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Abstract

The efficient processing of similarity joins is important for a large class of applications. The di-

mensionality of the data for these applications ranges fromlow to high. Most existing methods have

focussed on the execution of high-dimensional joins over large amounts of disk-based data. The increas-

ing sizes of main memory available on current computers, andthe need for efficient processing of spatial

joins suggest that spatial joins should be processed in mainmemory. In this paper we develop two new

spatial join algorithms (Grid-join and EGO*-join), and study their performance in comparison to the

state-of-the-art algorithm, EGO-join and the RSJ algorithm.

Through evaluation we explore the domain of applicability of each algorithm and provide recom-

mendations for the choice of join algorithm depending upon the dimensionality of the data as well as

the criticalε parameter. We also point out the significance of the choice ofthis parameter for ensuring

that the selectivity achieved is reasonable. For low-dimensional data both proposed algorithms clearly

outperform EGO-join. For high-dimensional data, the proposed EGO*-join technique significantly out-

performs the EGO-join. An analysis of the cost of Grid-join is presented and cost estimator functions

are developed. These are used to choose an appropriate grid size for optimal performance and can also

be used by a query optimizer to compute the estimated cost of Grid-join.

1 INTRODUCTION

Similarity (spatial) joins are an important database operation for several applications including GIS, multi-

media databases, data mining, location-based applications, and time-series analysis. Spatial joins are natural

for geographic information systems and moving object environments where pairs of objects located close to

each other are to be identified [13, 12]. The state-of-the-art algorithms for several basic data mining opera-

tions such as clustering [5], outlier detection [9], and association rule mining [10] require the processing of

all pairs of points within a certain distance to each other[2]. Thus a similarity join can serve as the first step

for many of these operations [1].

The problem of efficient computation of similarity joins hasbeen addressed by several researchers. Most

researchers have focussed their attention on disk-based joins for high-dimensional data. Current high-end�
Portions of this work was supported by NSF CAREER grant IIS-9985019, NSF grant 0010044-CCR and NSF grant 9972883
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workstations have enough memory to handle joins even for large amounts of data. For example, the self-

join of 1 million 32-dimensional data points, using an algorithm similar to that of [2] (assumingf loat data

type for coordinate andint for point identities) requires roughly 132MB of memory (i.e. �32 � 4 � 4� �
106 � 132MB, plus memory for stack etc.). Furthermore there are situations when it is necessary to join

intermediate results situated in main memory or sensor data, which is to be kept in main memory. With the

availability of a large main memory cache, disk-based algorithms may not necessarily be the best choice.

Moreover, for certain applications (e.g. moving object environments) near real-time computation may be

critical and require main memory evaluation.

In this paper we consider the problem of main memory processing of similarity joins, also known as

ε-joins. Given two multisetsA andB of d-dimensional points and valueε 	 R, the goal of a join operation is

to identify all pairs of points, one from each set, that are within distanceε from each other, i.e.
�a�b� � a 	
A � b 	 B � and a � b � ε�.

While several research efforts have concentrated on designing efficient high-dimensional join algo-

rithms, the question of which method should be used when joining low-dimensional (e.g. 2–6 dimensions)

data remains open. This paper addresses this question and investigates the choice of join algorithm for low-

and high-dimensional data. We propose two new join algorithms: Grid-Join andEGO*-Join, and evaluate

the performance of these methods alongwith the state-of-the-art algorithm (EGO-Join) [?] and the RSJ Join

[4] which has served as a benchmark for most algorithms.

These techniques are compared through experiments using synthetic and real data. We considered the

total wall-clock time for performing a join without ignoring any costs, such as pre-sorting data, build-

ing/maintaining index etc. The experimental results show that the Grid-join approach showed the best

results for low-dimensional data.

Under the Grid-Join approach, the join of two setsA and B is computed using an index nested loop

approach: an index (i.e. specifically constructed 2-dimensional grid) is built on circles with radiusε centered

at the first two coordinates of points from setB. The first two coordinates of points from setA are used as

point-queries to the grid-index in order to compute the join. Although several choices are available for

constructing this index, only the grid is considered in thispaper. The choice is not accidental, it is based

upon our earlier results for main memory evaluation of rangequeries. In [7] we have shown that for range

queries over moving objects, using a grid index results in anorder of magnitude better performance than

memory optimized R-tree, CR-tree, R*-tree, or Quad-tree.

The results for high-dimensional data show that the EGO*-Join is the best choice of join method. The

EGO*-Join that we propose in this paper is based upon the state-of-the-art EGO-Join algorihtm. The Epsilon

Grid Order (EGO) join [2] algorithm was shown to outperform other techniques for spatial joins of high-

dimensional data. The new algorithm significantly outperforms EGO-join for all cases considered. The

improvement is especially noticeable when the number of dimensions is not very high, or the value ofε is

not large. The RSJ algorithm is significantly poorer than allother theree algorithms in all experiments. In

order to join two sets using RSJ, an R-tree index needs to be built or maintained on both of these sets. But
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unlike the case of certain approaches these indexes need notbe rebuilt when the join is recomputed with a

different value ofε.

Although not often addressed in related research, the choice of theε parameter for the join is critical

to producing meaningful results. We have discovered that often in similar research values ofε are selected

result in very small (almost no point from the first set joins with a point from the second set) or very high

selectivities. In Section 4.1 we present a discussion on howto choose appropriate values ofε.

For the case of moving object environments, if the join is to be computed between a set of fixed objects

and a set of moving objects, existing techniques that index both sets are not likely to perform well due to

the need for repeated update to the index as the objects move [7, 14]. The Grid-join technique provides an

excellent solution to this problem since the index can be built on the fixed objects requiring no updates. If

both sets of objects are moving, then the index can be built oneither set. Due to its simple structure, the

Grid index is easier to update than other indexes such as R-trees or R*-trees.

The contributions of this paper are as follows:

� Two join algorithms that give better performance (almost anorder of magnitude better for low dimen-

sions) than the state-of-the-art EGO-join algorithm.

� Recommendations for the choice of join algorithm based upondata dimensionality, and value ofε.

� Highlight the importance of the choice ofε and the corresponding selectivity for experimental evalu-

ation.

� Highlight the importance of the cache miss reduction techniques: spatial sortings (2.5 times speedup)

and clustering via utilization of dynamic arrays (40% improvement).

� For the Grid-Join, the choice of grid size is an important parameter. In order to choose good values for

this parameter, we develop highly accurate estimator functions for the cost of the join using Grid-join.

These functions are used to choose an optimal grid size.

The rest of this paper is organized as follows. Related work is discussed in Section 2. The new Grid-

join and EGO*-join algorithms are presented in Section 3. The proposed join algorithms are evaluated in

Section 4, and Section 5 concludes the paper. A sketch of the algorithm for selecting grid size and cost

estimator functions for Grid-join are presented in Appendix A.

2 RELATED WORK

The problem of the spatial join of two datasets is to identifypairs of objects, one from each dataset, such

that they satisfy a certain constraint. If both datasets arethe same, this corresponds to a self-join. The most

common join constraint is that of proximity: i.e. the two objects should be within a certain distance of each

other. This corresponds to theε-join whereε is the threshold distance beyond which objects are no longer
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considered close enough to be joined. Below we discuss some of the most prominent solutions for efficient

computation of similarity joins.

Shim et. al. [17] propose to useε-KDB-tree for performing high-dimensional similarity joins of massive

data. The main-memory basedε-KDB-tree and the corresponding algorithm for similarity join are modified

to produce a disk-based solution that can scale to larger datasets. Whenever the number of points in a leaf

node exceed a certain threshold it is split into�1�ε� stripes1 each of width equal to or slightly greater than

ε in the ith dimension. If the leaf node is at leveli, then theith dimension is used for splitting. The join is

performed by traversing the index structures for each of thedata sets. Each leaf node can join only with its

two adjacent siblings. The points are first sorted with the first splitting dimension and stored in an external

file.

The R-Tree Spatial Join (RSJ) algorithm [4] works with an R-tree index built on the two datasets being

joined. The algorithm is recursively applied to corresponding children if their minimum bounding rectangles

(MBRs) are within distanceε of each other. Several optimizations of this basic algorithm have been proposed

[6]. A cost model for spatial joins was introduced in [3]. TheMultipage Index (MuX) was also introduced

that optimizes for I/O and CPU cost at the same time.

In [13] Patel et. al a plane sweeping technique is modified to create a disk-based similarity join for

2-dimensional data. The new procedure is called the Partition Based Spatial Merge join, or PBSM-join. A

partition based merge join is also presented in [12]. Shaferet al in [16] present a method of parallelizing

high-dimensional proximity joins. Theε-KDB-tree is parallelized and compared with the approach ofspace

partitioning. Koudas et al [11] have proposed a generalization of the Size Separation Spatial Join Algorithm,

named Multidimensional Spatial Join (MSJ).

Recently, Böhm et al [2] proposed the EGO-join. Both sets ofpoints being joined are first sorted in

accordance with the so called Epsilon Grid Order (EGO). The EGO-join procedure is recursive. A heuristic

is utilized for determining non-joinable sequences. More details about EGO-join will be covered in Section

3.2. The EGO-join was shown to outperform other join methodsin [2].

A excellent review of multidimensional index structures including grid-like and Quad-tree based struc-

tures can be found in [18]. Main-memory optimization of disk-based index structures has been explored

recently for B+-trees [15] and multidimensional indexes [8]. Both studies investigate the redesign of the

nodes in order to improve cache performance.

3 SIMILARITY JOIN ALGORITHMS

In this section we introduce two new techniques for performing anε-join: the Grid-join and EGO*-join.

The Grid-join technique is based upon a simple uniform grid and builds upon the approach proposed in

[7] for evaluating continuous range queries over moving objects. The EGO*-join is based upon EGO-join

proposed in [2]. We first present the Grid-join technique andan important optimization for improving the
1Note that for high-dimensional dataε can easily exceed 0.5 rendering this approach into a brute force method.

4



cache hit-rate for Grid-join in main memory (Section 3.1). An analysis of the appropriate grid size as well

as cost prediction functions for Grid-join is presented in the Appendix. The EGO*-join method is discussed

in Section 3.2.

3.1 Grid-join

Assume for now that we are dealing with 2-dimensional data. The spatial join of two datasets,A andB, can

be computed using a standard Index Nested Loop approach as follows. We treat one of the point data sets

as a collection of circles of radiusε centered at each point of one of the two sets (sayB). This collection of

circles is then indexed using some spatial index structure.The join is computed by taking each point from

the other data set (A) and querying the index on the circles to find those circles that contain the query point.

Each point (fromB) corresponding to each such circle joins with the query point (from A). An advantage

of this approach (as opposed to the alternative of building an index on the points of one set and processing

a circle range query for each point from the other set) is thatpoint queries are much simpler than region

queries and thus tend to be faster. For example, a region query on a quad-tree index might need to evaluate

several paths while a point query is guaranteed to be a singlepath query. An important question is the choice

of index structure for the circles.

In earlier work [7] we have investigated the execution of large numbers of range queries over point data

in the context of evaluating multiple concurrent continuous range queries on moving objects. The approach

can also be used for spatial join if we compute the join using the Index Nested Loops techinique mentioned

above. The two approaches differ only in the shape of the queries which are circles for the spatial join

problem and rectangles for the range queries.

In [7] the choice of a good main-memory index was investigated. Several key index structures including

R-tree, R*-tree, CR-tree [8], quad-tree, and 32-tree [7] were considered. All trees were optimized for main

memory. The conclusion of the study was that a simple one-level Grid-index outperformed all other indexes

by almost an order of magnitude for uniform as well as skewed data. Due to its superior performance, in

this study, we use the Grid-index for indexing theε-circles.

The Grid Index While many variations exist, we have designed our own implementation of the Grid-

index. The Grid-index is built on circles withε-radius. Note however, that it is not necessary to generate a

new dataset consisting of these circles. Since each circle has the same radius (ε), the dataset of the points

representing the centers of these circles is sufficient.

For ease of explanation assume the case of 2-dimensional data. The grid-index is a 2-dimensional array

of cells. Each cell represents a region of space generated bypartitioning the domain using a regular grid.

Figure 1 shows an example of a grid. Throughout the paper, we assume that the domain is normalized to the

unit d-dimensional hyper-cube.

In this example, the domain is divided into a 10� 10 grid of 100 cells, each of size 0�1 � 0�1. Since we

have a uniform grid, given the coordinates of an object, it iseasy to calculate its cell-coordinates in O(1)

time. Each cell contains two lists that are identified asf ull and part (see Figure 1a). Thef ull (part) list
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Figure 1: An example of the Grid Index

of a cell containspointers to all the points fromB such that a circle withε-radius around each of them fully

(partially) cover the cell.

To find all points withinε-distance from a given 2-dimensional pointa first the cell corresponding to

a is retrieved. All points inf ull list are guaranteed to be withinε-distance. Points inpart list need to be

post-processed.

The choice of data structures for thef ull and part lists is critical for performance. We implemented

these lists as dynamic-arrays2 rather than lists which improves performance by roughly 40%due to the

resulting clustering (and thereby reduced cache misses).

The similarity join algorithm which utilizes the grid is called the Grid-join. The Grid-join is described

in Figure 2. The z-sort step applies a spatial sort to the two datasets. The need for this step is explained

below.

grid-join(set A, set B, ε � R)�
z-sort(A);
z-sort(B);

initialize grid-index;
add circles to grid with centers in B and ε-radius;

foreach point a � A�
compute a’s cell Ca in grid-index;

/* process Ca �part list (and Ca � f ull lists for 2D) */
find all points

�
b � b � Ca �part and �a � b� � ε�;��

Figure 2: Grid-join procedure

The reason for two separate lists per cell for 2-dimensionalpoints is that points in thef ull list do not
2A dynamic array is a standard data structure for arrays whosesize adjusts dynamically.
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need potentially costly checks for relevance since they areguaranteed to be withinε-distance.

Case of d dimensions For the generald-dimensional case, the first 2 coordinates of points are used

for all operations exactly as in 2-dimensional case except for the processing ofpart lists, which uses all

d coordinates to determine whethera � b � ε. Keeping a separatef ull list is of little value for more

than 2 dimensions since now it too needs post-processing to eliminate false positives similar to thepart

list. Therefore only one list is kept for all circles that at least partially intersect the cell in the chosen 2

dimensions. We call this thepart list.

Choice of grid size The performance of grid-join depends on the choice of grid size, therefore it must

be selected carefully. Intuitively, the finer the grid the faster the processing but the slower the time needed to

initialize the index and load the data into it. We now presenta sketch of a solution for selecting appropriate

grid size.

The first step is to develop a set of estimator functions that predict the cost of the join given a grid size.

The cost is composed of three components: (a) initializing the empty grid; (b) loading the data (circles)

into the index; and (c) processing each point of the other dataset through this index. The Appendix presents

details on how each of these costs is estimated. The quality of the prediction of these functions was found

to be extremely high. Using these functions, it is possible to determine which grid size would be optimal.

These functions can also be used by a query optimizer – for example to evaluate whether it would be efficient

to perform a grid-join for given parameters or some other join.

Improving the Cache Hit Rate The performance of main-memory algorithms is greatly affected by

cache hit rates. In this section we describe an optimizationthat improves cache hit rates (and consequently

the overall performance) for Grid-join.

As can be seen from Figure 2, for each point, its cell is computed, and thefull andpart lists (or just

part list) of this cell are accessed. The algorithm simply processes points in sequential order in the array

corresponding to setA. Cache-hit rates can be improved by altering the order in which points are processed.

In particular, points in the array should be ordered such that points that are close together according to their

first two coordinates in the 2D domain are also close togetherin the point array. In this situation index data

for a given cell is likely to be reused from the cache during the processing of subsequent points from the

array. The speed-up is achieved because such points are morelikely to be covered by the same circles than

points that are far apart, thus the relevant information is more likely to be retrieved from the cache rather

than from main memory.

Sorting the points to ensure that points that are close to each other are also close in the array order can

easily be achieved by various methods. We choose to use a sorting based on the Z-order. We sort not only

set A but also setB, which reduces the time needed to add circles to the Grid-index. As we will see in

the Experimental section, the performance achieved with Z-sort is almost a factor of�2.5 times faster than

without Z-sorting (for example see Figure 10a.
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3.2 EGO*-join

In this section we present an improvement of the disk-based EGO-join algorithm proposed in [2]. We dub

the new algorithm the EGO*-join. According to [2], the EGO-join algorithm is the state-of-the-art algorithm

for ε-join, and was shown to outperform other methods for joiningmassive, high-dimensional data.

We begin by briefly describing the EGO-join technique as presented in [2] followed by our improvement

of EGO-join.

The Epsilon Grid Order: The EGO-join is based on the so called Epsilon Grid Ordering (EGO), see

[2] for details. In order to impose an EGO on set3 A, a regular grid with the cell size ofε is laid over the data

space. The grid is imaginary, and never materialized. By using straightforward operations, for each point in

A, its cell-coordinate can be determined in O(1) time. A lexicographical order is imposed on each cell by

choosing an order for the dimensions. The EGO of two points isdetermined by the lexicographical order of

the corresponding cells that the points belong to.

EGO-join(set A, set B, ε � R)�
EGO-sort(A, ε);
EGO-sort(B, ε);

join sequences(A, B);�
Figure 3: EGO-join Procedure

EGO-sort: In order to perform an EGO-join of two setsA andB with a certainε, first the points in these

sets are sorted in accordance with the EGO for the givenε. Note, for a subsequent EGO-join operation with

a differentε setsA andB need to be sorted again since their EGO values depend upon thecells.

Recursive join: The procedure for joining two sequences is recursive. Each sequence is further subdi-

vided into two roughly equal subsequences and each subsequence is joined recursively with both its coun-

terparts. The partitioning is carried out until the length of both subsequences is smaller than a threshold

value, at which point a simple-join is performed. In order toavoid excessive computation, the algorithm

avoids joining sequences that are guaranteed not to have anypoints within distanceε of each other. Such

sequences can be termednon-joinable.

EGO-heuristic: A key element of EGO-join is the heuristic used to identifynon-joinable sequences.

The heuristic is based on the number of inactive dimensions,which will be explained shortly. To understand

the heuristic, let us consider a simple example. For a short sequence its first and last points are likely to

have the same first cell-coordinates. For example, points with corresponding cell-coordinates (2,7,4,1) and

(2,7,6,1) have two common prefix coordinates (2,7,x,x). Their third coordinates differ – this correspond to

theactive dimension, the first two dimensions are calledinactive. This in turn means that for this sequence

all points have 2 and 7 as their first two cell-coordinates (because both sequences are EGO-sorted before

being joined).
3Throughout this paper we useset instead ofmultiset for short.
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The heuristic first determines the number of inactive dimensions for both sequences, and computesmin

– the minimum of the two numbers. It is easy to prove that if youfind a dimension	  0�min � 1! such that

the cell-coordinates of the first points of the two sequencesdiffer by at least two in that dimension, then the

sequences are non-joinable. This is based upon the fact thatthe length of each cell isε.

New EGO*-heuristic: The proposed EGO*-join algorithm is EGO-join with an important change to the

heuristic for determining that two sequences are non-joinable. The use of the EGO*-heuristic significantly

improves performance of the join, as will be seen in Section 4.

We now present our heuristic with the help of an example for which EGO-join is unable to detect that

the sequences arenon-joinable.
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Figure 4: Two sequences with (a) 0 inactive dimensions (b) 1 inactive dimension. Unlike EGO-heuristic,

in both cases EGO*-heuristic is able to tell that the sequences are non-joinable.

Two sequences are shown in Figure 4(b). Assume that each sequence has many points. One sequence

starts in cell (0,1,3) and ends in cell (0,2,2). The second sequence starts in cell (0,5,6) and ends in (0,6,3).

Both sequences have one inactive dimension: 0. The EGO-heuristic will conclude that these two should be

joined, allowing recursion to proceed. Figure 4(a) demonstrates the case when two sequences are located

in two separate slabs, both of which have the size of at least two in each dimension. There are no inactive

dimensions for this case and recursion will proceed furtherfor EGO-join.

The new heuristic being proposed is able to correctly determine that for the cases depicted in Figures 4(a)

and 4(b) the two sequences arenon-joinable. It should become clear later on that, in essence, our heuristic

utilizes not only inactive dimensions but also the active dimension.

The heuristic uses the notion of a Bounding Rectangle for each sequence. Note that in general, given

only the first and last cells of a sequence, it is impossible tocompute the Minimum Bounding Rectangle

(MBR) for the sequence. However, it is possible to compute a Bounding Rectangle (BR). Figure 5 describes

an algorithm for computing a bounding rectangle. The procedure takes as input the coordinates for first and

last cells of the sequence and produces the bounding rectangle as output. To understand getBR() algorithm,

note that if first and the last cell haven prefix equal coordinates (e.g. (1,2,3,4) and (1,2,9,4) havetwo equal
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void getBR(BR &rect, Cell &first, Cell &last)�
for (int i = 0; i � NUM DIM; i++)�

rect.lo[i] = first.x[i];
rect.hi[i] = last.x[i];

if (rect.lo[i] != rect.hi[i])�
for (int j = i+1; j < NUM DIM; j++)�

rect.lo[j] = 0;
rect.hi[j] = MAX CELL;�

return;���
Figure 5: EGO*-join: procedure for obtaining a Bounding Rectangle of a sequence

first coordinates – (1,2,x,x) ) then all cells of the sequences have the same values in the first n coordinates

(e.g. (1,2,x,x,) for our example). This means that the first ncoordinates of the sequence can be bounded

by that value. Furthermore, the active dimension can be bounded by the coordinates of first and last cell in

that dimension respectively. Continuing with our example,the lower bound is now (1,2,3,x) and the upper

bound is (1,2,9,x). In general, we cannot say anything definite about the rest of the dimensions, however the

lower bound can always be set to 0 and upper bound to MAXCELL.

void join sequences(A, B)�
getBR(BR1, A.first, A.last);
getBR(BR2, B.first, B.last);

BR1.inc(); //expand BR1 by one in all directions

if (BR1 and BR2 do not intersect)
return;

//-- continue as in EGO-join --
...�

Figure 6: Beginning of EGO*-join: EGO*-heuristic

Once the bounding rectangles for both sequences being joined are known, it is easy to see that if one

BR, expanded by one in all directions, does not intersect with the other BR, than the two sequences will not

join.

As we shall see in Section 4, EGO*-join significantly outperform EGO-join in all instances. This im-

provement is a direct result of the reduction of the number ofsequences needed to be compared based upon

the above criterion.
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4 EXPERIMENTAL RESULTS

In this section we present the performance results for in-memory ε-join using RSJ, Grid-join, EGO-join [2],

and EGO*-join. The results report the actual time for the execution of the various algorithms. First we

describe the parameters of the experiments, followed by theresults and discussion.

In all our experiments we used a 1GHz Pentium III machine with2GB of memory. The machine has

32K of level-1 cache (16K for instructions and 16K for data) and 256K level-2 cache. All multidimensional

points were distributed on the unit d-dimensional box 0�1!d . The number of points ranges from 68,000 to

200,000. For distributions of points in the domain we considered the following cases:

1. Uniform: Points are uniformly distributed.

2. Skewed: The points are distributed among five clusters. Within eachcluster points are distributed

normally with a standard deviation of 0.05.

3. Real data: We tested data from ColorHistogram and ColorMoments files representing image features.

The files are available at the UC Irvine repository. ColorMoments stores 9-dimensional data, which

we normalized to 0�1!9 domain, ColorHistogram – 32-dimensional data. For experiments with low-

dimensional real data, a subset of the leading dimensions from these datasets were used. Unlike

uniform and skewed cases, for real data a self-join is done.

Often, in similar research, the cost of sorting the data, building or maintaining the index or cost of

other operations needed for a particular implementation ofε-join are ignored. No cost is ignored in our

experiments for Grid-join, EGO-join, and EGO*-join. One could argue that since for RSJ join the two

indexes, once built, need not be rebuilt for different values of ε. While there are many other situations

where the two indexes need to be build from scratch for RSJ, weignore the cost of building and maintaining

indexes for RSJ join, thus giving it an advantage.

4.1 Correlation between selectivity and ε

The choice of the parameterε is critical when performing anε-join. Little justification for choice of this

parameter has been presented in related research. In fact, we present this section because we have discovered

that often in similar research selected values ofε are too small.

The choice of the values forε has a significant effect on the selectivity depending upon the dimension-

ality of the data. Theε-join is a common operation for similarity matching. Typically, for each multidimen-

sional point from setA a few points (i.e. from 0 to 10, possibly from 0 to 100, but unlikely more than 100)

from setB need to be identified on the average. The average number of points from setB that joins with a

point from setA on the average is calledselectivity.

In our experiments, selectivity motivated the range of values chosen forε. The value ofε is typi-

cally lower for smaller number of dimensions and higher for high-dimensional data. For example a 0�1 �
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0�1 square4 query (ε " 0�1) is 1% of a two-dimensional domain, however it is only 10#6% of an eight-

dimensional domain, leading to small selectivity.

Let us estimate what values forε should be considered for joining high-dimensional uniformly dis-

tributed data such that a point from setA joins with a few (close to 1) points from setB. Assume that the

cardinality of both sets ism. We need to answer the question: what should the value ofε be such thatm

hyper-squares of sideε completely fill the unitd-dimensional cube? It is easy to see that the solution is

ε " 1
m1$d . Figure 7(a) plots this functionε�d� for two different values ofm. Our experimental results for

various number of dimensions corroborate the results presented in the figure. For example the figure pre-

dicts that in order to obtain a selectivity close to one for 32-dimensional data, the value ofε should be close

to 0.65, or 0.7, and furthermore that values smaller than say0.3, lead to zero selectivity (or close to zero)

which is of little value5. This is in very close agreement to the experimental results.
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Figure 7: ε-join(A,B) (a) Choosingε for selectivity close to one for 105 (and 106) points uniformly dis-

tributed on 0�1!d (b) Pitfall of using improper selectivity.

If the domain is not normalized to the unit square, such as in [11], the values ofε should be scaled

accordingly. For exampleε of 0.1 for  �1�1!d domain correspond toε of 0.05 for our  0�1!d domain.

Figure 7(b) demonstrates the pitfall of using an improper selectivity. The parameters of the experiment

(distribution of data, cardinality of sets andε (scaled)) are set to the values used in one publication. With

this choice ofε the selectivity plunges to zero even for the 10-dimensionalcase. In fact, for our case, the

figure presumably shows that the Grid-join is better than EGO- and EGO*-joins even for high-dimensional

cases. However, the contrary is true for a meaningful selectivity as will be seen in Section 4.3. Similar

values for the selectivity were obtained using the setup used in [11].

Due to the importance of the selectivity in addition to the value of ε, we plot the resulting selectivity

in each experiment. The selectivity values are plotted on the y-axis at the right end of each graph. The

parameterε is on thex-axis, and the time taken by each join method is plotted on theleft y-axis in seconds.
4A square query was chosen to demonstrate the idea, ideally one should consider a circle.
5For self-join selectivity is always at least 1, thus selectivity 2–100 is desirable.
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4.2 Low-dimensional data

We now present the performance of RSJ, EGO-join, EGO*-join and Grid-join for various settings. The cost

of building indexes for RSJ is ignored, giving it an advantage.

Thex-axis plots the values ofε, which are varied so that meaningful selectivity is achieved. Clearly, if

selectivity is 0, thenε is too small and vice versa if the selectivity is more than 100.

In all but one graph the lefty-axis represents the total time in seconds to do the join for the given

settings. The righty-axis plots the selectivity values for each value ofε in the experiments, in actual number

of matching points. As expected, in each graph the selectivity, shown by the line with the ‘�’, increases as

ε increases.

RSJ is depicted only in Figure 8 because for all tested cases it has shown much worse results than the

other joins, Figure 8a depicts performance of the joins for 4-dimensional uniform data with cardinality of

both sets being 105. Figure 8b shows the performance of the same joins relative to that of RSJ.
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Figure 8: Time to doε-join for 4D uniform data (with RSJ)

In Figure 8b, the EGO-join shows 3.5–6.5 times better results than those of RSJ, which corroborates the

fact that, by itself, EGO-join is a quite competitive schemefor low-dimensional data. But it is not as good

as the two new schemes.

Next comes EGO*-join whose performance isalways better than that of the EGO-join in all experiments.

This shows the strength of the EGO*-heuristic. Because of the selectivity, the values ofε are likely to be

small for low-dimensional data and large for high-dimensional data. The EGO-heuristic is not well-suited

for small values ofε. The smaller the epsilon, the less likely that a sequence hasan inactive dimension. In

Figure 8b EGO*-join is seen to give 13.5–24 times better performance than RSJ.

Another trend that can be observed from the graphs is that theGrid-join is better that the EGO*-join,

except for high-selectivity cases (Figure 10b). EGO-join shows results several times worse than those of

the Grid-join, which corroborates the choice of the Grid-index which also was the clear winner in our

comparison [7] with main memory optimized versions of R-tree, R*-tree, CR-tree, and quad-tree indexes.
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In Figure 8b Grid-join showed 15.5–46 times better performance than RSJ.

Unlike EGO-join, EGO*-join always shows results at least comparable to those of Grid-join. For all the

methods, the difference in relative performance shrinks asε (and selectivity) increases.
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Figure 9: Time forε-join for 3 dimensions with real data. (a) With EGO-join (b) Without EGO-join (for

clarity)

Figure 9 shows the results for the self-join of real 3-dimensional data taken from the ColorMom file.

The cardinality of the set is 68,000. The graph on the left shows the best three schemes, and the graph on

the right omits the EGO-join scheme due to its much poorer performance. From these two graphs we can

see that the Grid-join is almost 2 times better than the EGO*-join for small values ofε.
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Figure 10: Time to doε-join for 4D, uniform data (a)�A � " �B � " 100�000 (b) �A � " �B � " 200�000

Figure 10 shows the results for 4-dimensional uniform data.The graph on the left is for sets of cardinality

100,000, and that on the right is for sets with cardinality 200,000. Figure 10a emphasizes the importance

of performing Z-sort on data being joined: the performance improvement is� 2�5 times. The Grid-join

without Z-sort, in general, while being better than EGO-join, shows worse results than that of EGO*-join.
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Figure 10b presents another trend. In this figure EGO*-join becomes a better choice than the Grid-

join for values ofε greater than� 0�07. This choice of epsilon corresponds to a high selectivityof � 43.

Therefore EGO*-join can be applied for joining high selectivity cases for low-dimensional data.
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Figure 11: Time to doε-join for 4D (a) Skewed data (b) Real data

Figures 11 (a) and (b) show the results for 4-dimensional skewed and real data. Note that the values

of ε are now varied over a smaller range than that of the uniformlydistributed case. This is so because in

these cases points are closer together and smaller values ofε are needed to achieve the same selectivity as

in uniform case. In these graphs the EGO-join, EGO*-join, and Grid-join exhibit behavior similar to that in

the previous figures with the Grid-join being the best scheme.

4.3 High-dimensional data

We now study the performance of the various algorithms for higher dimensions. Figures 12(a) and (b) show

the results for 9-dimensional data for uniformly distributed data. Figure 13 (a) presenets the results for

9-dimensional skewed data, Figure 13 gives the results for real 9-dimensional data. Figures 14 (a) and (b)

show the results with the 9- and 16-dimensional real data respectively. As with low-dimensional data, for all

tested cases, RSJ had the worst results. Therefore, the performance of RSJ is ommitted from most graphs –

only one representative case is shown in Figure 12a.

An interesting change in the relative performance of the Grid-join is observed for high-dimensional

data. Unlike the case of low-dimensional data, EGO-join andEGO*-join give better results than the Grid-

join. The Grid-join is not competitive for high-dimensional data, and its results are often omitted for clear

presentation of the EGO-join and EGO*-join results. A consistent trend in all graphs is that EGO*-join

results arealways better than those of EGO-join. The difference is especiallynoticeable for the values ofε
corresponding to low selectivity. This is a general trend: EGO-join does not work well for smaller epsilons,

because in this case a sequences is less likely to have an inactive dimension. EGO*-join does not suffer

from this limitation.
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Figure 12: Performance of join for 9D uniform data (a) With RSJ and Grid (b) Only best two schemes
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Figure 13: Performance of join for 9D data (a) Skewed data (b)Real data

Set Cardinality When the join of two sets is to be computed using Grid-Join, anindex is built on one of

the two sets. Naturally, the question of which set to build the index on arises. We Ran experiments to study

this issue. The results indicate that building the index on the smaller dataset always gave better results.

5 CONCLUSIONS

In this paper we considered the problem of similarity join inmain memory for low- and high-dimensional

data. We propose two new algorithms:Grid-join andEGO*-join that were shown to give superior perfor-

mance than the state-of-the-art technique (EGO-join) and RSJ.

The significance of the choice ofε and recommendations for a good choice for testing and comparing

algorihtms with meaningful selectivity were discussed. Wedemonstrated an example with values ofε too

small for the given dimensionality where one methods showedthe best results over the others whereas with

more meaningful settings it would show the worst results.
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Figure 14: Performance of join (a) 16D, Real data (b) 32D, Real data

While recent research has concentrated on joining high-dimensional data, little attention was been given

to the choice of technique for low-dimensional data. In our experiments, the proposed Grid-join approach

showed the best results for low-dimensional case or when values ofε are very small. The EGO*-join has

demonstrated substantial improvement over EGO-join for all the cases considered and is the best choice for

high-dimensional data or when values ofε are large. The results of the experiments with RSJ proves the

strength of Grid-join and EGO*-join.

An analytical study has been presented for selecting the grid size. As a side effect of the study the cost-

estimating function for the Grid-join has been developed. This function can be used by a query optimizer

for selecting the best execution plan.

Based upon the experimental results, the recommendation for choice of join algorithm is summarized in

Table 1.

Low ε High ε

Low Dimensionality Grid-join Grid-join/EGO*-join(very largeε’s)

High Dimensionality EGO*-join/Grid-join(very smallε’s) EGO*-join

Table 1: Choice of Join Algorithm
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[1] C. Böhm, B. Braunmüller, M. Breunig, and H.-P. Kriegel. Fast clustering based on high-dimensional

similarity joins. InIntl. Conference on Information and Knowledge Management, 2000.

17
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Appendix A: CHOICE OF GRID SIZE

In this section we develop cost estimator functions for Grid-join. These functions can be used to determine

the appropriate choice of grid size for computing theε-join for a specific problem. The discussion focuses

on the case of two dimensions, but can be generalized to any number of dimensions in a straight-forward

manner.

Table 2: Parameters used forε-join
Parameter Meaning

A first multiset for join

B second multiset, (on which the index is built)

k " �A � cardinality of multisetA

m " �B � cardinality of multisetB

c length of side of a cell

n " 1�c grid size:n � n grid

eps �ε epsilon parameter for the join

Table 2 lists parameters needed for our analysis. All the parameters are known before the join, except

for grid sizen, which needs to be determined. We are interested in findingn such that the time needed for

the join is minimized. Furthermore, if there are several values ofn that yield minimal or close to minimal
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join cost, then we are interested in the smallest suchn. This is because the memory requirements for the

grid increase with the number of cells in the grid.

In order to determine the relationship between the join costand the various parameters of the problem,

we develop what we call estimator (or predictor) functions for the various phases of grid-join. Once the

predictor functions are constructed, a suitable choice forn can be found by identifying a minimal value of

the cost. For the value ofn selected, the predictor functions are also useful in providing an estimated cost

to the query optimizer which can use this information to decide whether or not Grid-join should be used for

the problem.

In our analysis we assume uniform distribution of points in set A andB. The grid-join procedure can be

divided into three phases:

1. init phase: initialization of the grid pointers and lists

2. add phase: loading the data into the grid

3. proc phase: processing the point queries using the grid.

Init andadd phases collectively are called thebuild index phase. There is a tradeoff between thebuild and

proc phases with respect to the grid size,n. With fewer cells, each circle is likely to intersect fewer cells and

thus be added to fewer full and part lists. On the other hand, with fewer cells the length of the part lists is

likely to be longer and each query may take longer to process.In other words, the coarser (i.e. smallern)

the grid the faster thebuild phase, but the slower theproc phase. Due to this fact, the total time needed for

join is likely to be a concave downwards function ofn. This has been the case in all our experiments.

Upper Bound While the general trend is that a finer grid would imply shorter query processing time

(since the part lists would be shorter or empty), beyond a certain point, a finer grid may not noticeably

improve performance. For our implementation, the difference in time needed to process a cell when its part

list is empty vs. when its part list has size one is very small.It is enough to choose grid size such that the

size of part list is one and further partitioning does not noticeably improve query processing time. Thus we

can estimate an upper bound forn and search only for number of cells in the interval 1�nupper !.
For example, for 2-dimensional square data, it can be shown that the upper bound is given by [7]:

n " %&' 4qm if q ( 1
2)m ;

1
1*
m #q

otherwise.

In this formulaq is the size of each square. Since forε-join we are adding circles, the formulas is reused by

approximating the circle by a square with the same area (+ q � ε,π). The corresponding formula forn is

therefore:

n " %&' -4,πεm. if ε ( 1
2)πm

;

-
1

1*
m #ε)π

. otherwise.

A finer grid than that specified by the above formula will give very minor performance improvement while

incurring a large memory penalty. Thus the formula establishes the upper bound for grid size domain.
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However, if the value returned by the formula is too large, the grid might not fit in memory. In that casen

can be further limited by memory space availability.

In our experiments the optimal value for grid size tended to be closer to 1 rather than tonupper, as in

Figure 17.

Analysis For each of the phases of the Grid-join, the analysis is conducted as follows. 1) First the

parameters on which a phase depends are determined. 2) Then the nature of dependence on each parameter

separately is predicted based on the algorithm and implementation of the grid. Since the Grid is a simple

data structure, dependence on a parameter, as a rule, is not complicated. 3) Next the dependence on the

combination of the parameters is predicted based on the dependence for each parameter. 4) Finally, an

explanation is given on how the calibration of predictor functions can be achieved for a specific machine.
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Figure 15: Time to initialize index (a)n 	  10�100! (b) n 	  100�1000!
Estimating init Phase: The time to initialize the index depends only on the grid sizen. The process of

index initialization can be described inO �1� operation followed by the initialization ofn2 cells. Thus the

index initialization time is expected to be a polynomial of degree two overn such as:Pinit �n� " an2 � bn � c,

for some coefficientsa, b, andc. This value of the coefficients depend upon the particular machine on

which the initialization is performed. They can be determined through a calibration step. To validate the

correctness of this estimator, we calibrated it for a given machine. The corresponding estimator function

was then used to predict the performance for other values ofn not used for the calibration. The result is

shown in Figure 15 (a " 8�26 � 10#7, b " 0, andc " 0). The two graphs shown are for different ranges of

n: on the leftn varies from 10 to 100, on the rightn varies from 100 to 1000. The graphs show the actual

times measured for different values ofn as well as the time predicted by the estimator function. As can be

seen, the estimator gives very good approximation of the actual initialization times. This is especially true

for larger values ofn.

Figure 15 shows that the time needed for index initialization phase can be approximated well with a

simple polynomial. Any numerical method can be used for calibrating the coefficientsa, b, andc for a

particular machine.
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Figure 16: Estimation with polynomial for add phase

Estimating add Phase: This phase is more complicated then the init phase because itdepends on

three parameters:n – grid size ,m – cardinality of indexed set B, andε. By analyzing the dependence

on each parameter separately, we estimate that the overall function can be represented as a polynomial

Padd �n�m �ε� " a17n2ε2m � / / / � a1m � a0 with degrees ofn andε no greater than two and degree ofm no

greater than one. The next step is to calibrate the coefficients ai’s. This can be done by solving a system of

18 linear equations. These equations can be obtained by choosing three different values ofn, three values of

ε, and two values ofm �3 � 3 � 2 " 18�.
The combinations of the following calibration points have been examined in order to get the coefficients:

n0 " 10,n1 " 100,n2 " 200;ε0 " 0�001,ε1 " 0�01,ε2 " 0�02;m0 " 50, andm1 " 100. The choice of values

implies we assume that typicallyn 	  10�200!, ε 	  0�001�0�02!, andm 	  50�100!. The linear system was

solved using Gaussian elimination with pivoting method. Figure 16 demonstrates time needed for add phase

for various values ofε whenn " 150 andm " 75 and another curve is our interpolation polynomial. Again

we observe that the estimator function is highly accurate. In fact we never encountered more than a 3%

relative error in our experiments.

Estimating proc Phase: The processing phase depends on all parameters:n – grid size,k " �A �, m " �B �,
andε. Thankfully, dependence onk is linear since each point is processed independent of otherpoints. Once

the solution for some fixedk0 is known, it is easy to compute for an arbitraryk. However, there is a small

complication: the average lengths of thef ull andpart lists are given by different formulae depending upon

whether cell sizec is greater than,πε or not (see [7], in our case query side sizeq is replaced by,πε).

Consequently theproc phase cost can be estimated by two polynomials (depending onwhether,πε 0
c or not): Pproc1)πε2c �c�ε �m �k0� andPproc1)πε3c �c�ε �m �k0� each of typeP �c �ε �m �k0� 4 a17c2ε2m � / / / �
a1m � a0 with degrees ofc andε no greater than two and degree ofm no greater than one. Once again the

calibration can be done by solving a system of 18 linear equations for each of the two cases.

Estimating Total Time: The estimated total time needed for Grid-join is the sum of estimated time

needed for each phase. Figure 17 demonstrates estimation oftime needed for Grid-join whenε " 0�001,

m " 20�000,k " 10�000 as a function of grid sizen. The estimator functions of each phase were calibrated
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using different values than those shown in the graph.
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Figure 17: Estimation of total time needed forε-join (a) n 	  10�190! (b) n 	  70�80!
A simplebisection method for finding the optimal value ofn was used. This method assumes that it is

given a concave downwards function, defined on a �b!. The function has been concave downwards in all

our experiments, however in future work we plan to prove thatthe estimator function is always concave

downwards for various combinations of parameters. The bisection method in this context works as follows.

The goal is to find the leftmost minimum on the interval a �b!. Computec " �a � b��2. If f �c � 1� 5 f �c � 1�
then make newb be equalc and repeat the process, otherwise make newa be equalc and repeat the process.

The process is repeated until�b � a� � 2.

The bisection method for the example in Figure 17 gives an estimated optimal value forn as 74. Exper-

imentally, we found that the actual optimal value forn was 73. The difference between time needed for the

grid-join with 73� 73 grid and 74� 74 grid is just two milliseconds for the given settings. These numbers

show the high accuracy of the estimator functions. the Notice that the results of interpolation look even

better if they are rounded to the closest millisecond values.
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