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Abstract. The broadcasting of spatial data together with an index
structure is an effective way of disseminating data in a wireless mo-
bile environment. Mobile clients requesting data tune into a continuous
broadcast only when spatial data of interest and relevance is available on
the channel and thus minimize their power consumption. A mobile client
experiences latency (time elapsed from requesting to receiving data) and
tuning time (the amount of time spent listening to the channel). This
paper studies the execution of spatial queries on broadcasted tree-based
spatial index structures. The focus is on queries that require a partial
traversal of the spatial index, not only a single-path root-to-leaf search.
We present techniques for processing spatial queries while mobile clients
are listening to a broadcast of the tree. Our algorithms can handle clients
with limited memory, trees broadcast with a certain degree of replication
of index nodes, and algorithms executed at the clients may employ dif-
ferent data structures. Experimental work on R*-trees shows that these
techniques lead to different tuning times and different latencies. Our so-
lutions also lead to efficient methods for starting the execution of a query
in the middle of a broadcast cycle. Spatial query processing in a multiple
channel environment is also addressed.

1 Introduction

The broadcasting of spatial data together with an index structure is an effec-
tive way of disseminating data in a wireless mobile environment [2—4, 6]. Mobile
clients requesting data tune into a continuous broadcast only when spatial data of
interest and relevance is available on the channel and thus minimize their power
consumption. A client experiences latency (the time elapsed from requesting
to receiving data) and tuning time (the amount of time spent listening to the
channel). This paper studies the execution of spatial queries by mobile clients
on broadcasted tree-based spatial index structures. The focus is on queries that
require a partial traversal of the spatial index, not only a single-path root-to-
leaf search. Examples of such queries arise in R-trees, R*-trees, quad-trees, or
k-d-trees [8,9].
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Assume that an n-node index tree is broadcast by a server. The server sched-
ules the tree for the broadcast and may or may not be creating the tree. Schedul-
ing a tree for broadcast involves determining the order in which nodes are sent
out, deciding whether and which nodes of the tree are broadcast more than
once in a cycle (i.e., whether replication is allowed within a broadcast cycle),
and adding other data entries to improve performance (in particular the tuning
time). Mobile clients execute queries by tuning into the broadcast at appropriate
times and traverse parts of the broadcasted tree. We assume that mobile clients
operate independently of each other. For the quadtree, k-d-tree, R-tree, and R*-
tree indexes, we consider the execution of range queries that determine all objects
containing a given query point or overlapping a given query rectangle. Typically,
in a range query, more than one path from the root to leaves is traversed. Hence,
a partial exploration of the tree is performed. This feature distinguishes our work
from related papers which consider only root-to-leaf searches [2, 3].

Traversal and partial traversal of an index tree is straightforward when the
mobile client happens to tune in at the beginning of a broadcast cycle and the
client can locally store addresses of nodes to be tuned into later. However, a client
may have to store information of hB nodes, where h is the height of the index tree
and B is the maximum number of children. When memory is limited or a query
starts executing during the on-going broadcast cycle, performance depends on
what information is maintained at a client and how the client makes use of the
information. In Section 3 we propose three different solutions for dealing with
mobile clients having limited memory. Our solutions differ on how a mobile client
decides which data to delete, the degree of replication of nodes in the broadcast,
and the type of data structures employed by the clients. Our experimental work
on real and synthetic data sets is discussed in Section 4. Our results show that
our methods lead to different tuning times and somewhat different latencies. We
also show that being able to handle limited memory effectively results in efficient
methods for starting the execution of a query in the middle of a cycle. Observe
that starting in the middle of a cycle corresponds to having lost all previously
read information.

In Section 5 we consider query processing of broadcasted index trees in a 2-
channel environment. We assume that a mobile client can tune into either of the
channels at each time instance, but that the channel number tuned into needs
to be specified. The use of multiple channels can lead to a significant reduction
in the latency. We present two heuristics which differ in the type of conflict that
can happen when a query is executed and the bounds on the cycle length of the
generated schedule.

2 Assumptions and Preliminaries

Our solutions do not make any assumption on the structure of the tree broadcast.
Trees can range from highly structured (like R*- or B-trees) to random trees.
We use B to denote the maximum number of children of a node, h to denote
the height of the tree, and n to denote the total number of nodes. For any index



node v, we assume the broadcast contains the entries generally present in the
corresponding index structure. This includes an identifier and data of node v
and a list of v’s children. In addition, the addresses of children in the broadcast
schedule are included.

R-tree of size 48, and B =3.
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Fig. 1. A tree and its next entries

The broadcast of one instance of the tree is called a cycle. When the tree is
broadcast in a single channel environment, the cycle length is at least c¢n, for
some constant ¢ > 1. We assume throughout that a broadcasted tree obeys the
ancestor property: when node v is broadcast for the first time in a cycle, the
parent of v was broadcast earlier in the same cycle. Hence, the root is always the
first node broadcast. We say a client ezplores node u when the client tunes into
the broadcast to receive u and examines the entries about u and w’s children.
When none of u’s children needs to be explored further, u is an unproductive
node, otherwise u is called a productive node.

An objective of our work is to minimize two parameters: the tuning time
which counts the number of index nodes explored during one query and the
latency which counts the total number of nodes broadcast by the scheduler dur-
ing the execution of the query. Minimizing the number of unproductive nodes
corresponds to minimizing the tuning time.

As already stated, the scheduler may add additional entries to the broad-
casted nodes. One such entry used in our solutions is next(v): next(v) is the
address of the node in the broadcast after all descendents of v have been broad-
cast. This can be a sibling of v or a higher-degree cousin, as shown in Figure 1.

An index node is viewed as one packet in the broadcast. An alternate way of
measuring would be to fix the packet size and count the number of packets tuned
into (which now contain a number of index nodes). We find an evaluation based
on the number of index nodes more meaningful for comparing our strategies.



Having to tune in for a node is more relevant to the performance than the
number of bytes received for a node.

3 Algorithms for Mobile Clients with Limited Memory

In this section we present three algorithms for executing a query during the
broadcast of an index tree when the mobile client has memory of size s, s < hB.
We assume that each “unit” of memory can store the address of a node and
optionally a small number of other entries. Limited memory implies that a client
may not be able to store all relevant information received earlier and losing data
can increase the tuning time.

The algorithms of Sections 3.1 and 3.2 assume that the index tree is broadcast
in preorder, without replication (i.e., every node appears once in the broadcast
cycle), and with a next-entry for every node. The two algorithms differ on how
they decide what entries to delete when required to free up memory. The index
tree is generated without knowing s and thus different clients can have different
memory sizes. Only the program executed by the client is tailored towards its
s. The algorithm described in Section 3.3 assumes the index tree is broadcast
with node replication. The amount of node replication is determined by s, the
size of the memory. A client with a memory size smaller than the chosen s does
not get the advantage of node replication. Additional entries can be added to
the broadcasted index tree to allow better performance for such clients.

3.1 Using Next Fields

We assume that every mobile client maintains a queue Q. The queue is initially
empty and at any time it contains at most s entries. We assume that deletions
can be done on both ends of the queue. Assume the mobile client started the
execution of a query and is tuning in to receive and explore node v. If v is a
productive node, then let vy,...,vr be the children of v to be explored. Nodes
V1, ..., U are put into ) by the order of their position in the broadcast. For each
node v;, we record the address of v; in the broadcast as well as entry next(v).
Should @ become full, nodes are deleted using FIFO management. After the
exploration of v and possibly its children, the next node to be explored is either
found in the queue or in entry next(v). A high level description of the algorithm
executed by a client is given in Figure 2. Figure 3 shows the traversal of a tree
when the query needs the data stored in leaves 4, 5, 18,20, 34 and 35. For s = 3,
next links are used four times.

Exploring a node v having k children costs O(k) time. Assume v is unpro-
ductive. If the queue is not empty, then deleting the most recently added node
from the queue gives the next node to tune into. This node had a productive
parent, but it can be productive or unproductive. When the queue is empty, we
tune in at next(v). This node may have had an unproductive parent. For a given
query, there exist scenarios for which a client tunes in at ©(B"~ %) unproductive
nodes.



Algorithm ExploreQ(v)
(1) if node v is a data node then
determine the relevance of the data to the query

else

if node v is a productive node then
let v1,v2,...,vr be the children of v to be explored, arranged
in the order they appear in the broadcast;
insert children vy, v2,..., vt into queue @ of size s in order of broadcast,
deleting using first-in/first-out rule;
ExploreQ(v1)
endif

endif

(2) if queue Q is empty then
ExploreQ(next(v))
else

let w be the node returned when deleting the most recently added
node from Q;
ExploreQ(w)
endif
End Algorithm ExploreQ

Fig. 2. Client algorithm for query execution during a tree broadcast with next fields
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Fig. 3. Processing a query issued at the begin of the cycle and using next-entries, s = 3.
The entries below the tree show queue @ after the exploration of the corresponding
node.



When a mobile client tunes into the broadcast at an arbitrary time during
the cycle, it starts executing the program with an empty queue. The client needs
to remember the first node obtained after tuning in. Let f be this node. When
node f is received again in the next broadcast cycle, the query terminates (if
it did not already terminate). Hence, the latency experienced is at most one
cycle length. Next-fields allow a client to reach parts of the tree at higher levels
without having seen the higher level nodes and without having to tune in and
explore every node. Tuning time can be minimized by skipping the on-going
cycle and beginning the processing of the query at the start of the next cycle.

3.2 Using an exploration-based cost function

The previous algorithm uses queue @ to hold the most recent nodes identified
by the client as index nodes to be explored. This section describes a solution
that keeps nodes based on a priority. For a node u, let cost(u) be the number
of children of u not yet broadcast in the on-going cycle and that do not need
to be explored by the query. Quantity cost(u) measures the loss of u in terms of
the additional unproductive nodes a client needs to tune into in case the node is
removed from the queue. The tree is scheduled for broadcast as in the algorithm
of Section 3.1; i.e., we assume that every node in the broadcast has a next-entry.

We discuss the algorithm using the implementation underlying our experi-
mental work. In this implementation, we use two queues: a queue @ in which
nodes are added in the order they are encountered during the broadcast and a
priority queue P in which nodes are arranged according to cost-entries, along
with pointers between entries for a node in the two queues. The reason for using
two queues is simplicity. One could use a balanced tree structure built on the
node id’s and augmented with a cost entry. This would support all operations
needed in O(log s) time. However, we get the same asymptotic time and a simpler
implementation using two queues, with P implemented as a heap.

The entry for node v in Q contains the following:

node v’s id

the list of children of v not yet broadcast and to be explored
next(v)

— a pointer to node v in queue PQ

If node v is in @ with k children, we consider node v to be using k + 1 memory
locations. Node v has an entry in P(@) containing cost(v) and a pointer to node
v in queue Q.

When a mobile client tunes in for node v, it explores node v. When v is pro-
ductive with children vy, ..., v, we proceed as described in Algorithm ExploreDQ
given in Figure 4. Observe that when there is not enough memory to add node
v and its k children to the queues, we delete nodes along with the information
of children to be explored based on cost-entries. Algorithm FindNextNode de-
scribes how the next node to be explored is determined. In two situations the
next node explored is next(v), namely when queue @ is empty or when v’s par-
ent is no longer in the queue P@. When @ is not empty and v’s parent is still



Algorithm ExploreDQ(v)
(1) if node v is a data node then
determine the relevance of the data to the query
else
if node v is a productive node then
let v1,v2,...,v; be the children to be explored, arranged in the order they
appear in the broadcast:
(1.1) compute cost(v);
(1.2) insert v into PQ with cost(v);
(1.3) while not enough space for v and its k children in the queues do
(a) determine node » in PQ having minimum cost;
(b) delete entries related to u from the queues
endwhile
(1.4) insert v and v’s child list into @
endif
endif
(2) v = FindNextNode(v);
(3) ExploreDQ(u)
End Algorithm ExploreDQ

Algorithm FindNextNode(v)
if queue Q is empty then
return next(v)
else
let v be the node returned when deleting the most recently added node from @;
if u is not the parent of v then
return next(v)
else
delete v from the child list of » and update cost(u);
if the child list of u is not empty then
return the first node in the child list of u
else
(1) delete entries related to u from the queues;
(2) FindNextNode(u)
endif
endif
endif
End Algorithm FindNextNode

Fig. 4. Client algorithm for query execution during the tree broadcast using next fields
and two queues.



present, the next node to be explored is determined from the child list of v’s
parent, as described in Figure 4.

Adding a node with k productive children to the queues costs O(k) time
for queue @ and O(logs) time for queue P(Q. The updates to the queues are
O(1) per update for queue ) and O(logs) time for queue P(Q. Observe that
cost-entries for nodes in PQ) can only decrease.

When a client tunes into the broadcast cycle at some arbitrary point, the
algorithm is initiated with empty queues. Like the previous algorithm, a client
needs to remember the first node seen in order to terminate the query with
a latency not exceeding the length of one cycle. Starting the algorithm in an
on-going cycle reduces the benefit gained by an exploration-based cost metric.

3.3 Broadcasting with replication

Replication can be used to improve broadcast performance, as demonstrated in
[4,6]. The algorithm described in this section replicates selected nodes within a
broadcast cycle. The replication of nodes increases the cycle length and can thus
increase the latency. Again, assume that a client uses a queue of maximum size
s. Our experimental work shows that replication achieves smaller tuning time
for queries starting their execution in the middle of a cycle (in comparison to
the two algorithms presented in the previous sections).

The tree is scheduled for broadcast using the following format. For each node
that is the root of a subtree of height |s/B], the broadcast contains the nodes in
the subtree in preorder traversal with no replication. Consider a node u being the
root of a subtree of height larger than |s/B]. Assume the children are vy, ..., v,
and the schedules for the subtrees rooted at these children have already been
generated. Let S; be the schedule of the subtree rooted at child v;, 1 < i < k.
Then, the schedule for the subtree rooted at node w is uS;uSsu...uSy. Figure 5
shows such a schedule when the nodes of the first three levels are replicated
(nodes on the last two levels appear exactly once in the broadcast cycle). The
number of times a node is replicated is equal to its number of children. Hence,
if the nodes on the first k levels are replicated, the total number of replicated
nodes in the broadcast is equal to the number of nodes on the first k + 1 levels
of the tree minus 1. For the tree in Figure 5 this comes to 19 nodes.

All nodes in the broadcast cycle have one additional entry, next_repl. Entry
next_repl(v) gives the address of the next relevant replicated node corresponding
to the closest ancestor of v. Figure 5 shows the next_repl-entries in the array
representing the schedule. For example, next_repl(13) is the third copy of node
1 for both copies of node 13. Observe that if queries were to start at the begin of
the cycle and clients were to have the same amount of memory, next_repl-entries
would have to be added only for the nodes on the replicated levels.

Nodes to be explored are handled as in Section 3.1: they are put into queue
@ according to their arrival in the cycle and are deleted when space is need
according to the FIFO rule. A subtree rooted at a node not replicated can be
explored without a loss of productive nodes. A loss of productive nodes happens
only for replicated nodes or when the query starts in the middle of the cycle.



When a node v has been explored and () is empty, we tune at node next_repl(u).
When this node arrives, we determine which of its children yet to arrive in the
broadcast cycle need to be explored and put those into Q).

R-tree of size 48, B=3.
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Fig. 5. Tree and broadcast schedule with node replication for s = 3; pointers in schedule
indicate next_repl-entries.

In the following, we compare the replication-based broadcast with the algo-
rithms using next-fields. Consider the scenario in which v is a productive node
having B children. Assume that p of these children are productive nodes. Once
the current copy of node u has been lost from the queue, we access its next copy
in the broadcast. This next copy allows us to determine the productive children
of u. If node u is lost B times, the broadcast tunes in for each of the B copies
of u. Compared to the situation when no node is lost, the replication algorithm
spends additional O(B?) time (O(B) per lost instance of node u) on “rediscover-
ing” the productive children. The algorithm tunes in at B additional nodes (the
copies of u). Consider now the algorithm of Section 3.1. Assume node w is lost
and its p productive children are determined using next-fields. The client will
tune in for every child of u. This means it tunes in at B — p unproductive nodes
and the increase in the tuning time is proportional to the number of unproduc-
tive children of u. If each child of v has B children itself, the computation cost
is O(B?). If u had not been lost, it would only be O(pB).



In this example, replication does not reduce the tuning time and it increases
computation costs and latency. Intuitively, one expects replication of nodes to
reduce the tuning time. An advantage of replication is that even after a node
has been lost, we can recover the information about the children. In some sense,
we are able to restore data lost. As will be discussed in more detail in Section 4,
the replication approach results in small tuning time, but the latency depends
on how queries starting within a cycle are handled.

4 Experimental Result for Limited Memory

Our experimental work focuses on the execution of spatial range queries on
broadcasted R*-trees. We compare the performance of five algorithms: Algo-
rithms NolInfo, Next, Double, Replical, and Replica2. Algorithm NoInfo
assumes the tree is broadcast without additional entries and without replica-
tion. A mobile client maintains nodes to be explored as long as it has memory
available. When such nodes are lost, the client is forced to tune in at every node
until information accumulated allows again a more selective tuning. We include
this approach to highlight the gain in terms of latency and tuning time for the
other four algorithms. Algorithm Next corresponds to the solution described
in Section 3.1. Algorithm Double corresponds to the priority-based approach
described in Section 3.2. We include two implementations of the replication ap-
proach: Algorithms Replical and Replica2. In Replical every node is broad-
cast with its next_repl-entry and in Replica2 the next-entry is added to each
node. The availability of nezt-entries leads to significantly better latencies when
few nodes are replicated.

The R*-trees were generated using code available from [1]. Trees were created
through the insertion of points (resp. rectangles). We considered trees having
between 5,000 and 150,000 leaves and a fanout (i.e., number of children) between
4 and 30. Page sizes used ranged from 128 to 512 bytes. Point and rectangle
data were created either by using a uniform distribution or data from the 2000
TIGER system of the U.S. Bureau of Census. For R*-trees based on random
point data, points were generated using a uniform distribution within the unit
square. For random rectangle data, the centers of the rectangles were generated
uniformly in the unit square; the sides of the rectangles were generated with a
uniform distribution between 107° and 10~2. For 2000 TIGER data, we used
data files on counties in Indiana and extracted line segments from the road
information. These line segments were used to generate rectangles (enclosed
minimum bounded rectangle) or points (center of line segment).

Our first set of experiments is for an R*-tree with 10,000 leaves corresponding
to random points and B = 12. The tree has a height of 6 and 11,282 nodes. The
data shown is for a fixed tree and the queries vary as follows. A mobile client
tunes in at a random point in the broadcast cycle and starts executing a rectangle
query. The coordinates of the rectangle center of a query are chosen according
to a uniform distribution and the sides are uniform between 0.002 and 0.5. Data



Fig. 6. Latency and tuning time comparison for an R*-tree with B
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reported is the average of 100 queries and each query is issued at 50 different
time points within a broadcast cycle.

Figure 6(a) shows a typical comparison of the latency and tuning time ex-
perienced by the five algorithms. The z-axis reflects increases in the memory.
A memory of, say 19, means there is space for the address of 19 index nodes
and for node-related entries needed by the algorithm (this number varies only
slightly between different algorithms). The latency is influenced by the starting
point of the query and the length of time a query continues executing when no
more relevant data is to be found. Algorithm Double consistently achieves the
best latency. A reason for this lies in the fact that Algorithm Double is not so
likely to delete nodes whose loss is “expensive”. For the latency this means nodes
whose loss results in extending the time for recognizing the termination of the
query. For the tuning time this means nodes whose loss results in unproductive
nodes to be explored. The price for this is the maintenance of two queues by a
mobile client. As expected, the two replication-based algorithms have a higher
latency for small memory sizes. Note that for the graphs shown the s chosen by
the scheduler is equal to the memory size of the client. As s increases, the latency
of Replica2 behaves like that of Algorithm Next and the latency of Replical be-
haves like that of Algorithm Nolnfo. This happens since Replical does not have
next-entries needed to reduce the latency of a query issued within a cycle.

For the tuning time plot of Figure 6(b) we omit Algorithm NoInfo. It averages
6,000 nodes and changes little as memory size changes. The tuning times of
the other four algorithms show the impact of the optimizations done by the
algorithms. Algorithm Next has the highest tuning time (and thus the highest
number of unproductive nodes). The tuning time for Replica2 reflects that as
memory increases and replication decreases, the tuning time becomes identical
to that of Next. The tuning time of Replical reflects that as memory increases
and replication decreases, a query issued in the middle of the cycle may do very
little processing in the on-going cycle. Completing the query in the next cycle
results in low tuning time, but higher latency.

Figure 7 shows latency and tuning time for rectangles generated from line
segments associated with roads in Marion County. The underlying data is shown
in Figure 8. This non-uniform data shows the same trend and characteristics as
discussed for random data sets.

The remainder of this section shows results obtained for random data sets.
However, the conclusions hold for all Tiger data we considered. We start with
a comparison of the effect of different starting times of a query. The results
given are for an R*-tree having 150,000 leaves (corresponding to points) and
B = 12. Figure 9 compares the unproductive nodes for queries issued in (a) at
the first leaf and (b) at the begin of the broadcast. The queries correspond to
smaller rectangles than in the previous figures: the sides range from 0.001 to 0.25.
The figure echos the trend already discussed for the different algorithms. Note
that there is no difference in the tuning time between the two replication-based
solutions when the query starts at the beginning of a broadcast cycle. Starting a
query at a leaf results in higher tuning times and more unproductive nodes for
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Fig. 7. Latency and tuning time for rectangle queries on an R*-tree with B = 12 and
75,431 leaves corresponding to road segments in Marion County, Indiana.
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all algorithms. As memory increases to the point that no (or very few) nodes to
be explored are lost, the differences in the unproductive nodes among the four
algorithms become evident. We observe that Replical achieves the best results,
but one pays a price in the form of a higher latency. Algorithm Double performs
well not because it keeps expensive nodes, but because it stores nodes together
with its children (recall that a node in queue @ has a list of productive children).
We point out that as the average size of the rectangle query decreases, the ratio
of unproductive nodes to the tuning time increases.

Double (rectangle query on a point data set of size 150,000) Double (rectangle query on a point data set of size 150,000)
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Fig. 10. Tuning time and unproductive nodes for Algorithm Double for 5 different
B-values on trees with 150,000 leaves.

We conclude this section with a comparison of different B-values for trees
with a fixed number of leaves. When the broadcasted index tree is generated
explicitly for the broadcast, the way the tree is formed should be influenced
by what features of the tree result in better latency and tuning times. For all
algorithms we observed that, as B increases, the tuning time decreases. At the
same time, as B increases, we see an increase in the number of unproductive
nodes. This behavior is observed independent of the size of the memory at the
mobile client, as shown in Figure 10 for Algorithm Double.

5 2-Channel Broadcasting

The availability of multiple channels can lead to a significant reduction in the
latency [7,10]. The assumption is that a mobile client can tune into any one of
the channels at each time instance and that the channel number tuned into needs
to be specified. However, poorly designed algorithm for multiple channels may
result in an increase in the latency and tuning time. In this section we present
two methods for scheduling a spatial index tree in a 2-channel environment. The
broadcast schedules we describe assume that a node is broadcast only once in a



cycle (i.e., no node replication takes place). The two methods differ in the type
of conflict that can happen when a query is executed by a client and the bounds
on the cycle length of the generated schedule. The actions taken by a client when
executing a query are extensions of the work described in Sections 3.

Before giving details on the two algorithms, we state assumptions and defi-
nitions used. The tree scheduled for broadcast can have arbitrary structure. We
assume that every index node has at least two children and that each index node
has the entries of an R*-tree. The queries executed by a client are either point- or
range-queries. We note that scheduling a balanced tree is easier than scheduling
an arbitrary tree. Since our results hold for arbitrary trees, we present them in
this more general framework.

Assume that an n-node tree T is broadcast in a 2-channel environment.
Generating a schedule of cycle length k, k > n/2, corresponds to generating an
assignment of nodes to channel positions 1 and k. Clearly, placing two nodes in
the same channel position in the cycle can cause a conflict. A conflict happens
when a query needs to explore both nodes placed in the same position. Since
only one node can be accessed, the client needs to wait for the next broadcast
cycle to explore the second node and latency can increase.

We distinguish between two forms of conflicts, a data-conflict and a query-
conflict. A data-conflict occurs when channels 1 and 2 contain nodes whose
corresponding rectangles are not disjoint. A query-conflict occurs when channels
1 and 2 contain nodes whose corresponding rectangles are disjoint, but both
nodes are to be explored by a mobile client executing a query. Our presented
methods are heuristics minimizing data-conflicts, cycle length, and latency. Our
results complement the work on achieving maximum parallelism for R-trees [5]
where the goal is to maximize data-conflicts since they minimize access to disks.

5.1 Achieving optimum cycle length

This section presents an algorithm generating a 2-channel broadcast schedule
of minimum cycle length (i.e., n/2) based on a weighted traversal of the tree.
The latency of any query is bounded by n, the number of nodes in the tree.
The schedule satisfies the ancestor property and it can contain data-conflicts. In
addition, the schedule satisfies the one-switch property which captures the fact
that a path from root r to any leaf switches channel positions at most once.
More precisely, let P be the path from r to a leaf v. Then, either all nodes on P
are assigned to channel 1 positions or there exists a node x, such that the nodes
on the path from r to z are assigned to channel 1 positions and the remaining
nodes on the path are assigned to channel 2 positions. One can show that when
the broadcast schedule has the one-switch property, the latency of a query is
bounded by n (i.e., a query is completed within two cycles).

To determine the assignment of nodes to channel positions in the channel, the
algorithm performs a preorder traversal of T' considering the children of a node
in the following order. For a node u with children u, ..., u;, let size(u;) be the
number of nodes in the subtree rooted at node u;, 1 < i < [. The children of u are
traversed in order of non-increasing size-entries. Assume the preorder numbering



of this traversal has been generated. Let m be the node having received preorder
number [n/2]. Let P be the path from r to m with P =<1 =p;1,pa,...,pr =
m >. In the broadcast schedule, nodes on the path from r to m are assigned to
k consecutive channel 1 positions, positions 1 to k. The remaining nodes with
preorder numbers between 1 and [n/2] are assigned to consecutive channel 1
positions immediately following position k. Nodes with a preorder number larger
than [n/2] are assigned to consecutive channel 2 positions starting at position
2 and ending at position [n/2]|. Nodes are placed into channel 2 by considering
subtrees rooted at nodes whose parent is on path P, handling these subtrees by
decreasing preorder numbers, and within each subtree placing nodes according
to increasing preorder numbers. Figure 11 shows the channel assignments for
one tree. In this example, m corresponds to the node labeled 35; we have k = 4
and nodes r, 24,25, 35 form path P.
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Fig.11. A tree with n = 71 and its 2-channel schedule with a cycle length of 36; the
integers next to the nodes are the weighted preorder numbers.

Let S be the broadcast schedule generated by this procedure. It is easy to
see that S satisfies the one-switch property and that the cycle length is [n/2].
The following theorem shows that the ancestor property holds.

Theorem 1 Broadcast schedule S satisfies the ancestor property.

Proof: Let node m and path P be defined as above. By traversing path P from
root r towards m we show that a node placed on channel 2 always has its parent
placed earlier. Assume that we are at node p;, i > 2. If the number of nodes
already placed in channel 2 positions (these nodes are not in the subtree rooted
at p;) is at least 4 — 1 (and this was true for all smaller i’s), the ancestor property
is satisfied so far.



Assume now that the number of nodes so far placed in channel 2 positions
and not in the subtree rooted at p; is smaller than ¢ — 1. The node placed at
position ¢ in channel 2 would not have its parent placed earlier, thus violating
the ancestor property. We show that this situation cannot arise. Consider the
smallest 4 for which this situation occurs. Node p; ; has no child assigned to
a channel 2 position. Let  be the number of nodes in the subtree rooted at
pi—1 assigned to channel 1 positions - excluding node p;_; and any nodes in the
subtree rooted at p;. Let y be the number of nodes in the subtree rooted at p;,
with y; nodes assigned to channel 1 and y» nodes assigned to channel 2. From
the way the preorder numbers are generated, we have x > y. Finally, let a be
the total number of nodes assigned to channel 1 before node p;_1 was reached.
Then,i+a+2x+y; =n/2and i —1+ys =n/2. Hence, a +x +y1 = y2 — 1,
which is not possible for a > 0 and x > y; + y2. Hence, such a situation cannot
occur and the ancestor property is satisfied for the schedule. O

The schedule generated does not place nodes with an awareness of data-
conflicts. Indeed, the algorithm is a general method for assigning nodes of a tree
to two channels satisfying the ancestor and one-switch property. However, the
way assignments of subtrees to channels are made results in a good latency even
when data-conflicts occur. A point- and range-query starting at the begin of a
cycle is always completed within two cycles. Thus, for R*-trees, the latency is no
worse than the cycle length in a 1-channel environment. In many situations, it
will be better. A client executing a query needs to maintain nodes to be explored
according to their position in the channel. If there is a data-conflict, the first
broadcast cycle explores the node in channel 1. The subsequent broadcast cycle
explores remaining nodes in channel 2. The memory needs for a client are the
same as for the 1-channel case. This means that a client may need hB memory in
order to be able to store all the relevant index nodes to be explored. When clients
have limited memory, the approaches described in Section 3 can be employed
with minor modifications.

5.2 Broadcasting without data-conflicts

In this section we describe an algorithm which generates, from a given index tree
T, a 2-channel broadcast schedule without data-conflicts. Using this schedule, a
mobile user can execute a point query in one cycle and a range query in at most
two cycles. The cycle length depends on the amount of overlap between index
nodes. Within a cycle, every channel 1 position is assigned a node. Whether a
channel 2 positions contains a node depends on whether the algorithm was able
to identify subtrees whose corresponding regions have no overlap.

Assume T is an R-tree with root r. The scheduling algorithm assigns root
r to the first position in channel 1 and then considers the children of r. Let
v1,---,v be these children. An overlap graph G = (V, E) is created as follows:
V ={vi,---,u} and (v;,v;) € E iff the rectangles corresponding to v; and v;
overlap , 1 < 4,j < k. For a node v; € V, let size(v;) be the number of nodes
in the subtree rooted at v;. We use G to determine an independent set I.S of



maximal size. For the algorithm to use the independent set, set I.S needs to have
the following two properties:

1. |IS| > 2 and

2. for all v; in IS, size(v;) < G, where m =} . ;¢ size(v;).

If such an independent set 1S exists, the algorithm assigns the nodes in the
subtrees rooted at the nodes in IS to the two channels. The assignment is such
that every channel receives m/2 nodes. We first arrange the nodes in I.S by non-
increasing associated size-entries. Assume that j — 1 nodes of IS have already
been handled and let v; be the j-th node. Let I; and l> be the last channel
positions filled in channels 1 and 2, respectively. When starting to process an
independent set, we have Iy = l,. Without loss of generality, assume Iy < la.
Then, node v; and all nodes in the subtree rooted at v; are assigned to channel
1 positions, starting with position /; + 1. The nodes in the subtree are assigned
using a preorder numbering of the nodes (within the subtree). After all |IS]
nodes have been assigned, let I; and [; be the last channel positions filled in
channels 1 and 2, respectively, Iy < lo. If [y = I3, we are done processing the
independent set. If I; # Iy, let I — I3 = € and let v, be the last node in IS
placed into channel 2. The first § nodes in the subtree rooted at node v, are
reassigned to the first positions in channel 1 (first with respect to the processing
of set IS). This reassignment achieves l; = [, maintains the ancestor property
and the one-switch property.

The nodes of graph G not in the independent set IS form the new graph G.
The process of finding a maximal independent set continues until G is empty or
no such set can be found. Assume that this situation occurred and G is not empty.
Let wy,---,w; be nodes in G and let [y =I5 be the last channel positions filled.
The algorithm next assigns nodes wy, - - -, w; to I channel 1 positions starting at
position /1 +1. The corresponding channel 2 positions receive no node assignment.
Next, consider the children of wy, - - - ,w; in the same way as the children of root r
were considered. The algorithm continues this process until all nodes are assigned
to channel positions.

Clearly, the cycle length depends on the number of nodes whose rectangles
overlap. An extreme case occurs when all nodes are assigned to channel 1 po-
sitions. The best cycle length possible is n/2. Since there are no data-conflicts
in the generated broadcast schedule, a client can execute a point query in a sin-
gle cycle. It is easy to show that the broadcast schedule satisfies the one-switch
property and that a range query can be executed in at most two cycles. However,
the generated broadcast may result in a large number of paths leading from root
r to leaves and switching channels. To execute a range query, client may need
to store O(n) nodes to be explored in the next cycle. In contrast, the previous
schedules require O(hB) space. We are currently exploring ways to reduce the
space requirements for data-conflict free schedules. Experimental work measur-
ing the latency and tuning time as well as the number of data-conflicts for both
2-channel algorithms is on-going.



6 Conclusions

We presented algorithms for scheduling a spatial index tree for broadcast in
a 1- and 2-channel environment. The generated broadcast schedules differ on
whether nodes are broadcast once or multiple times in a cycle and the choice of
entries added by the scheduler. Mobile clients execute a spatial query by tuning
into the broadcast. The algorithms executed by the clients aim to minimize la-
tency and tuning time. They depend on the type of broadcast as well as on the
client’s available memory and chosen data structures. Our experimental work on
real and synthetic data shows the tradeoffs and performance differences between
the algorithms and broadcast schedules. All our solutions achieve a significant
improvement over a straightforward broadcast without additional entries. Our
experimental work shows that broadcast schedules using node replication achieve
smaller tuning times for queries that begin during a cycle. We also show that
achieving good performance when tuning-in during a cycle is related to process-
ing a query with limited memory at the client.
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