to v(k). In this
paper, we investigate two different ways to accomplish this.

A straightforward way to implement the load shedder is
to manipulate the number of data tuples entering the DSMS
query network. In other words, we treat the Borealis system
as a blackbox by not shedding load within the network. For
this purpose, we set a shedding/filtering factor α (0 ≤ α ≤
1) to all the data streams. When Borealis receives a tuple,
it flips an unfair coin with head probability 1 − α. A tuple
is accepted only when the coin shows head. At the end of
period k, α should be determined as follows:

α = 1 − [v(k)/fin(k + 1)]. (10)

However, fin(k + 1) is unknown when we calculate α. We
use its value in the current period fin(k) as an estimation.

Our control-based solution should also work for the exist-
ing load shedders such as the one in Borealis. In Borealis,
load can be shed from any queues in the query network. Us-
ing the network in Fig. 2 as an example, we can drop tuples
in front of any combination of operators from 1 to 12 while
the simple load shedder mentioned above only allows shed-
ding before operators 1, 2, and 3. This difference, however,
does not conflict with our system model (therefore controller
design). Our model says y(k) depends on q(k−1)c, which is
basically the outstanding ‘load’ in the queue. Shedding only
intact tuples (outside the network) or partially processed tu-
ples (in the network) makes no difference: the same ‘load’ is
being discarded and y(k) depends on how much load is left
in the queue. Given the v(k) generated by our controller,
we know that new load with amount La = v(k)c(k + 1) can
enter the DSMS during the next period k + 1. However,
the outstanding tuples carry a load of Lq = q(k)c(k) and
incoming streams carry a load of Li = fin(k + 1)c(k + 1),
which is approximated by fin(k)c(k). Therefore, load with
amount of Ls = Lq + Li − La is to be shed. Pass the Ls

value to the Borealis load shedder, it will find the best plan
to bring down the total load by Ls.

4.5.3 Determination of the control period T

The sampling period is an important parameter in digital
control systems. An improperly selected sampling period
can deteriorate the performance of the closed-loop. In our
setup, we consider the following two issues in selecting T :

1. Nature of disturbances. In order to deal with distur-
bances, our control loop should be able to capture the mov-
ing trends of these disturbances. The basic guiding rule for
this is the Nyquist-Shannon sampling theorem [24]. A fun-
damental principle in the field of information theory, the
theorem states that: when sampling a signal, the sampling
frequency must be greater than twice the signal frequency
in order to reconstruct the original signal perfectly from the
sampled version. In our setup, this means the control period
should be at most half of the width of the spikes in input
rate (as average processing costs changes more slowly). In
practice, a sampling frequency that is one order of mag-
nitude larger than the input signal frequency is often used.
Therefore, a high sampling frequency is preferred to capture
the time-varying properties of the system and input data.

2. Uncertainties in system signals. In our problem, the
output signal y(k) and processing cost c(k) are defined as
the statistical expectations of a series of tuples. Taking such
expectations can eliminate uncertainties brought by the het-
erogeneity of individual tuples. A larger sampling period
(low sampling frequency) is preferred as more smoothing ef-
fects can be expected. For example, when tuple processing
cost is in the order of milliseconds, setting T to a fraction
of one second level would give us tens to a few hundreds
of samples to approximate the real values of y(k) and c(k).
For higher sampling frequencies, we get fewer samples to
estimate y(k) and may encounter estimation errors.

We need to make a tradeoff between the above two factors
in choosing the right sampling period.

5. PERFORMANCE EVALUATION
We implemented a controller and a monitoring module in

the Borealis data manager6 based on our design. As the
current release of Borealis does not include the load shed-
der presented in [21], we also built our own load shedder,
which allows shedding from the queue and randomly selects
shedding locations. In other words, it is more general than
the first load shedder we discuss in Section 4.5.2 but lacks
the optimization towards non-delay parameters found in the
Borealis load shedder.

 0

 200

 400

 600

 800

 0 50 100 150 200 250 300 350 400

D
at

a
A

rr
iv

al
 R

at
e

(t
up

le
s/

s)

Time (s)

Web
Pareto

Figure 13: Traces of synthetic and real stream data.

We test our control-based framework with both synthetic
and real-world stream data. The real data are traces of re-
quests to a cluster of web servers7. The synthetic data are
generated in such a way that the number of data tuples per
control period follows a long-tailed (Pareto, to be specific)
distribution [13]. The skewness of the arrival rates is reg-
ulated by a bias factor β. The traces of a Pareto stream
with β = 1 as well as the web access data are plotted in Fig.

6http://nms.lcs.mit.edu/projects/borealis/
7dataset LBL-PKT-4, available at http://ita.ee.lbl.gov

794

 0

 50

 100

 150

 200

 250

Web Pareto

A. total delay violations

 0

 2

 4

 6

 8

 10

 12

 14

Web Pareto

B. total delayed tuples

 0

 5

 10

 15

 20

Web Pareto

C. maximal overshoot

 0.9

 0.95

 1

 1.05

 1.1

Web Pareto

D. data loss

CTRL
Baseline

Aurora

Figure 12: Relative performance of different load shedding strategies.

13. We can see that the fluctuations in the ‘Pareto’ data are
more dramatic than those in the ‘Web’ data.

25

20

15

10

 5

 0
 0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 C
os

t (
m

s)

Time (s)

Figure 14: Variable unit processing costs (ms).

We also use synthetic traces to simulate the variations
of per-tuple cost c. We first generate the cost variations
following a Pareto distribution and then modify the trace
by adding ‘events’ to it. For example, in the trace plotted
in Fig. 14, we have a small peak at the 50th second, a
large peak with a sudden jump (starting from the 125th
second), and a high terrace with a sudden drop (250th to
350th second). The same queries for system identification
(Section 4.2) are used for experimental studies.

We compare our control-based framework (referred to as
CTRL hereafter) with the following two approaches:

• AURORA: the algorithm utilized in the current Au-
rora/Borealis system (Fig. 1). At the k-th control pe-
riod, the measured load L is fin(k − 1). To deal with
variable per-tuple cost, we define L0 = H/c(k − 1);

• BASELINE: a simple feedback control-based method:
it uses system status (i.e., q(k−1), c(k) in our case) in
making decisions. Specifically, v(k) is obtained from
the system model (Eq.(8)): the target value of yd

would allow ydH/c(k) outstanding tuples, therefore
u(k) = ydH/c(k)− q(k − 1) more tuples can be added
to the queue. Consequently, we get v(k) = u(k) +

fout(k) = ydH

c(k)
+ TH

c(k)
− q(k − 1). The unknown quan-

tity c(k) is estimated by c(k−1). This method is used
to test the importance of controller design.

In all the experiments we report in this section, we set
target delay value yd to 2000 milliseconds unless specified
otherwise. We run all tests for 400 seconds. For CTRL, the
controller parameters8 identified by our analysis are: b0 =
0.4, b1 = −0.31, and a = −0.8. Following the experiments
shown in Fig. 6, we set H to 0.97. The control period is

8Any set of parameters that are solutions to Equations (15) and
(16) are supposed to have the same performance. This is verified
by our tests with other set of parameters (details skipped).

set to 1000 milliseconds. Going back to Fig. 13, we see
that most of the bursts in both traces last longer than a few
(4 to 5) seconds therefore a sampling period smaller than
two seconds is preferred according to the sampling theorem.
The change of costs c in Fig. 14 has peaks with widths
on the order of tens of seconds (with some exceptions) thus
one-second period is definitely sufficient. We also test the
systems with different choices of T and yd.

We consider the following metrics in evaluating the adap-
tation strategy: 1) Delay Violations: the primary control
goal. Specifically, we record both the accumulated delay vi-
olations (i.e.,

P

y − yd for all data tuples whose processing
delay y > yd), and total delayed tuples, which is the total
number of tuples whose delays are longer than yd; 2) Max-
imal Overshoot: the longest delay violation recorded. This
metric captures transient state performance; and 3) Data
Loss Ratio: the percentage of data tuples discarded. This
can be viewed as the cost of performing load shedding.

5.1 Experimental results
We first compare the long-term performance of CTRL

with that of the two other algorithms. In Fig.12, we plot
the ratios of all four metrics measured (i.e, totals in the
400-second period) from the AURORA and BASELINE ex-
periments to that of CTRL. For example, when injected with
the same ‘Web’ data stream, Fig. 12A shows that AURORA
rendered 205 times more total delay violations than CTRL
and BASELINE had 23 times. Similar results were obtained
in total delayed tuples (Fig. 12B) and maximal overshoot
(Fig. 12C). Note that all data points for CTRL are 1.0 in
Fig. 12. The data loss ratio for all methods are almost
the same with AURORA losing slightly fewer tuples (0.986
for ‘Web’ and 0.987 for ‘Pareto’). It is easy to see that,
for both real (‘Web’) and synthetic (‘Pareto’) data inputs,
CTRL is the easy winner in the three delay-related metrics
with almost the same amount of data loss. The BASELINE
method, as a feedback solution, has worse performance than
CTRL but it also beats AURORA.

To better understand the above long-term results, we show
the transient performance of all three methods by plotting
y(k) values measured at all control periods in Fig. 15. We
can see that, as expected, almost all output in CTRL is
very close to the target value of two seconds. For BASE-
LINE and AURORA, we can observe peaks that are large in
both height and width. Such peaks are the results of either
fluctuations of arrival rate or changes of c (e.g., those at
about 50th second and 125th second, and the high terrace
starting from the 230th second). Note the first two peaks of
c also have impact on the CTRL system: average delay in-
creases beyond two seconds. However, with the design goal

795

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 D
el

ay
 (

se
c)

Time (s)

B. Synthetic data
CTRL

BASELINE
AURORA

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18
A

ve
ra

ge
 D

el
ay

 (
se

c)

A. Real web access data
CTRL

BASELINE
AURORA

Figure 15: Performance of different load shedding
methods.

of fast convergence and high damping, the controller in the
CTRL system can quickly bring the system back to a stable
state thus large peaks of y are avoided. The high terrace
has almost no effect on CTRL. This is because the value
of c increases gradually before the terrace. Our controller
can capture and compensate for this kind of gradual change
while the open-loop system cannot (i.e., Example 2 in Sec-
tion 4.3.1). From Fig. 15, we can fairly conclude that the
design goal of our controller (Section 4.4.1) is achieved.

 0

 2

 4

 6

 8

 10

 12

 14

0 100 200 300 400

A
ve

ra
ge

 D
el

ay
 (

se
c)

Time (s)

Web
Pareto

 0.8

 1

 1.2

 1.4

 1.6

Web Pareto

Relative data loss vs. CTRL

Figure 16: Performance of ‘Aurora’ with H = 0.96.

System robustness. In the above experiments, the AU-
RORA method has poor stability: tuple delays increase all
the time. A question one might ask is: can we remedy the
problem by using a smaller L0 value (recall the algorithm
in Fig. 1) such that more data can be discarded? In our
setup, this means the same as changing the H value (even
though H = 0.97 is proved to be correct in Section 4.2) as
we define L0 to be H/c. Fig. 16 shows the results of the AU-
RORA method under both real and synthetic data inputs
using a smaller H value of 0.96. For the ‘Web’ data inputs,
the system is still unstable. Surprisingly, no delay violations
can be observed for the ‘Pareto’ inputs. However, the price
for this is huge: it costs 37% more data loss than CTRL
(small graph in Fig. 16). This result shows the poor robust-

ness of open-loop solutions: it is hard to tune the system as
performance depends heavily on the pattern of inputs.

To further study the robustness of the three methods, we
test them using data streams with different levels of bursti-
ness. Specifically, we feed the systems with synthetic data
streams with bias factors β of 0.1, 0.25, 0.5, 1, 1.25, and 1.5.
The smaller the bias factor, the more bursty the input. In
Fig. 17, we show the change of all four metrics with respect
to the bias factor. All numbers plotted are relative to the
corresponding value measured in the case of β = 1.5. As
the input stream becomes more bursty, very little difference
can be observed in CTRL (Fig. 17A) while the changes in
AURORA (Fig. 17B) are much more dramatic. The per-
formance of BASELINE is not significantly affected by the
bias factor as well (data not shown).

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.3 0.6 0.9 1.2 1.5
Bias factor

A. CTRL

Max Overshoot
Data Loss

Accu. Delay Violations
Delayed Tuples

 0 0.3 0.6 0.9 1.2 1.5

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Bias factor

B. AURORA

Figure 17: Effects of input burstiness.

In Fig. 18 we show how different systems respond to
changes of target value yd at runtime. In these tests, we set
yd to be 1000 milliseconds initially and change it to 3000 mil-
liseconds at the 150th second and then to 5000 milliseconds
at the 300th second. We can see that CTRL converges to
the new target values very quickly. The AURORA method
does not respond to the changes of yd at all as it is open-
loop. When yd changes, it takes the BASELINE method
very long time to converge to the new target value.

 1

 3

 5

 7

 9

 11

 0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 D
el

ay
 (

se
c)

Time (s)

CTRL
BASELINE

AURORA

Figure 18: Responses to changes of target value.

Effects of control period. In Section 4.5.3, we discussed
the general rules on choosing the right sampling period. We
test these rules by running experiments with nine different
sampling periods ranging from 31.25 to 8000 milliseconds
with the CTRL system and ‘Web’ data stream. In Fig.
19, every data point is the ratio to the lowest correspond-
ing metric in all nine tests and the x-axis has a logarithmic
scale. For example, the smallest accumulated delay viola-
tions were recorded under T = 500ms and this value is about
40 times as high when T = 4000ms. Obviously, the magni-
tude and frequency of delay violations increase dramatically

796

 0

 10

 20

 30

 40

 50

 60

 70

31.25 62.5 125 250 500 1000 2000 4000 8000

Control Period (ms)

Accu. Delay Violations
Total delayed tuples

Maximal overshoot
Data loss

 0
 1
 2
 3
 4
 5
 6
 7

30 125 500 2000

Figure 19: Performance under different values of T .

when T is beyond four seconds. As expected, a shorter con-
trol period is preferred. This confirms our discussion about
the sampling theorem in Section 4.5.3. When T becomes
too small, performance degrades. The best region seems to
be [250, 1000] in these experiments (see small graph in Fig.
19). Similar results are obtained for the ‘Pareto’ data in-
puts. One thing to point out is: in all experiments with T
smaller than 4000ms, CTRL outperforms BASELINE and
AURORA with similar difference shown in Fig. 12.

Computational overhead. The operation of our controller
only involves several floating point calculations at each con-
trol period. In our experimental platform with a Pentium 4
2.4GHz CPU, this time is only about 20 microseconds. This
is trivial because the control period is set to be (at least) on
the order of hundreds of milliseconds.

Summary of experimental results. From the above exper-
iments, we see that CTRL is the winner in all delay-related
metrics.The use of feedback signal provides big advantages
over the open-loop AURORA method. A thorough under-
standing of system dynamics is also extremely useful. By
applying simple rules derived from the system model, the
BASELINE method achieves far better performance than
AURORA. Decisions based on rigorous controller design is
another plus for our method. With guaranteed convergence,
our controller avoids large and long-time deviations from the
desired output while the BASELINE method suffers from
such deviations. An important feature of the control-based
solution is its robustness. Note that we only use standard in-
puts to validate the system model and controller tuning (i.e.,
setting controller parameters) is accomplished by mathe-
matical reasoning exclusively. On the contrary, tuning of
other methods can be ad hoc, as evidenced by the depen-
dence of open-loop solutions on the pattern of data inputs.
We have reasons to believe that even the current system
model (Fig.4) can be used for DSMSs other than Borealis:
we noticed (via experiments) that modifying the query net-
work only changes a parameter (c) but not necessarily the
structure of the model.

6. CONCLUSIONS AND FUTURE WORK
This paper argues for the importance of managing data

processing delays in data stream management systems. Vio-
lations of delay are generally caused by system overloading.
Load shedding and other adaptation strategies have been ex-
ploited to compensate for degraded delays under overload-
ing. We noticed that the strong dynamics such as bursty
arrival pattern of data stream applications require an adap-
tation strategy with excellent transient-state performance
(e.g., fast convergence to steady state), which most of the

current works in this area fail to provide. We proposed a
load shedding framework that leverages various techniques
from the field of control theory. We started by developing
a dynamic model of a steam management system. We then
construct a feedback control loop to guide load shedding
through system analysis and rigorous controller design.

We have implemented our design and performed extensive
experiments on a real-world system - the Borealis stream
manager. It is evident that our approach achieves bet-
ter performance in terms of reduced delay violations over
current strategies that do not consider system status in
decision-making. The control-based strategy is also robust
and light-weight. Finally, we believe our explorations can
give rise to many opportunities to conduct synergistic re-
search between the database and control engineering com-
munities to extend our knowledge in both fields.

Immediate follow-up work includes more experiments on
the Aurora load shedder and more dramatic changes of per-
tuple costs. The idea is to use adaptive control techniques
to capture the internal variations of the system model and
provide better control over the whole system. Our control-
based framework can also be extended in a few directions.
For example, we can improve the quality model by providing
heterogeneous quality guarantees for streams with different
priorities; and multiple quality dimensions can be supported
at the same time by introducing a multi-in-multi-out control
model. We are currently investigating the potential of con-
trol theory in a number of other topics in DBMS research
such as query reoptimization and dynamic resource alloca-
tion in traditional DBMSs.

7. REFERENCES
[1] Niagara Project, http://www.cs.wisc.edu/niagara/.

[2] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel,
M. Cherniack, J.-H. Hwang, W. Lindner, A. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, and S. Zdonik. The
Design of the Borealis Stream Processing Engine. In
Procs. of CIDR, January 2005.

[3] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. B. Zdonik. Aurora: a new model and architecture
for data stream management. VLDB Journal.,
12(2):120–139, 2003.

[4] A. Arasu, B. Babcock, S. Babu, M. Datar,
J. Rosenstein, K. Ito, I. Nishizawa, and J. Widom.
Query Processing, Resource Management, and
Approximation in a Data Stream Management
System. In Procs. of 1st CIDR Conf., 2003.

[5] B. Babcock, S. Babu, M. Datar, and R. Motwani.
Chain: Operator Scheduling for Memory Minimization
in Data Stream Systems . In Proceedings of ACM
SIGMOD ’03, pages 253–264, June 2003.

[6] B. Babcock, M. Datar, and R. Motwani. Load
Shedding for Aggregation Queries over Data Streams.
In Procs. of ICDE Conf., 2004.

[7] D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. Zdonik. Monitoring Streams - A New Class of Data
Management Applications. In Procs. of the 28th
VLDB Conf., pages 84–89, August 2002.

[8] S. Chandrasekaran, A. Deshpande, M. Franklin,
J. Hellerstein, Wei Hong, S. Krishnamurthy,

797

S. Madden, V. Raman, F. Reiss, and M. Shah.
TelegraphCQ: Continuous Dataflow Processing for an
Uncertain World. In Proceedings of 1st CIDR
Conference, January 2003.

[9] Yun Chi, Haixun Wang, Philip S. Yu, and Richard R.
Muntz. Loadstar: A load shedding scheme for
classifying data streams. In Procs. of SIAM Conf. on
Data Mining, 2005.

[10] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi.
Processing complex aggregate queries over data
streams. In Procs. of SIGMOD, pages 61–72, 2002.

[11] G. F. Franklin, J. D. Powell, and A. Emami-Naeini.
Feedback Control of Dynamic Systems. Prentice Hall,
Massachusetts, 2002.

[12] The STREAM Group. STREAM: The Stanford
Stream Data Manager. IEEE Data Engineering
Bulletin, 26(1):19–26, March 2003.

[13] M. Harchol-Balter, M. Crovella, and C. Murta. On
Choosing a Task Assignment Policy for a Distributed
Server System. Journal of Parallel and Distributed
Computing, 59(2):204–228, November 1999.

[14] K.-D. Kang, S. H. Son, and J. Stankovic. Managing
Deadline Miss Ratio and Sensor Data Freshness in
Real-Time Databases. IEEE Trans. on Knowledge and
Data Engineering, 16(10):1200–1216, October 2004.

[15] S. Keshav. A Control-Theoretic Approach to Flow
Control. In Procs. of SIGCOMM, September 1991.

[16] B. Li and K. Nahrstedt. A Control-Based Middleware
Framework for Quality of Service Adaptations. IEEE
Journal of Selected Areas in Communications,
17(9):1632–1650, September 1999.

[17] C. Lu, J. Stankovic, G. Tao, and S. Han. Feedback
Control Real-Time Scheduling: Framework, Modeling,
and Algorithms. Journal of Real-Time Systems,
23(1/2):85–126, September 2002.

[18] C. Olston, J. Jiang, and J. Widom. Adaptive Filters
for Continuous Queries over Distributed Data
Streams. In Procs. of SIGMOD, pages 563–574, 2003.

[19] V. Paxson and S. Floyd. Wide-Area Traffic: The
Failure of Poisson Modeling. IEEE/ACM Transactions
on Networking, 3(3):226–244, 1995.

[20] F. Reiss and J. M. Hellerstein. Declarative Network
Monitoring with an Underprovisioned Query
Processor. In Procs. of ICDE, April 2006.

[21] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack,
and M. Stonebraker. Load Shedding in a Data Stream
Manager. In Proceedings of the 29th VLDB
Conference, pages 309–320, August 2003.

[22] Yi-Cheng Tu, Mohamed Hefeeda, Yuni Xia, and Sunil
Prabhakar. Control-based Quality Adaptation in Data
Stream Management Systems. In Proceedings of
DEXA, pages 746–755, August 2005.

[23] S. Viglas and J. Naughton. Rate-Based Query
Optimization for Streaming Information Sources. In
Procs. of SIGMOD Conf., pages 37–48, June 2002.

[24] W.D.Stanley. Digital Signal Processing. Reston
Publishing Co., 1975.

[25] M. Zhang, T. Madhyastha, N.H. Chan,
S. Papadimitriou, and C. Faloutsos. Data Mining
Meets Performance Evaluation: Fast Algorithms for
Modeling Bursty Traffic. In Proceedings of the 18th

ICDE Conference, pages 507–516, Feburary 2002.

Acknowledgments
The authors would like to thank Ms. Nesime Tatbul, Prof.
Uğur Çetintemel, and Prof. Stan Zdonik from Brown Uni-
versity for their help on the Aurora/Borealis system.

APPENDIX

A. CONTROLLER DESIGN BASED ON
POLE PLACEMENT

In this study, we set the desired convergence rate to three
sampling periods. This means the system, in response to
dynamics, would converge to 1 − 1

e
≈ 63% of the desired

value in 3 control periods and to 98% in 12 periods. We
set the system damping to 1 and set the desired closed-loop
poles to be on the real axis, at 0.7. Thus, the desired closed-
loop characteristic equation (CLCE) is:

(z − 0.7)2 = z2 − 1.4z + 0.49 = 0 (11)

As Eq.(4) shows a first-order system, the controller C(z)
will have one pole and its generic format [11] is

C(z) =
H(b0z + b1)

cT (z + a)
(12)

where b0, b1, and a are controller parameters. Therefore, the
closed-loop transfer function (CLTF) becomes

C(z)G(z)

1 + C(z)G(z)
=

b0z + b1

z2 + (a − 1 + b0)z + (−a + b1)
(13)

and the actual closed-loop characteristic equation is

z2 + (a − 1 + b0)z + (−a + b1) = 0. (14)

Matching the above CLCE to its desired form shown in
Eq.(11), we get the following (Diophantine) equation:

z2 + (a − 1 + b0)z + (−a + b1) = z2 − 1.4z + 0.49 (15)

At the steady state, the CLTF should have a static gain that
equals one, meaning we want the output y to be exactly the
same as yd. This results in the following equality:

b0z + b1

z2 + (a − 1 + b0)z + (−a + b1)

˛

˛

z=1
= 1 (16)

Solving Equations (15) and (16), one can obtain the con-
troller parameters a, b0, and b1.

In summary, the above design results in a closed loop sys-
tem having two poles, both of which are on the positive real
axis at 0.7. Now we can generate the control signal u. Let
U(z) and E(z) be the z-transforms of u and error e, respec-
tively. According to Fig. 10, e is the input and u is the
output respect to the controller, we have

U(z) = C(z)E(z) =
H(b0z + b1)

cT (z + a)
E(z).

Multiplying both sides by (z+a)cT

z·H
, we get

U(z)
cT

H
+

acT

H
U(z)z−1 = b0E(z) + b1E(z)z−1.

By inverse z-transformation, the above leads to the solution
for u as follows:

u(k) =
H

cT
[b0e(k) + b1e(k − 1)] − au(k − 1).

798

