
Rights Protection for Discrete Numeric Streams
Radu Sion, Member, IEEE, Mikhail Atallah, Fellow, IEEE, and Sunil Prabhakar, Senior Member, IEEE

Abstract—Today’s world of increasingly dynamic environments naturally results in more and more data being available as fast

streams. Applications such as stock market analysis, environmental sensing, Web clicks, and intrusion detection are just a few of the

examples where valuable data is streamed. Often, streaming information is offered on the basis of a nonexclusive, single-use

customer license. One major concern, especially given the digital nature of the valuable stream, is the ability to easily record and

potentially “replay” parts of it in the future. If there is value associated with such future replays, it could constitute enough incentive for a

malicious customer (Mallory) to record and duplicate data segments, subsequently reselling them for profit. Being able to protect

against such infringements becomes a necessity. In this work, we introduce the issue of rights protection for discrete streaming data

through watermarking. This is a novel problem with many associated challenges including: operating in a finite window, single-pass,

(possibly) high-speed streaming model, and surviving natural domain specific transforms and attacks (e.g., extreme sparse sampling

and summarizations), while at the same time keeping data alterations within allowable bounds. We propose a solution and analyze its

resilience to various types of attacks as well as some of the important expected domain-specific transforms, such as sampling and

summarization. We implement a proof of concept software (wms.*) and perform experiments on real sensor data from the NASA

Infrared Telescope Facility at the University of Hawaii, to assess encoding resilience levels in practice. Our solution proves to be well

suited for this new domain. For example, we can recover an over 97 percent confidence watermark from a highly down-sampled (e.g.,

less than 8 percent) stream or survive stream summarization (e.g., 20 percent) and random alteration attacks with very high confidence

levels, often above 99 percent.

Index Terms—Rights protection, discrete streams, sensor networks, watermarking.

�

1 INTRODUCTION

D igital Watermarking as a method of Rights Assessment
deploys Information Hiding to conceal an indelible

“rights witness” (“rights signature,” watermark) within the
digital Work to be protected. The soundness of such a
method relies on the assumption that altering the Work in
the process of hiding the mark does not destroy the value of
the Work, and that it is difficult for a malicious adversary
(“Mallory”) to remove or alter the mark beyond detection
without destroying the value of the Work. The ability to
resist attacks from such an adversary (mostly aiming at
removing the embedded watermark) is one of the major
concerns in the design of a sound watermarking solution.

In this paper, we introduce and study the problem of
watermarking discrete (sensor) streams data, which, to the
best of our knowledge, has not been addressed. Streaming
data sources represent an important class of emerging
applications [4], [6]. These applications produce a virtually
endless stream of data that is too large to be stored directly.
Examples include output from environmental sensors such as
temperature, pressure, brightness readings, stock prices, etc.
Recent efforts in the broader area of streaming data deal with
the database challenges of its management [7], [9], [12], [15].

Our work on discrete/itemized data types (e.g., [21],
[22], [23]) and related efforts by Agrawal [1], Kiernan and

Agrawal [14], and Li et. al. [16] all rely upon the availability
of the entire data set during the watermarking process.
While this is generally a reasonable assumption, it does not
hold true for the case of streaming data [4]; since the
streamed data is typically available as soon as it is
generated, it is desirable that the watermarking process be
applied immediately on subsets of the data. Additionally,
the attack and transformation models in existing research
does not apply here. For example, a process of summariza-
tion would defeat any of the above schemes. Yet, another
difference from previous research is the lack of a “primary
key” reference data set (an essential, required, part in both
[23] and [14]). Due to these differences, earlier work on
watermarking relational data sets is not applicable to
streams.

Let us understand now why watermarking streaming
data important. After all, could we not simply watermark
the data once it is stored? This surely would work and
enable rights protection for the stored result. But, it would
not deter a malicious customer (Mallory), with direct stream
access, to duplicate segments of the stream and resell them
or simply restream the data for profit. The main rights
protection scenario here is to prevent exactly such leaks
from a licensed customer.

Our contributions include

1. the proposal and definition of the problem of
watermarking sensor streams,

2. the discovery and analysis of new watermark
embedding channels for such data,

3. the design of novel associated encoding algorithms,
4. a proof of concept implementation of the algorithms,

and
5. their experimental evaluation.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 5, MAY 2006 1

. R. Sion is with the Department of Computer Sciences, Stony Brook
University, Stony Brook, NY 11794.
E-mail: sion@cs.stonybrook.edu.

. M. Atallah and S. Prabhakar are with the Department of Computer
Sciences, Purdue University, 250 N. University Street, West Lafayette, IN
47906. E-mail: {mja, sunil}@cs.purdue.edu.

Manuscript received 27 June 2005; revised 20 Oct. 2005; accepted 1 Nov.
2005; published online 17 Mar. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0248-0605.

1041-4347/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

The algorithms introduced here prove to be resilient to
important domain-specific classes of attacks, including
stream resampling, summarization (replacing a stream
portion by its average value) and random changes. For
example, sampling the data stream down to less than
8 percent still yields a court-time confidence of watermark
embedding of over 97 percent. Summarization (e.g.,
20 percent) and random data alterations are also survived
very well, often with a false-positive detection probability of
under 1 percent.

The paper is structured as follows: Section 2 outlines
the major challenges in this new domain. It proposes an
appropriate data and transform model, discusses asso-
ciated attacks, and overviews related work. In Section 3,
an initial solution is provided. Further resilience-enhan-
cing improvements and attack handling capabilities are
gradually introduced in Section 4. Section 5 analyzes the
ability to convince in court to survive attacks and natural
domain transformations. Section 6 presents wms.*, a
proof-of-concept Java implementation of our solution.
Our experimental setup and results are introduced.
Section 7 concludes.

2 CHALLENGES

2.1 The Adversary

As outlined above, the nature of most “fast” time-series
data applications imposes a set of strict requirements on
any on-the-fly data processing method, such as water-
marking. For one, it has to be able to keep up with the
incoming data rate and, the fact that only a finite window of
memory (e.g., of size $, see below) is available for
processing makes certain history-dependent computations
difficult or simply impossible. At the same time, metrics of
quality can only be handled within this space; any
preservation constraints can be formulated only in terms
of the current available data window. Including any history
information will come at the expense of being unable to
store as much new incoming data. In summary, the nature
of this new domain is such that only a limited amount of
time is available to be spent in processing each incoming
data item and only a limited number of such items can be
considered at a time (limited window).

Moreover, the effectiveness of any rights protection
method is directly related to its ability to deal with normal
domain specific transformations as well as malicious
attacks. There are several transforms relevant in a streaming
scenario, including the following: (A1) summarization,
(A2) sampling, (A3) segmentation (we would like to be
able to recover a watermark from a finite segment of data
drawn from the stream), (A4) linear changes1 (there might
be value in actual data trends, that Mallory could still
exploit, by scaling the initial values), (A5) addition of
stream values, and (A6) random alterations.

While we discuss most of these and other attacks in the
next sections, let us note here that a scaling attack (A4) can
be handled by an initial normalization step, e.g., yielding
values in the ð�0:5; 0:5Þ interval. If the data distribution is
assumed to be known, normalization can also be easily

performed at detection time. If data distribution is not
known, then we propose an initial “discovery” run in which
data is simply read and a reference data distribution is
constructed and updated on the fly. This will yield a certain
data-dependent inaccuracy in the initial phases of detection,
but will likely quickly converge as more data is read. If
detection is performed offline on a static segment of data,
normalization is eased by the ability to read the data
multiple times. In the following, unless specified otherwise,
we consider this normalization step to have been per-
formed, yielding a normalized version of the stream, with
values in the interval ð�0:5; 0:5Þ. To survive sampling and
other minor stream transformations, several improvements
to the normalization process are proposed in Section 3.2.
With respect to (A5), Mallory is bound to add only a limited
amount of data (in order to preserve the value in the
original stream) and these new values are to be drawn from
a similar data distribution, lest they become easy to identify
in the detection process as not conforming to the known
original distribution. Also, it can be seen that (A6) is
naturally modeled by a combination of (A2) and (A5).

Apparently, data resorting might be also of concern as an
attack. We claim, however, that in a significant number of
scenarios, if value is to be found in the stream, it is assumed to
lie in two aspects of it: the data values and their relative
ordering. In other words, in many applications, a recorded
stream (even sampled) is likely valuable if its replay preserves
the relative ordering of the values (with exception of some
extreme cases). Reordering the sequence of values in the
stream is going to significantly alter its core value. For
example, consider the case of stock market data. If the
evolution of a given stock is modeled by a stream of values, a
recording of it is only valuable if the sequence ordering is
preserved. Also, significant on-the-fly data resorting, is
simply not possible given the finite processing window and
speed assumptions. Here, we consider data resorting to
significantly alter the core value of the data set, not a
successful attack choice Mallory would consider. Our method
does however handle minor data resorting gracefully.

2.2 Model

For the purpose of simplicity, let us define a data stream as
an (almost) infinite timed sequence of (x½t�) values
“produced” by a set of data sources of a particular type
(e.g., temperature sensors and stock market data). x½t� is a
notation for the value yielded by our source(s) at time t.
Unless specified otherwise, let us denote a stream as ðx½�; &Þ,
where & is the number of incoming data values per time unit
(data rate).2

While a time-stamp t can be assigned naturally to each and
every data value when produced by a data source, it often
becomes irrelevant after such domain-specific transforma-
tions as sampling and summarization which destroy the exact
association between the value x½t� and the time it was initially
generated, t. Thus, the notation x½t� is merely used to
distinguish separate values in the stream and is not intended
for suggesting the preservation of the time-stamp-value in the

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 5, MAY 2006

1. Taken care of by the initial normalization step.

2. The proposed solution does not rely on any characteristic of the actual
stream data rate. For space and simplicity purposes, in this paper, we are
discussing streams with fixed data rates.

resulting stream (which is ultimately just a sequence of

values).
Data Model. One assumption underlying this solution is

that the the stream data is assumed to tolerate a small

number of alterations to its values’ least significant bits

without significant degradation of its overall worth. On the

other hand, any large number of alterations is assumed to

render the stream data unusable.
Processing Model. Any stream processing is necessarily

both time and space bound. The time bounds derive from

the fact that it has to keep up with incoming data. We are

going to model the space bound by the concept of a window

of size $. At each given point in time, no more than $ of the

stream (x½t�) values (or equivalent amounts of arbitrary

data) can be stored locally, at the processing point. Unless

specified otherwise, as more incoming data becomes

available, the default behavior of the window model is to

“push” older items out (i.e., to be transmitted further, out of

the processing facility) and “shift” the entire window (e.g.,

to the right) to free up space for new entries.
Definitions. For the purpose of the current framework,

we define the uniform random sampling of degree � of a

stream ðx½�; &Þ as another stream ðx0½�; & 0Þ with

& 0 ¼ &

�

such that for each sample data item x0½t� (considered for the

purpose of this definition as uniquely defined by its value

and its timestamp), there exists a contiguous subset of ðx½�Þ,
ðx½t1�; x½t2�Þ such that

x0½t� 2 fx½i� : t1 � i � t2g

and

fx0½t� 1�; x0½tþ 1�g �n fx½i� : t1 � i � t2g

and t is uniformly distributed in ðt1; t2Þ. In other words, it is

constructed by randomly choosing one value out of every

� values in the original. A subtle variation of uniform random

sampling is the case when x0½t� is not randomly chosen but

rather always the first element in its corresponding � sized

subset (e.g., t ¼ t1). We call this fixed random sampling of

degree �.
We define the summarization of degree � of a stream

ðx½�; &Þ as another stream ðx0½�; & 0Þ with

& 0 ¼ &

�

such that for each two adjacent sample data items

x01½t�; x02½tþ ��, there exist two contiguous, adjacent, nonover-

lapping �-sized subsets of ðx½�Þ, ðx½t� � þ 1�; x½t� � þ 2�;
. . . ; x½t�Þ, ðx½tþ 1�; x½tþ 2�; . . . ; x½tþ ��Þ such that

x01½t� ¼
P

i2ð1;�Þ x½t� � þ i�
�

and

x02½tþ �� ¼
P

i2ð1;�Þ x½tþ i�
�

:

In other words, for a continuous chunk of � elements from
the original stream summarization outputs its average.
Various other similar aggregates could be envisioned here
(e.g., min/max, most likely value). We believe that in the
current scope, considering averaging summarization is both
illustrative and qualitatively identical while not complicat-
ing the analysis too much.

We define an extreme � in a stream simply as either a
local minimum or local maximum value. We define the
extreme’s characteristic subset of radius �, noted �ð�; �Þ (see
Fig. 1b), as the subset of stream items forming complete
“chunks,” immediately adjacent to � and conforming to the
following criteria: item i, with value vi 2 �ð�; �Þ iff j� � vij <
� and all the items “between” i and the extreme �, also
belong to �ð�; �Þ.

A major extreme of degree � and radius � is defined as an
extreme � such that at least one item in �ð�; �Þ can be found
in any uniform random sampling of degree � of ðx½�Þ (i.e.,
some items in �ð�; �Þ “survive” sampling of � degree). For
example, in Fig. 5, intuitively, it seems likely that extremes
such as F, I, and J have a smaller chance of surviving
sampling than C, E, or G. This is so because of the temporal
shape of the stream’s evolution. C, E, and G seem to yield
characteristic subsets much “fatter” than F, I, and J.
Intuitively, � needs to be chosen such that the characteristic
subsets are of an average size greater than � (to handle a
sampling of degree �).

To model the “fluctuating” nature of a stream, let "ð�; �Þ
be the average number of stream data items encountered/
read per major extreme (i.e., before encountering a major
extreme) of degree � and radius �. 1

"ð�;�Þ defines the average
“frequency of major extremes” in terms of the number of
observed data items.

Notations. For any value (e.g., numeric) x, let bðxÞ be the
number of bits required for its accurate representation and
msbðx; bÞ its most significant b bits. If bðxÞ < b, we left-pad x
with ðb� bðxÞÞ zeroes to form a b-bit result. Similarly,

SION ET AL.: RIGHTS PROTECTION FOR DISCRETE NUMERIC STREAMS 3

Fig. 1. (a) Processing is necessarily bound in both time (stream rate)

and space (window). (b) �-radius characteristic subset of �.

lsbðx; bÞ is used to denote the least significant b bits of x. If
by wm we denote a watermark to be embedded, wm½i� will
then be the ith bit of wm. Let set bitðd; a; bÞ be a function
that returns value d with the bit position a set to the truth-
value of b. In any following mathematical expression, let the
symbol “&” be the bit-AND operation, let “|” be the bit-OR
operation. Let “ða� bÞ” be a notation for ða� 2bÞ by
definition (left bit shift). Let “ða� bÞ” be a notation for
b a

2b
c. Let x; y ¼ ððx� bðyÞÞjyÞ be the concatenation of the two

bitstrings x and y.

2.3 Crypto-Hashes

A special defacto secure construct we are leveraging in our
solution, is the one-way cryptographic hash. If crypto hashðÞ is
a cryptographic secure one-way hash, of interest are two of
its properties: 1) It is computationally infeasible, for a given
value V 0 to find a V such that crypto hashðV Þ ¼ V 0 (one-
wayness), and 2) changing even one bit of the hash input
causes random changes to the output bits (i.e., roughly half
of them change even if one bit of the input is flipped).
Examples of potential candidates for crypto hashðÞ are the
MD5 (used in the proof of concept implementation) or
SHA hashes. For more details on cryptographic hashes,
consult [19]. Let HðV ; kÞ ¼ crypto hashðk; crypto hashðV ; kÞÞ
(where “;” denotes concatenation).

2.4 Related Work

Let us understand here why existing results in nonmedia
data sets watermarking such as relational data [1], [14], [21],
[22], [23], [16] cannot be adapted for discrete streams. These
solutions require access to the entire data set in an almost
random access model, which is certainly not possible here
at embedding time. Also, these efforts seem to make
extensive use of the existence of a primary key (or an
additional attribute, e.g., in [21]), thus rendering a direct
adaptation impossible. Moreover, the expected attacks and
transformations are different. For example, a process of
summarization would defeat any of the above schemes.
Nevertheless, it might be worth noting that, if a primary key
is assumed to exist (e.g., if there is a guarantee that the time-
stamp information for each stream value is going to be
preserved in the result), then both the bit alteration method
proposed in [1] (for numeric types), its extension in [16] and
our solution in [21] (for discrete data) could be all adapted
to work on a single attribute, namely, the stream value. The
result would likely be resilient to (time-stamp preserving)
sampling, but fail with respect to any other attack or
transformation (see Fig. 2).

But, what about multimedia watermarking? Given the
“streaming” nature of our data, would it not be possible to
simply adapt an existing audio (or media) watermarking
algorithm [2], [5], [8], [10], [11], [13], [17], [20] since audio

data is also an example of a data stream? In other words,
why is our problem different? While there seems to be
similarities between watermarking audio and sensor data,
for example, at a closer inspection these similarities prove to
be merely superficial. A multitude of differences are to be
found between the two frameworks mainly deriving from
different data models, associated semantic scopes and the
itemized nature of sensor stream data.

In theory, a sensor stream could be viewed as an audio
signal, for example, and processed as such. However, for all
practical purposes, such an approach would not suit reality
and/or often yield undesired results. For example, while in
sensor data streams, summarization and sampling are
routinely expected natural operations, audio streams are
not to be summarized, and sampling in the audio domain
entails an entirely different semantic. Summarization, for
example, would not be survived by any of the existing results.
Moreover, data quality to be preserved in audio streaming is
usually related to the human auditory system and its
limitations. Any watermark-related alteration can be induced
as long as the stream still “sounds” good. In the case of sensor
streams (e.g., temperature) on the other hand, many scenarios
involve widely different quality metrics, that often need to
also consider overall stream characteristics.3

In summary, while experiences in the multimedia
domain are valuable, due to the nature of this new
application domain, a solution for watermarking discrete
sensor streams needs to naturally handle attacks and
transformations such as the ones outlined in Section 2.1.

3 AN INITIAL SOLUTION

This section outlines the main solution and then gradually
improves it to a more robust and resilient version, by
identifying and fixing potential flaws.

3.1 Overview

The first issue to be considered when watermarking in such
a framework are the data assumptions that the detection
process is expected to handle. More specifically, we identify
two scenarios apparently featuring distinct challenges: 1) an
on-the-fly streaming detection process and 2) the ability to
detect a watermark offline, in a static “chunk” of data (with
associated multiple-pass, random access), likely a subset of
the original stream. Intuitively a watermarking solution for
2) could potentially yield an increased detection accuracy
(with respect to the same amount of data), due to the ability
to repeatedly iterate on the entire data set, without
restrictive time bounds. Because any on-the-fly solution

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 5, MAY 2006

3. For example, the total alteration introduced per data item should not
exceed a certain threshold.

Fig. 2. If trusted time-stamp information would be available, we could treat the time-stamp information as a primary key and each (timestamp, value)

pair as a relational tuple. Existing methods could then be applied to a limited extent, surviving (only) sampling transformations.

can be directly applied to 2), for the time being let us

consider a solution for 1). In Section 4.4, we analyze the

offline case.
At an overview level, watermark embedding proceeds as

follows:

1. First, a set of “major” extremes (actual stream items)
are identified in the data stream, extremes that
feature the property that they (or a majority thereof)
can be recovered after a suite of considered altera-
tions (possibly attacks) such as (random) sampling
and summarization.

2. A certain criterion is used to select some of these
extremes as recipients for parts of the watermark.
And,

3. the selected ones are used to define subsets of items
considered for 1-bit watermark embedding of bits of
the global watermark.

The fact that these extremes can be recovered ensures a

consistent overlap (or even complete identity) between the

recovered subsets and the original ones (in the unaltered

data). In the watermark detection process 4), all the

extremes in the stream are identified and the selection

criteria in step 2) above is used once again to identify

potential watermark recipients. For each selected extreme,

5) its corresponding 1-bit watermark is extracted and

ultimately the global watermark is gradually reconstructed,

by possibly also using error correction.
Thus, one of the main insights behind our solution is the

use of extreme values in the stream’s evolution as water-

mark bit-carriers. The intuition here lies in the fact that

much of the stream value lies in exactly its fluctuating

behavior and the associated extremes, likely to survive

value-preserving, domain-specific transforms.

3.2 Embedding

In this and the next section, we will introduce an initial

encoding and corresponding detection algorithm. As shown

in subsequent sections, however, these algorithms are

somewhat flawed. We will then gradually fix them. Using

the notation in Section 2.2, let �; � 2 IN such that

�þ � � bðx½�Þ, where bðx½�Þ is the length of the representa-

tion of the values in the considered stream ðx½�Þ. Let � be a

secret integer and � 2 ð0; 1Þ chosen such that all elements

within a characteristic subset �ð�; �Þ have the same most

significant � bits. �; �; �; � are secret. We use the term

“advance the window” to denote reading in more new data
items while discarding old ones.

In the initial step of our embedding algorithm (see
Fig. 3), we first identify the first major extreme of degree �
and radius � in the current window. The assumption here is
that there exists a major extreme in the current window. If
this is not the case, we can simply advance the window
until we find one. Whether an extreme is “major”
(Section 2.2) can be easily evaluated by comparing the size
of its characteristic subset �ð�; �Þ with the sampling
degree �. The characteristic subset containing at least �
elements guarantees that in a random sampling of degree �,
at least one of those elements is going to survive. If no major
extremes can be found for given � and � values, one could
consider instead extremes with characteristic subsets
smaller than � that guarantee an acceptable chance (e.g.,
70 percent) of survival in case of sampling (i.e., subset size� >

70 percent).
� and the desired values for � can be adjusted such that

eventually (in the extreme) all characteristic subsets feature
enough elements to survive a sampling of degree �. We
should not forget though that we also aim to minimize the
amount of change introduced. Thus, an ideal choice for �
would yield just enough major extremes with characteristic
subsets large enough to survive the required level of
sampling, but no more. This is a fine data dependent
trade-off that needs to be considered in practice.

Once a major extreme (�) is identified in the current
window, in the second step, a selection criterion is used to
determine whether � is going to be used in the embedding
process. If Hðmsbð�; �Þ; k1Þ mod � ¼ i and i � bðwmÞ, then �
is considered for embedding bit i of the watermark, wm½i�.
� 2 ðbðwmÞ; bðwmÞ þ k2Þ (k2 > 0) is a secret unsigned integer
fixed at embedding time, ensuring that only a limited number
(a ratio of bðwmÞ

�) of these major extremes are going to be
selected for embedding. A related “fitness” selection criteria
was used by us and others in [14], [23]. Its power derives
strength from both the one-wayness and randomness proper-
ties of the deployed one-way cryptographic hash, forcing
Mallory into a “guessing” position with respect to watermark
encoding location. The reason behind the use of the most
significant bits of � in the above formula, is resilience to minor
alterations and errors due to sampling. As discussed above,
the assumption is that

msbðx; �Þ ¼ msbð�; �Þ; 8x 2 �ð�; �Þ:

SION ET AL.: RIGHTS PROTECTION FOR DISCRETE NUMERIC STREAMS 5

Fig. 3. Initial algorithm.

If � is the result of the previous selection step, in the third

step, we embed bit wm½i� into �ð�Þ. This is done by first,
selecting a certain bit position bit ¼ Hðmsbð�; �Þ; k1Þ mod �
for embedding. Next, for each value v 2 �ð�; �Þ and in �
itself, that bit position is set to wm½i� and the adjacent bits
are set to false (to prevent overflow in case of summariza-
tion). In other words v½bit� 1� ¼ false, v½bit� ¼ wm½i� and
v½bitþ 1� ¼ false. The reasoning behind modifying an
entire subset of items (�ð�; �Þ) is to survive summarizations.
This is the case if the bit encoding is such that the average of
any combination of (� < j�ð�Þj or less) items in �ð�; �Þ,
would preserve the embedded bit. It is easy to show that
this is indeed the case. Finally, the window is advanced past
� and the process restarts.

3.3 Detection

We are going to illustrate a specific flavor of the detection
process, namely, the case when majority voting is deployed
as an error correction mechanism (see Fig. 3).

In the detection process, the watermark is gradually
reconstructed as more and more of the stream data is
processed. The reconstruction process relies on an array of
majority voting “buckets” as follows: For each bitwm½i� in the
original watermark wm, let wm½i�T and wm½i�F be “buckets”
(unsigned integers) which are incremented accordingly each
time we recover a corresponding true/false bit wmdet½i� from
the stream. In other words, if the detection process yields at
some point wmdet½i� ¼ false, then the wm½i�F value is
incremented. Similarly, for wmdet½i� ¼ true, wm½i�T is incre-
mented. In the end, the actual wm½i�will be estimated by the
difference between wm½i�T and wm½i�F , i.e., if

wm½i�T � wm½i�F > 	;

then the estimated value for this particular bit becomes
wmest½i� ¼ true4 (and, conversely, if wm½i�F � wm½i�T > 	,
then wmest½i� ¼ false) where 	 > 0. If detection would be
applied on random, unwatermarked data, the probability of
detecting wmdet½i� ¼ false would equal5 the probability of
wmdet½i� ¼ true, thus yielding virtually identical (is used to
distinguish this exact case) values for wm½i�T and wm½i�F . In
this case, wmest½i� would be undefined, thus the data
considered unwatermarked. The watermark effectively lies
in a statistical bias in the true=false distribution for each bit
encoding.

Detection starts by identifying the first extreme � in the
current window. The selection criteria deployed in the
embedding phase is tested on �. If Hðmsbð�; �Þ; k1Þ mod � ¼
i and i � bðwmÞ, then � was likely used in embedding bit i

of the watermark, wm½i�. This bit is then extracted from bit-
position Hðmsbð�; �Þ; k1Þmod � and, depending on its
value, the corresponding bucket wm½i�T or wm½i�F is
incremented. Finally, the window is advanced past � and
the process restarts. It is to be noted that, because of the
infinite nature of the stream, detection is a continuous
process. This is why it is enclosed in a while loop. At the
same time, it shares the wm½� array with the watermark
reconstruction process (construct()).

The detection process does not consider only “major”
extremes, but rather any and all extremes that can be
identified in the stream. The reason behind this is the fact
that the stream could have been subjected to sampling (A2)
and/or summarization (A1) in the meantime. Considering
“major” extremes only and their corresponding character-
istic subsets in the embedding phase was a means to ensure
survival to exactly such transformations. Nevertheless, the
detection process apparently suffers now from the fact that
it also considers extremes that were potentially not water-
marked in the first place, possibly yielding false watermark
readings. At a deeper insight, it becomes clear that this does
not constitute a problem. As the watermark reconstruction
problem relies on a statistical bias and as this bias is zero in
the case of random data (as discussed above), introducing
new, random, unwatermarked data points into the detec-
tion does not affect the watermark-induced bias at all. This
is yet another reason why this embedding will prove
resilience to data addition (A5).

4 IMPROVEMENTS

Various resilience enhancing improvements are possible
with respect to the initial solution introduced above. These
are discussed here.

4.1 Defeating Correlation Detection

One particular issue of concern in the above solution is the
fact that because there exists a correlation between the
watermarking alteration (the wm½i� bit) and its actual
location (determined by Hðmsbð�; �Þ; k1ÞÞÞ, Mallory can
mount a special attack with the undesirable result of
revealing the mark embedding locations (see Fig. 4). The
attack proceeds by first realizing that, despite the one-
wayness of the deployed hash function HðÞ, in fact, � is the

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 5, MAY 2006

Fig. 4. A special attack is possible, exploiting the correlation between the
watermarking alteration (the wm½i� bit) and its actual location (deter-
mined by Hðmsbð�; �Þ; k1ÞÞÞ. One solution would be to use an alternate
source of information to determine the bit location (i.e., “labels,” see
below).

4. To make this completely accurate, we need to consider the associated

random walk probability. Thus, in evaluating the formula, 	 needs to be

adjusted with roughly
ffiffiffiffi
2r

q
, where r ¼ wm½i�T þ wm½i�F is the number of

recovered bits so far.
5. Because the embedding locations are secret and randomly distributed

throughout the data, and because the data is assumed to be numeric (thus,
any bias will likely be also numeric—and not necessarily consistent in the
bit-representation domain), it is highly unlikely that a corresponding data
bias will exactly “follow” these locations so as to impact the detected
watermark. In other words, we assume it is unlikely, for example, for
temperature values to have a certain bit set to “1” more often than “0” (bias
in bit-domain). If this is the case, however, possibly an initial bias detector
can be deployed in conjunction with the watermarking module.

only variable that determines both the bit embedding
location as well as its value. Mallory can now simply build
a set of “hash buckets” for each separate value of msbð�; �Þ
(if � is secret the job becomes harder but not impossible)
and count, for each extreme � encountered, which of the
lower � bits of � is set (respectively, reset) more often. For
each � for which a bias in a bit position is discovered, that
particular bit position is considered mark-carrying and
randomized.

Thus, the problem lies here in the correlation between the
actual bit location and the bit value, correlation induced by
the fact that a single variable (�) determines both of these. A
fix could possibly rely on a separate source of information to
determine the location of the embedded bit, independently of
the bit value. Also, this source of information would need to
be consistently recoverable at detection time. For example, if
time-stamp information would be assumed available, i.e., if
all the processing and the attacks on the data stream could be
assumed to preserve the time-stamp to value association,
then the actual time-stamp would present an ideal candidate,
effectively labeling each and every stream extreme uniquely
while at the same time not being correlated (directly) to their
values. This unique label could then be used in computing the
bit position for embedding. In the selection of the bit
embedding location, instead of using bit ¼ Hðmsbð�; �Þ; k1Þ
mod � which yields a result correlated to the actual
embedded bit value (wm½i�, where i ¼ Hðmsbð�; �Þ; k1Þmod
�) we propose to use

bit ¼ Hðmsbðlabelð�Þ; �Þ; k1Þmod�;

where labelð�Þ is the (virtually) unique label of extreme �. A
labeling scheme like this would make “bucket counting”
attacks impossible. In our model, however, timestamps are
not assumed to be preserved. Can we envision a different
labeling scheme (at least) for extremes, that would survive
the attacks and transformations outlined in Section 2.1? We
propose to build it from scratch.

Because the data can be subject to both sampling and
summarization and we would like to enable watermark
detection also from a finite segment of the data (see
Section 2.1), this task becomes especially challenging.
Sampling and summarization are already survived (by
design) by the extremes selected using the “majority”
criteria in Section 2.2. We could maybe make use of this
fact in the labeling scheme.

One of the challenging aspects of such a labeling scheme
becomes clear when one considers data segmentation. To
support segmentation, it needs to function based solely on
information available close (in terms of stream location) to
the considered to-be-labeled extreme. Also, labels com-
puted at detection time from potential segments of sampled
and/or summarized data, need to (at least) converge to the
original ones, as more and more watermarked data is
available. Let � be the (secret) bit length of the labels
resulting in our labeling scheme. Let % > 1 be a (secret)
unsigned integer. We propose the following labeling
scheme: Given two extremes i and a subsequent iþ %, we
define label bitði; iþ %Þ ¼ true iff

msbðabsðvalðiÞÞ; �Þ < msbðabsðvalðiþ %ÞÞ; �Þ; ð1Þ

and false otherwise. We define the label for extreme iþ �,
labelðvalðiþ �ÞÞ as the bit string composed of the concatena-
tion of ”1” (binary true) followed by each and every
label bitðj; jþ %Þ in ascending order of j 2 fi� %; i; iþ %;
. . . ; i� %þ �g. In other words, an extreme is labeled by a
certain differential interpretation of some of the preceding
extreme values (see Fig. 5).

The main role of %’s secrecy is to hide the actual labeling
scheme locations from a potential attacker, making a
random-alteration attack necessarily more damaging to
the value of the data, thus increasingly unsuccessful. To
illustrate this, consider, for example, the case where Mallory
knows that % ¼ 2. Now, all it needs to do is alter any and
only two successive extremes (in any continuous chunk of
2� extremes), just enough to flip one label bit. But now, if %
is secret, Mallory has to alter a larger, arbitrary number of
successive extremes. Further improvements are discussed
in Section 4.5.

Before going any further, let us analyze what happens if
an important extreme is “lost,” e.g., if one extreme i is
altered so much that its � most significant bits flip
inequality (1), corrupting its corresponding label bit. What
happens is in fact not too damaging: Labels that were
constructed using this particular extreme will be corrupted,
until the detection process encounters again a continuous
sequence of extremes not altered beyond recognition. But,
Mallory cannot afford altering extremes to such extents, and
the secrecy of % makes a random alteration attack the only
choice.

In summary, the main purpose of such a labeling scheme
is to ensure that Mallory cannot mount the “bucket
counting” type of statistical analysis attack as outlined
above. Different labels for adjacent extremes together with
the use of one-way hashing completely defeat such an
attack. The labeling scheme provides an independent,
uncorrelated source of information for determining the bit
position to be altered (see Fig. 6). Remember that our ability
to survive “bucket counting” type of attacks was dependent
on the labels being uncorrelated with respect to the actual
extreme values, while at the same time being virtually
unique for each extreme.

4.1.1 Repeating Labels

But, the finite nature of the considered bit size of the label
poses a certain problem in this respect by necessarily allowing

SION ET AL.: RIGHTS PROTECTION FOR DISCRETE NUMERIC STREAMS 7

Fig. 5. Basic Label construction for extreme K by concatenation of

individual label bits (% ¼ 2).

for duplicates (e.g., in the optimal case only due to “wrap-
around” of the�-sized space) if the considered data segment is
small. For example if � ¼ 10 and we label 2,000 extremes, on
average, if we are lucky we will have each label repeated only
roughly twice. A more complex analysis needs to also include
data-time behavior, e.g., what is the likelihood of low to high
versus high to low transitions, given the considered %? If there
is a bias in this data behavior then the resulting labels are
going to contain possibly more one-bits than zeroes etc.
Nevertheless, in summary, our problem is now that, because
some labels might repeat themselves, an unfortunate circum-
stance could make it such that enough data for a particular
label becomes available for Mallory to mount yet again a
“bucket counting” attack.

There are two fixes for the above issue: 1) the selected
size of the considered labels could be kept secret, within a
certain range (e.g., � 2 ð10; 20Þ)—there is a trade-off here
between the ability to converge in case of data loss and a
higher � value, but for � ¼ 20 and % ¼ 3, for example,
roughly 3 million extremes need to pass by before a label is
going to be repeated. 2) Once the uncorrelated nature of the
labels has been established by their independent informa-
tion source, we can reconsider the use of the most
significant bits of the extreme values. If we redefine the
labels as a concatenation between the initial label bitðj; jþ
1Þ-derived labels bit string and msbðabsðvalð�ÞÞ; �Þ, we
significantly decrease the probability of duplicates.

4.1.2 Reconstructing Labels

Labeling, while providing a defense for the correlation attack,
introduces the requirement to be able to identify major
extremes at detection times, possibly in a summarized and/or
sampled stream. This becomes a challenge as the definition of
“major” does not make sense anymore in the context of a
sampled version of the original stream. We propose the
following solution. In a first stage, the degree of the
transformation performed is determined. In a second stage,
the definition of majority of an extreme is updated to reflect
the fact that the considered stream is already transformed. A
major extreme of degree � and radius � in the original stream
ðx½�; &Þ, becomes a major extreme of degree �� and radius� in the
transformed stream ðx0½�; &�Þ, where � is the degree of the
transformation (e.g., summarization and sampling) applied

to ðx½�; &Þ. Once we know �, identifying major extremes in the
transformed stream is simply a matter of considering this
updated definition. But, how do we determine �? In a
dynamic stream, with consistent stream data rates, � can be
determined by simply dividing the original stream rate to the
current (transformed) stream rate, � ¼ &

&0 . The more challen-
ging scenario is to determine the value of � corresponding to a
(possibly transformed) stream ðx0½�; & 0Þ for which only a
segment is available. In other words, given a certain segment
of a transformed stream ðx0½�; & 0Þ, corresponding to an original
stream ðx½�; &Þ, how do we determine the degree of the
transform(s) applied to ðx½�; &Þ? A reasonable assumption that
canbe made is that the transform was applied uniformly to the
entire stream. In this case, one solution would start by
preserving some information about the initial stream, namely
the average size of the characteristic subsets of extremes, for a
given �. Then, in the transformed segment, extremes are
identified and their average characteristic subset size for the
same � is computed. It is to be expected that in a transformed
(sampled and/or summarized) stream these sizes would
shrink according to the actual transform degree. Dividing the
original average characteristic subset size by the sampled
stream average would thus yield an estimate of the transform
degree �. In our proof of concept, implementation of this
method is used successfully.

4.1.3 Hysteresis

The labeling features yet another interesting challenge.
While %’s secrecy indeed makes it more difficult on Mallory
to precisely alter extremes so as to flip label bits, what is to
stop him from still altering a large number of consecutive
extremes with the same purpose? This attack is likely not of
much concern as the assumption is that Mallory cannot
afford such modifications throughout the data as the
required modifications to flip several consecutive bits are
likely quite significant. Unfavorable data distribution and
data semantics preservation are further arguments that
Mallory would not be able to deploy such an attack.

Nevertheless, a solution is available and we propose its
use. It proceeds by changing the labeling scheme as follows:
Given two extremes i and iþ %, we define label bitði; iþ
%Þ ¼ true iff

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 5, MAY 2006

Fig. 6. Overview of the extended labeling-based algorithm. The watermark bits are “spread” throughout a set of “fit” extremes. For each extreme, the

characteristic subset encoding bit location is determined by a one-way hash of the extreme’s label.

ðmsbðabsðvalðiÞÞÞ �msbðabsðvalðiþ %ÞÞÞÞ < � < 0

and label bitði; iþ %Þ ¼ false iff

0 < þ < ðmsbðabsðvalðiÞÞÞ �msbðabsðvalðiþ %ÞÞÞÞ:

As can be seen, these new formulas induce a hysteresis

(defined by (�, þ)). Now, Mallory is not only presented

with the dilemma of which extremes to alter, but also

unable to determine what the minimum change is that

would flip the label’s corresponding bit.
Given the improvements introduced in the previous

sections, the extended embedding algorithm is illustrated in

Fig. 7.

4.2 Defeating Bias Detection

But, what prevents Mallory from identifying all the major

extremes for which there exists a majority of (possibly all)

items in the characteristic subset with a certain bit position

set to the same identical value? These extremes would then

naturally be considered watermark carrying and Mallory

could mount a simple attack of randomizing those bit

positions. This attack threatens the validity of the entire

watermarking scheme. How can we fix this while surviving

summarization? Remember that the main reason behind

embedding the same bit multiple times at the same position

in different items in the characteristic subset was directly

mandated by the requirement to survive summarization.

We propose a new approach that survives summarization

and results in alterations effectively appearing random to

the eyes of an attacker. Let �ð�; �Þ ¼ fx1; x2; . . . ; xag. For

each i � j 2 ½1; a�, let

mij ¼
P

u2½i;j� xu

jj� iþ 1j :

Then, we define the characteristic subset bit encoding conven-

tion as follows: 1) we say that a bit value of “true” is

embedded in �ð�; �Þ iff

8ðj; iÞ; lsbðHðlsbðmij; �Þ; labelð�ÞÞ; �Þ ¼ 2� � 1:

Similarly, 2) we say that “false” is embedded iff we have

8ðj; iÞ; lsbðHðlsbðmij; �Þ; labelð�ÞÞ; �Þ ¼ 0;

where � > 0 is a secret fixed at embedding time. The
embedding method simply alters the least significant � bits
in the values in �ð�; �Þ until the criteria is satisfied for the
desired wm½i� bit value. It is to be noted that these
alterations should aim to minimize the Euclidean distance
(or possibly any other distance metric) from the point
defined by fx1; x2; . . . ; xag. We call this a “multihash
encoding.”

The use of mij ensures survival to summarization, while
the cryptographic hash provides the appearance of random-
ness. But, is it feasible to assume that one could find such a
point in the a-dimensional space defined by the items in
�ð�; �Þ? How many computations are required to at least find
one? For each item in �ð�; �Þ, we consider its� least significant
bits, thus we effectively operate over an input space of a� bits.
There are aðaþ1Þ

2 possible mij averages (including all mii ¼ xi
values). For each, we consider the last � bits of its hash,
effectively getting an output space of � aðaþ1Þ

2 bits. The
probability that a desired pattern occurs in this space is then

2��
aðaþ1Þ

2 :

Thus, on average, the expected number of configurations in
the input space that would need to be tested in an
exhaustive search before yielding one that results in the
desired output, is 2�

aðaþ1Þ
2 . For example, if � ¼ 1 and a ¼ 5, we

have 215, that is, approx. 32,000 computations would need
to be performed (for each considered major extreme in the
window).

We validated these required computation times results
experimentally with the aim to understand any potential
deviations from the theoretical case introduced by less than
ideal behavior of the deployed constructs. In Fig. 8, we
illustrate an experiment in which an unoptimized exhaus-
tive search was deployed. The exponential nature of the
required amount of computation becomes clear by the
linear behavior in the logarithmic graph. See also Section 6.4
for a related experimental analysis.

If enough computation power is available with respect to
the incoming stream data rate, larger values for � and a

SION ET AL.: RIGHTS PROTECTION FOR DISCRETE NUMERIC STREAMS 9

Fig. 7. Extended labeling-based algorithm.

could be handled, resulting in an increased level of court-
time persuasiveness. Nevertheless, given the exponential
nature of the increase in required computations for an
increasing number of items in the characteristic subset, it is
probably not likely to be able to exhaustively handle subsets
with more than 8� 10 items efficiently. While out of scope
here, the design and use of efficient pruned-space algo-
rithms would be required to significantly reduce these
requirements. Alternately, we could deploy a computation-
reducing technique that limits the number of mij averages
for which 1) or 2) needs to hold in the subset bit encoding
convention above. In other words, the search process (in the
fx1; x2; . . . ; xag space) will be stopped once a certain
number of the mij averages feature the desired encoding
convention (1) or 2)). We call these mij values “active.” The
resulting decrease in required computation time comes at
the expense of decreased resilience to transforms. More
specifically, the fact that the bit-embedding can only be
“seen” through a limited number of “good” mij’s (which
feature the appropriate subset bit encoding) makes it such
that detecting the corresponding watermark bit in a
transformed stream will fail if the stream does not contain
at least one of the active mij values.

If such a reducing technique is applied, a desired
property would be the ability to survive to as many levels
of summarization as possible. Thus, after ensuring the
subset bit encoding convention for every mii (original items,
so as to survive also sampling), we propose to “divide” the
remaining computing cycles so as to enable a nonzero
probability of bit detection for any degree of summariza-
tion. This would be achieved, if for any considered
summarization degree � to be survived, there would exist
at least one mij with jj� ij ¼ � (ensuring a nonzero
probability of this average to appear in a �-degree summar-
ized stream) that allows the extraction of the associated
watermark bit.

With these modifications, we can further extend the
algorithm in Section 4.1 (Fig. 7). The modified bit-encoding
function embed_bit(�; bit; wm bit value) is illustrated in
Fig. 9. Note the additional � parameter, to become part of
the global embedding secret key.

Also, a likely fast(er) encoding than the use of crypto-
graphic hashes above could be adapted from [3]. The
method works by altering the � least significant bits until
every one of the longest k prefixes of the whole value (most
significant bits included), when treated as an integer,

becomes a quadratic residue modulo a secret large prime,
for embedding a “true” value and a quadratic nonresidue
modulo the secret prime for embedding a “false” value.

4.3 On-the-Fly Quality Assessment

In the process of altering the data for the purpose of
information hiding, it is important to preserve its structural
and semantic properties. One has to provide a mechanism
ensuring that these alterations do not degrade the data
beyond usability. Preserving data quality also requires the
ability to express and enforce data constraints. Sometimes,
it is undesirable or even impossible to directly map higher
level semantic constraints into low level (combined) change
tolerances for individual data items. The practically infinite
set of semantic constraints that can be desired of a given
data set makes it such that a versatile “data goodness” (i.e.,
semantically) assessment method is required. We propose
to augment our sensor stream marking algorithm with such
semantic constraints awareness. Each data property that
needs to be preserved is written as a constraint on the
allowable change to the data set, the watermarking process
is then applied with these constraints as input and
reevaluates them continuously for each alteration (“con-
sumer driven encoding”). An “undo” log (quite like the
“rollback” log in [23]) is kept to allow undo operations in
case certain constraints are violated by the current water-
marking step (see Fig. 10). The new challenges in this
framework are related to the fact that now, due to storage
limitations, any data quality preservation constraints can
only be formulated in terms of the current available data
window. Likely, only few window slots can be used to store
data aggregates, possibly including some history informa-
tion to be used in the quality evaluation process but this will
all come at the expense of being unable to store and process
as much new incoming data.

4.4 Offline Detection

As outlined above, the detection process is designed to
function on-the-fly, in one pass over the data and compute

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 5, MAY 2006

Fig. 8. Average exhaustive search iterations required in computing the

closest point that satisfies the characteristic subset bit encoding

convention (logarithmic scale).

Fig. 9. Modified partial-sums-based bit-encoding handling bias detection

attacks.

Fig. 10. Overview of proof of concept implementation.

the statistical bias for the embedded watermark bits. Time
and storage space permitting, would a offline detection
process possibly yield more accuracy? In other words,
could there be any advantages to having more memory
(e.g., 2�$) and unlimited amounts of time in the detection
process? The answer is no. The only improvement that
could be achieved would be in the normalization process. If
the actual data distribution is not known, on-the-fly
normalization (as discussed in Section 2.1) suffers from
the need to perform an initial (nondetection) “discovery”
run in which (hopefully) enough data is seen so as to
construct a reasonable accurate reference data distribution.
Some of the data read in this process would be lost for
detection purposes due to storage space limitations. In the
offline detection scenario, if multiple-pass access is as-
sumed, this data can be used in detection, effectively
enforcing the overall watermark.

4.5 Labeling Made Safer

The safety of the labeling process with respect to an attack
in which Mallory purposefully alters previous extreme
values adjacent to a considered extreme (in the hope of
flipping one bit in the corresponding label), could be
improved as follows: Instead of using % as a sequential
“step” factor in selecting some previous extremes to
construct the current extreme’s (�) label bits, we could use
Hðmsbð�; �Þ; k1Þ as a bit-mask, to select a subset of the past
extremes to define the label. For example, out of the past
20 extremes we select 10 to be used in the 10-bit label
computation, selection based on the last 20 bits of
Hðmsbð�; �Þ; k1Þ (if a bit in the bit-mask is “true,” the
corresponding past extreme value is used in the label
computation). This process yields both the benefits of
shorter labels (more resilient overall, see Section 6) and
forcing Mallory to consider all 20 bits (instead of 10) in his
alteration attack, likely significantly more damaging to the
data. For example, in Fig. 5, if we have the last 5 bits of
HðmsbðvalðKÞ; �Þ; k1Þ equal “01101,” then the 4-bit label of
extreme K would be “1010.”

Yet, another resilience enhancing idea for labeling would
be the use of multiple labels instead of just one, labels
constructed using several different subsets of previously
seen extremes. Then, embedding/detection proceed by
enforcing the bit encoding convention considering both
labels.

4.6 Summarization Revisited

Massive summarization is often used in scenarios involving
storage and processing of streaming data. Summarization
can be viewed as a normalized integration process. High
summarization degrees (�) are likely destroying much of
the high frequency domain in the original stream. Often,
there exists a trade-off between preserving data of high-
granularity in the recent past and of increasingly lower
granularity in the distant past. The watermarking solution
introduced here survives summarization very well up to
high degrees. However, naturally, distant past data, if
summarized to a higher degree, would yield a more
degraded version of the watermark than recent data. One
solution to this issue would be to embed multiple layers of
watermarks for different � values, e.g., one layer for the low

frequency domain (i.e., small � values) and another layer for

the high frequency domain (i.e., higher � values). This

would ensure an increasing accuracy on detection for both

higher and lower degrees.

5 ANALYSIS

In this section, we analyze the ability of our method to

convince in court, survive attacks, and transforms.
Court-convince-ability can be naturally expressed as

follows: Given a one bit (e.g., true) watermark, what is the

probability of false positives (Pfp) for the watermark

encoding? In other words, we ask: What is the probability of

a one-bit (true) watermark to be detected in a random data

stream? If this probability is low enough, then a positive

detection would constitute a strong proof of rights, with a

“confidence” of 1� Pfp. Here, we define confidence as the

probability that a given detected watermark was indeed

purposefully embedded in the data by the rights owner.
Using the notation in Section 4.2, for each considered

extreme �, the occurrence probability of a “good” corre-

sponding mij (i.e., encoding “true” with respect to the bit

encoding convention) in a random stream is naturally 1
2,

because of the cryptographic hash used in the encoding.

There are aðaþ1Þ
2 possible mij averages (including all mii ¼ xi

values). Because, for each, we consider the last � bits of its

hash, we effectively have an output space of � aðaþ1Þ
2 bits.

Thus the probability of the bit “true” being encoded

consistently by all of these becomes (per extreme)

2��
aðaþ1Þ

2 :

Now, for each "ð�; �Þ items there is a potential major

extreme recipient of a one-bit encoding. Out of these, how

many are actually selected for encoding? As discussed in

Section 3.2, only a fraction of 1
� (because now bðwmÞ ¼ 1) of

them are actually selected for embedding. Thus, if & is the

stream data rate, we can determine the relationship

between the time elapsed since we started reading the

incoming stream (t) and the reached level of persuasive-

ness, as follows:
If "ð�; �Þ models the average number of items that need

to be read before a major extreme is encountered, then "ð�;�Þ
&

represents the average time-interval “between” major

extremes. But, only 1
� of the major extremes are selected

for embedding, and so the time-interval between two major

extremes that encode the watermark is �"ð�;�Þ
& , thus the

number of extremes that we are likely to see in a time

interval of size t, is

t&

�"ð�; �Þ :

As discussed above, each major extreme has an

associated probability of false positives of 2��
aðaþ1Þ

2 , thus if

we discover a consistent pattern of embedding in a time

interval t, the probability of a false-positive becomes

PfpðtÞ ¼ ð2��
aðaþ1Þ

2 Þ
t&

�"ð�;�Þ:

SION ET AL.: RIGHTS PROTECTION FOR DISCRETE NUMERIC STREAMS 11

For example, if � ¼ 1, a ¼ 5, & ¼ 100Hz, � ¼ 20 percent,
"ð�; �Þ ¼ 50, after detecting a bit “true” for only t ¼ 2 seconds,
we have

Pfpð2Þ ¼ ð2�15Þ20 	 0

and an associated proof of rights, with a confidence of close
to 200 percent. Even, at the limit, when due to transforms
such as sampling and summarization, for each extreme,
only one single mij average survives and the probability of
false positives for each extreme becomes only 1

2, Pfpð2Þ
becomes roughly only “one in a million.” Thus, the
persuasion power of our method quickly converges to a
comfortable level. In Section 6, we provide experimental
results for watermark resilience to various transforms,
including random attacks.

Next, we explore a theoretical analysis of the vulner-
ability of our scheme under the following attack model:
Mallory starts to modify randomly every a1th (a1 > 1)
extreme (�) in such a way as to alter a ratio of a2 2 ð0; 1Þ of
the items in the extreme’s characteristic subset of radius a3,
�ð�; a3Þ. (Thus, on average, Mallory alters only one in every
a01 ¼ a1� bit-carrying extremes).

The assumption here is that these alterations do not
impact the associated labeling scheme, in other words, they
do not change the “greater than” relationship between
extremes used in the labeling process. An extension
considering this case is out of the current limited-space
scope. To strengthen our derived bounds, we are going to
focus directly on a more challenging, “informed,” Mallory,
aware of the characteristic subset radius used at encoding
time. In other words, we assume that a3 ¼ � is known to
Mallory, see Section 3.2.

We propose two ways to analyze this vulnerability:
1) looking at how much an attack “weakens” the encoding,
i.e., how many of the active mij values are actually
destroyed divided by the total number of active ones
(making it thus proportionally harder to detect a watermark
in court) and 2) what is the probability that all of the active
ones are obliterated? It is easy to see that, for a given
extreme �, for which �ð�; a3Þ ¼ fx1; x2; . . . ; xag, the number
of corresponding mij values altered is

cm ¼
1

2
aa2ð2a� aa2 þ 1Þ:

Now, for 1), the “weakening” of the encoding can be
defined as

cm �
2

aðaþ 1Þ ;

which is the ratio of mij values that are altered from the
total number of potential active ones for each altered
extreme. Because one in every a01 ¼ a1� bit-carrying
extremes gets impacted, the overall “weakening” factor
can be defined as

a1 � cm �
2

aðaþ 1Þ :

To answer (2), we first model this scenario by a sampling
experiment without replacement. In this experiment, xþ
t; t > 0 balls are randomly removed from a bowl with a total of

y balls. The question answered is: If the bowl contained
exactly x black balls, what is the probability that the xþ t
removals emptied the bowl of all of them? It can be shown that
this is

P ðxþ t; x; yÞ ¼ ð
y�x
t Þ
ðyxþtÞ

: ð2Þ

In our model, ðxþ tÞ ¼ cm, y ¼ aðaþ 1Þ 1
2 and if x ¼ a4y (a4

is the ratio of active mij values), we can compute the
probability that all of them are altered.

Thus, for each attacked extreme we have a nonzero
probability of altering all active mij values and removing
the corresponding watermark bit. Next, we ask, how do
these alterations impact our ability to convince in court and
detect a watermark bias in the resulting data? Because the
alteration is necessarily random (the randomness of the
one-way hashes in the encoding in Section 4.2 guarantee
this) we can model the attack as essentially a random noise
addition attack. Evaluating the resilience of any watermark
bias becomes now a matter of asking how many of the
embeddings actually survive until detection time. Are there
enough of them to actually convincingly reconstruct the
multibit watermark after error correction? At the beginning
of the section, we looked at how the watermark bias
becomes more convincing in time (and seen data). Losing a
fraction of the mark bit encoding extremes can be in fact
seen as a reduction of the � value (see Section 3.2). If, for
each of the a01 ¼ a1� bit carrying extremes that are altered by
Mallory, the attack success probability is given by P ðxþ
t; x; yÞ (2) we can perform a similar reasoning with a new

�0 ¼ �þ a01 � P ðxþ t; x; yÞ:

What now happens is that the persuasiveness (court-time
convince-ability) converges proportionally slower. In other
words, we need to see a1 � P ðxþ t; x; yÞ more stream data
to be able to provide an equally convincing proof in court.

For example, for a1 ¼ 5, a ¼ 6, a4 ¼ 50 percent,
a2 ¼ 50 percent, we get the average probability P ð15; 10;
21Þ 	 0:85 percent of a complete alteration of all the
active mij values at each extreme. This effectively
translates in the need to see only an average of a1 �
P ðxþ t; x; yÞ 	 4:25 percent more data to be equally
convincing at detection.

But, how does our encoding handle transforms? By
construction, it certainly survives sampling (A2) up to a
degree of �max ¼ j�ð�; �Þj. Indeed, this is so if at least one
element in the characteristic subset of � is to be found in a
sampling of degree �max. This element can be used in the
detection process to recover the corresponding watermark
bit for �. Higher degrees of sampling are also quite likely to
be survived as there is a nonzero probability of elements in
�ð�; �Þ to be in the sampled stream even for � > �max. This
is experimentally analyzed in Section 6.

Summarization (A1) up to a degree of �max ¼ j�ð�; �Þj is
also handled well by design, for example due to the use of
mij in the bit-encoding procedure illustrated in Section 4.2.
Any summarization of a degree � � �max naturally results in
at least one of the mij averages being in the summarized
stream. Even in the initial algorithm, the bit encoding
pattern used on the elements in the characteristic subset

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 5, MAY 2006

ensured survival of the pattern in the process of averaging
(thus surviving summarization) within the subset. Sum-
marization is experimentally analyzed in Section 6.

But, how well is segmentation (A3) survived? More
specifically, what is the minimum size of a stream segment
from which we are able to recover the watermark? For
simplicity let us assume a one-bit watermark, i.e., bðwmÞ ¼ 1.
In the following, we are trying to determine the minimum
required size of a contiguous watermarked stream segment
that would enable a proof more “convincing” than a coin-flip
stating that a watermark is embedded in the data. This proof
would be obtained if we can correctly detect at least two
consistent bits (equal to wm½0�) from two different extremes
found in the segment. In that case, the probability of a false-
positive becomes lower than a random coin-flip. But, what is
the minimum amount of data we need to see to be able to
decode two bits? In the best case, the two extremes are
adjacent and we need to see enough data to build correct
labels for those two extremes. To build the labels correctly, we
need to have seen all the previous �% major extremes
correctly. Further qualitative analysis must be data depen-
dent, for example, if the fluctuating nature of the stream
features a major extreme of degree � and radius � for every
"ð�; �Þ data items, then the minimum required size of a
segment enabling watermark detection is "ð�; �Þ�%.

6 EXPERIMENTAL RESULTS

We implemented wms.*, a Java proof-of-concept of the
watermarking solution. Our experimental setup included
one 1.8GHz CPU Linux box with Sun JDK 1.4 and
384MB RAM.

We also implemented a temperature sensor synthetic
data stream generator with controllable parameters, includ-
ing the ability to adjust the data stream distribution,
fluctuating behavior (e.g., "ð�; �Þ), and rate (&). This sensor
was used in the initial design phase of some of our
experiments because of the ability to produce various fine-
tuned data inputs impacting specific strengths of the
encoding.

We explored experiment scenarios modeling both the
behavior of subsystems such as the on-the-fly labeling
module as well as the overall watermark resilience.
Synthetic (temperature sensor model) and real-world data
was used in our evaluation.

Because, as discussed in Section 3.3, watermark encoding
relies on altering a certain secret statistical bias within the
data, when we present resilience results we refer to the
ability to detect and reconstruct this bias as an overall
measure of encoding performance. In this case, the notion of
a “watermark bias” refers to the number of instances of
active extremes for which the characteristic subset bit
encoding (see Section 4.2), survives with a positive true-
bit embedding bias.

With respect to court-time confidence, for example, a
detected watermark bias of 10 yields a false-positive
probability of 1

210 , and an associated proof of rights with a
confidence of roughly 99.9 percent, as discussed in
Section 5.

Unless specified otherwise, the bit-encoding used is the
multi-hash encoding discussed in Section 4.2; the experi-
mental results presented here refer to an underlying

normalized stream with values distributed normally with
a mean of 0 and a standard deviation of 0:5. The fluctuating
behavior of the stream was determined by an average
"ð�; �Þ ¼ 100 (100 items per each major extreme) and & ¼
100Hz (100 items per second). Other parameters include:
� ¼ 3, � ¼ 16, � ¼ 16, 	 ¼ 2, k1, were chosen by a random
number generator. Whenever exact quantitative results are
shown, they refer to a data set drawn from about 50 seconds
of stream data (i.e., roughly 5; 000 data values). Addition-
ally, when experiments were performed on real-life test
data this is specified in the figure captions. The real-life data
sets [18] were obtained from the environmental monitors of
the NASA Infrared Telescope on the summit of Mauna Kea,
at the University of Hawaii. They represent multiple sets of
once-every-two-minutes environmental sensor (i.e., tem-
perature) readings at various telescope site locations. The
reference data set used refers to 30 days worth of data from
the month of September 2003, totaling a number of
21,630 temperature readings (with values on the Celsius
scale roughly between 0 and 35 degrees).

Some of the figures presented in this section feature a
“spikey” behavior. This is a result of the adaptive data-
dependent nature of the encoding. Different input data sets
react differently to sampling, for example, yielding slightly
varying behavior at distinct points. Averaging over multi-
ple inputs would provide a solution for this issue. Never-
theless, we believe that, while it might soften the spikes, it
would also tone down distinct features for a given data set,
features that interrelate figures. Instead of focusing on local
variations, the figures should be interpreted as qualitative
samples of global governing trends.

6.1 Random Alterations

In [22], we defined the epsilon-attack in the relational data
framework (related attacks are defined also in [1], [14]), a
transformation that modifies a percentage � of the input
data values within certain bounds defined by two variables
� (amplitude of alteration) and � (mean of alteration).
Epsilon-attacks can model any uninformed, random alter-
ation—often the only available attack alternative. A uniform
altering epsilon-attack modifies � percent of the input tuples
by multiplication with a uniformly distributed value in the
ð1� �þ �; 1þ �þ �Þ interval. We believe this attack closely
resembles (A6), a very likely combination of (A5) and (A2).

In Fig. 11 and Fig. 12 (� ¼ 0), we analyze the sensitivity
of both our labeling module and overall watermarking
scheme to such randomly occurring changes, as direct
measures for encoding resilience. In Fig. 11a, label alteration
increases with an increasing degree of data change. Smaller
label bit sizes seem to better survive such an attack. In
Fig. 11b, as the percentage of altered data items increases,
the labeling scheme naturally degrades. Similar behavior
can be observed for sampling (Fig. 11c) and summarization
(Fig. 11d).

In Fig. 12, an embedded watermark (bias) is detected in a
randomly altered stream. Naturally, an increasing distor-
tion results in a decreasing bias detection. Nevertheless, it is
to be noted that the encoding scheme proves to be quite
resilient by design, for example for � ¼ 50 percent of the
data altered within � ¼ 10 percent (Fig. 12b), the detected
bias is still above 25, yielding a false-positive rate of less
than “one in 30 million”.

SION ET AL.: RIGHTS PROTECTION FOR DISCRETE NUMERIC STREAMS 13

6.2 Sampling and Summarization

The ability to survive summarization (A1) and sampling
(A2) is of extreme importance as both are expected attacks.
In Fig. 11, the labeling algorithm is evaluated with respect
to (Fig. 11c) sampling and (Fig. 11d) summarization.
Intuitively, a higher label length results in increased
fragility to sampling (shown is a sampling degree of 3).
Summarization seems to be naturally survived by our
design. For example, a summarization of the data down to
5 percent (� ¼ 20) still preserves more than 20 percent of the
original label values, thus conferring a strong back-bone to
watermark embedding.

The behavior of the watermark encoding algorithm to
sampling and summarization is outlined in Fig. 13. The
natural strength of the bit encoding convention is clearly
illustrated here. Both transformations are survived extre-
mely well.

6.3 Segmentation. Combinations

In Section 5, we theoretically assessed the ability of our
scheme to survive segmentation (A3), by answering the
question: What is the minimum size of a stream segment
from which we are able to recover the watermark? In
Fig. 13c, we analyze the impact of actual recovered segment
size on the detected watermark bias. From a segment of
only 2; 000 stream values we can detect a watermark bias of
10, corresponding to a very convincing low false positive
rate of roughly 0:001.

In Fig. 13d, we outline the impact of a combined
transformation (sampling and summarization) on the
watermark embedding. Because of the nature of both
transformations and of the resilience featured in each case,

the combination seems to be survived equally well. For
example, a 25 percent sampling, followed by a 25 percent
summarization process still yields a watermark bias of up to
20, corresponding to a low false-positive rate of “one in a
million.”

6.4 Overhead and Impact on Data Quality

The proposed watermarking solution is highly adaptive to
both speed and space constraints. By far, the most
computationally intensive operation is the one-bit encoding
operation which alters the characteristic subset data to
conform to the bit encoding convention defined in
Section 4.2. At the expense of embedding resilience, this
operation can be sped up significantly by both pruning of
the search space or, more importantly, deployment of a
computation-reducing technique as described in Section 4.2.
Depending on the actual stream rate, these speed-ups can
be gradually deployed to be able to keep up with the
incoming data. Additionally, the average amount of
computation to be performed per window-load of data is
defined also by the actual fraction of extremes “selected” to
be bit-carriers. This fraction is determined by bðwmÞ

� . If the
incoming data rate is too high, � can be increased to reduce
the workload.

While our solution is naturally designed for stream
processing it is of importance to assess this ability also in
practice. We performed experiments aimed at evaluating
the introduced watermarking computation overhead. Un-
less specified otherwise, we used the multihash encoding
discussed in Section 4.2 and parameters set such that the
resulting watermark survives 100 percent any combined
sampling and summarization up to a degree of 6. First, we
compared the computing times required by the water-
marking process with the times spent in a simple read and
copy model in which each stream item is read and copied to
an output port (with fixed writing time-cost). We obtained
consistent value classes clearly identifying each of the
separate encoding methods presented. It became clear that,
as expected, the majority of time is spent in the actual bit
encoding convention routine (and not as much in the
labeling module). Not surprising, the encoding convention
introduced in Section 3.2 performed fastest with an average
of a practically insignificant 5.7 percent increase in proces-
sing times per stream item. The experimental setup could
easily handle stream data rates of up to 3.5-4 million
readings per second.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 5, MAY 2006

Fig. 11. (a) Label alteration for increasingly aggressive uniform altering epsilon attacks. Different label bit sizes shown. A smaller label size seems to

survive better. (b) Different altered data percentages shown. (c) Label resilience under sampling conditions. A higher label length naturally yields an

increased fragility to sampling. (d) Label alteration for summarization of increasing degree.

Fig. 12. Watermark survival to epsilon-attacks. (a) Naturally, increasing

� and � values result in a decreasing watermark bias. (b) Same shown

for � ¼ 10 percent (real data).

The poorest performer was the more complex multihash
routine in Section 4.2 with an average increase of over 1,000
percent, as expected decreasing almost perfectly exponen-
tial with the decrease of guaranteed resilience (see Fig. 14a).
In the high-resilience, multihash setting, an average water-
marking throughput of 330 sensor readings per second was
achieved; deploying such a setting makes sense exactly in
such low data rate scenarios when the lack of sufficient data
makes it important to offer a maximal encoding resilience.

There are two lessons to be learned here. First, different
encodings should be used for different scenarios with
associated value models. For example, for a temperature
stream with a likely average reading rate of under 1Hz,
deploying the multihash encoding routine for high resi-
lience would be best suited whereas in a very fast streaming
scenario the encoding in Section 3.2 would perform much
better. Additionally, subject to future research is the issue of
better pruning algorithms as discussed in Section 4.2.

We also performed experiments evaluating the impact of
our encoding on data quality. More specifically, we
analyzed the alterations incurred by the mean and standard
deviation of the stream data. For the above parameter
settings, over a large number (12; 000þ) of runs over the
real (and synthetic) data sets, the value of the mean of the
watermarked stream varied less than a mere 0.21 percent
average from the original. The alteration to the standard
deviation also maintained itself nicely within 0.27 percent of
the original data. There exists a tunable trade-off between
attack/transformation resilience and the incurred altera-
tions. A lower level of resilience would definitely require

less modifications to the data and have a lower impact on

global statistics. In Fig. 14b, we show how decreasing the

number of considered bit-encoding major extremes de-

creases the impact on the average and standard deviation in

the result.
Due to the random nature (with respect to the stream

data values) of the encoding specifics, we expected a

virtually zero impact on such statistics over the longer term.

While we observed a certain convergence to zero, it did not

have as fast a pace as expected; we were actually not able to

actually reach the zero-impact point. We suspect this is due

to a bias introduced by the MD5 hash implementation used

in our proof of concept, although the complex nature of the

multihash embedding used (see Section 4.2) might also hold

some of the answers. We are further investigating this.

7 CONCLUSIONS

In this paper, we introduced the issue of rights protection

for sensor streams. We proposed a watermarking solution,

based on novel ideas such as on-the-fly labeling and

watermark encoding, resilient to important domain-specific

transforms. We implemented a proof of concept of the

proposed solution and evaluated it experimentally on real

data. The method proves to be extremely resilient to all

considered transforms, including sampling, summarization,

random alterations, and combined transforms. Published

research results of this work include [24].
In upcoming research, we propose to analyze streams

of categorical data, to investigate other aggregates

(instead of averages) in the summarization process (e.g.,

min, max, and most likely value) and to experiment with

alternative bit-encodings.

ACKNOWLEDGMENTS

Portions of this work appeared in the Proceedings of the

Very Large Databases Conference (VLDB) 2004 [24].

REFERENCES

[1] R. Agrawal, P.J. Haas, and J. Kiernan, “Watermarking Relational
Data: Framework, Algorithms and Analysis,” The VLDB J., vol. 12,
no. 2, pp. 157-169, 2003.

[2] M. Arnold, S.D. Wolthusen, and M. Schmucker, Techniques and
Applications of Digital Watermarking and Content Protection. Artech
House Publishers, 2003.

SION ET AL.: RIGHTS PROTECTION FOR DISCRETE NUMERIC STREAMS 15

Fig. 13. Watermark survival to: (a) Summarization. An increasing summarization degree results in a decreasing detected watermark bias. (b)

Sampling. A bias of 10 ensures a true-positive probability of 99:999 percent. (c) Segmentation. (d) Combined sampling and summarization (real

data).

Fig. 14. (a) Computation overhead (iterations) in multihash encoding
increases with increasing guaranteed resilience (e.g., sampling degree)
levels (logarithmic scale). (b) Decreasing the number of considered bit-
encoding extremes (increasing �) decreases the impact on mean and
standard deviation in the watermarked data.

[3] M.J. Atallah and S.S. Wagstaff Jr., “Watermarking with Quadratic
Residues,” Proc. IS-T/SPIE Conf. Security and Watermarking of
Multimedia Contents, SPIE, vol. 3657, pp. 283-288, 1999.

[4] B. Babcock, S. Babu, M. Datar, and R. Motwani, “Models and
Issues in Data Stream Systems,” Proc. ACM Symp. Principles of
Database Systems (PODS), pp. 1-16, 2002.

[5] M. Barni and F. Bartolini, Watermarking Systems Engineering:
Enabling Digital Assets Security and Other Applications. Marcel
Dekker, 2004.

[6] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G.
Seidman, N. Stonebraker, M. Tatbul, and S. Zdonik, “Monitoring
Streams—A New Class of Data Management Applications,” Proc.
Int’l Conf. Very Large Data Bases (VLDB), 2002.

[7] S. Chandrasekaran and M.J. Franklin, “Streaming Queries over
Streaming Data,” Proc. Int’l Conf. Very Large Data Bases (VLDB),
pp. 203-214, 2002.

[8] I. Cox, J. Bloom, and M. Miller, “Digital Watermarking,” Digital
Watermarking, Morgan Kaufmann, 2001.

[9] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining
Stream Statistics over Sliding Windows,” Proc. ACM-SIAM Symp.
Discrete Algorithms, pp. 635-644, 2002.

[10] J. Eggers and B. Girod, Informed Watermarking. Kluwer Academic
Publishers, 2002.

[11] N.F. Johnson, Z. Duric, and S. Jajodia, Information Hiding:
Steganography and Watermarking-Attacks and Countermeasures.
Kluwer Academic Publishers, 2001.

[12] J. Kang, J.F. Naughton, and S.D. Viglas, “Evaluating Window
Joins over Unbounded Streams,” Proc. Int’l Conf. Design Eng., 2003.

[13] Information Hiding Techniques for Steganography and Digital Water-
marking, S. Katzenbeisser and F. Petitcolas, eds., Artech House,
2001.

[14] J. Kiernan and R. Agrawal, “Watermarking Relational Databases,”
Proc. 28th Int’l Conf. Very Large Databases (VLDB), 2002.

[15] F. Korn, S. Muthukrishnan, and D. Srivastava, “Reverse Nearest
Neighbor Aggregates over Streams,” Proc. Int’l Conf. Very Large
Data Bases (VLDB), 2002.

[16] Y. Li, V. Swarup, and S. Jajodia, “A Robust Watermarking Scheme
for Relational Data,” Proc. Workshop Information Technology and
Systems (WITS), pp. 195-200, 2003.

[17] C.-S. Lu, Multimedia Security: Steganography and Digital Water-
marking Techniques for Protection of Intellectual Property, Idea Group
Publishing, 2004.

[18] NASA, The Hawaii Univ. Infrared Telescope Facility, http://
irtfweb.ifa.hawaii.edu, 2004.

[19] B. Schneier, Applied Cryptography: Protocols, Algorithms and Source
Code in C. Wiley & Sons, 1996.

[20] H.T. Sencar, M. Ramkumar, and A.N. Akansu, Data Hiding
Fundamentals and Applications: Content Security in Digital Multi-
media. Elsevier Science and Technology Books, 2004.

[21] R. Sion, “Proving Ownership over Categorical Data,” Proc. IEEE
Int’l Conf. Data Eng. (ICDE), 2004.

[22] R. Sion, M. Atallah, and S. Prabhakar, “Rights Protection for
Relational Data,” Proc. ACM Special Interest Group on Management
of Data Conf. (SIGMOD), 2003.

[23] R. Sion, M. Atallah, and S. Prabhakar, “Relational Data Rights
Protection through Watermarking,” IEEE Trans. Knowledge and
Data Eng., vol. 16, no. 6, June 2004.

[24] R. Sion, M. Atallah, and S. Prabhakar, “Resilient Rights Protection
for Sensor Streams,” Proc. Very Large Databases Conf. (VLDB), 2004.

Radu Sion is an assistant professor of computer
sciences at Stony Brook University. His research
interests are in the areas of data security and
privacy in distributed networked environments.
Applications include: secure data outsourcing,
queries over encrypted data, secure reputation
systems, authentication, rights protection and
integrity proofs in sensor networks, secure
storage in peer-to-peer and ad hoc environ-
ments, data privacy and bounds on illicit

inference over multiple data sources, security and policy management
in computation/data grids, and detection of intrusions by access profiling
for online Web portals. He is a member of the IEEE.

Mikhail (“Mike”) Atallah received the PhD
degree in 1982 from the Johns Hopkins Uni-
versity and joined the Computer Sciences De-
partment at Purdue University, where he
currently holds the rank of distinguished profes-
sor. He served on the editorial boards of many
top journals (including SIAM Journal on Comput-
ing, Journal of Parallel and Distributed Comput-
ing, IEETC, etc.), and on the program
committees of many top conferences and work-

shops (including PODS, SODA, SoCG, WWW, PET, DRM, SACMAT,
etc.). He was keynote and invited speaker at many national and
international meetings, and a speaker in the Distinguished Colloquium
Series of six top Computer Science Departments. He was selected in
1999 as one of the best teachers in the history of Purdue University and
included in Purdue’s Book of Great Teachers, a permanent wall display of
Purdue’s best teachers past and present. He is a cofounder of Arxan
Technologies Inc. He is a fellow of the IEEE.

Sunil Prabhakar is an associate professor of
computer sciences at Purdue University. He
received the Bachelor of Technology in electrical
engineering from the Indian Institute of Technol-
ogy, Delhi in 1990, and the MS and PhD degrees
in computer science from the University of
California, Santa Barbara in 1998. His research
interests are in databases. In particular, he is
currently working on management of uncertain
data, probabilistic databases, sensor and

streams databases, data privacy, and biological databases. He is a
recepient of the US National Science Foundation CAREER award. He is
a senior member of the IEEE and serves on the editorial board of the
Distributed and Parallel Databases Journal. He has served on the
program committees of leading database conferences including ACM
SIGMOD, VLDB, ICDE, and ICDCS.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 5, MAY 2006

