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Abstract

Index structures are designed to optimize search perfor-
mance, while at the same time supporting efficient data up-
dates. Although not explicit, existing index structures are
typically based upon the assumption that the rate of updates
will be small compared to the rate of querying. This as-
sumption is not valid in streaming data environments such
as sensor and moving object databases, where updates are
received incessantly. In fact, for many applications, the rate
of updates may well exceed the rate of querying. In such en-
vironments, index structures suffer from poor performance
due to the large overhead of keeping the index updated with
the latest data. Recent efforts at indexing moving object
data assume objects move in a restrictive manner (e.g. in
straight lines with constant velocity). In this paper, we pro-
pose an index structure explicitly designed to perform well
for both querying and updating. We assume a more relaxed
model of object movement. In particular, we observe that
objects often stay in a region (e.g., building) for an extended
amount of time, and exploit this phenomenon to optimize an
index for both updates and queries. The paper is developed
with the example of R-trees, but the ideas can be extended to
other index structures as well. We present the design of the
Change TolerantR-tree, and an experimental evaluation.

1 Introduction

Index structures are used to improve query performance
by limiting the amount of data that needs to be examined.
Static index structures like the ISAM file format [12] are
not designed to handle updates to data very well and can
lead to poor query performance as a result of updates. Dy-
namic index structures like B-tree and R-tree are designed
to adapt the index structure as data is updated so as to con-
tinue to provide good query performance. Existing (dy-
namic) index structures perform satisfactorily for traditional
database applications where updates are infrequent com-
pared to queries.

Emerging applications such as sensor-based streaming
databases represent a drastic shift from this traditional
behavior. These applications are characterized by virtu-
ally constant updates to the data, and relatively infrequent
querying. In this setting, existing index structures are com-
pelled to expend large amounts of resources in simply keep-
ing the index updated with the latest values of the data.
The cost of updating the index dominates the advantage of
improved query performance through the use of the index.
One feasible solution is to reduce the need for updates to
the index. Recent efforts at indexing moving object data re-
duce the need for index updates by assuming that objects
will move in a well behaved, but restrictive manner (e.g. in
straight lines with constant velocity) [13]. This solution is
not generally applicable since the assumption is not reason-
able for many applications.

In this paper, we address the problem of efficient index
update where update rates are high. We drop the traditional
approach of processing updates with the goal of improved
query performance. Instead, we propose and develop in-
dex structures that are explicitly designed to perform well
for both querying and updating. We begin by observing that
most index structures inherently tolerate some change in the
data values being indexed. The first step is therefore to ex-
ploit this “tolerance” (without making any restrictions on
the nature of change of the data). Next, we present tech-
niques for altering the design of the index in order to opti-
mize for both updates and queries. This is achieved by bal-
ancing the need for efficient search (the common criterion
for index design) with the cost of updates.

As we shall see, the two goals of improved query perfor-
mance and improved update performance are directly op-
posed to each other: improving update performance is typ-
ically at the cost of query performance (and vice versa).
The paper presents an index structure that is designed for
high update environments – achieving significantly better
update performance at the cost of slightly poorer query per-
formance – and superior overall performance as compared
to existing methods. The paper is developed with R-trees,
but the ideas can be extended to other index structures.
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Figure 1. Secondary hash-index structure

The main contributions of this paper are:
1. The introduction ofChange Tolerantindex structures

that optimize for frequent updates and queries and the
design and development of change tolerant R-trees.

2. An experimental evaluation and validation of the per-
formance, and adaptability of these index structures.

The rest of this paper is organized as follows. In Sec-
tion 2 we discuss the inherent tolerance of index structures
to updates and study how to avoid index updates. In Sec-
tion 3 the design of a change tolerant R-tree is discussed.
Section 4 presents experimental results. Section 5 discusses
related work and Section 6 concludes the paper.

2 Change Tolerance of Indexes

We now discuss “change tolerance” of an index. We il-
lustrate, in particular, that for many cases of updates it is
unnecessary to visit or update the internal nodes of an R-
tree. We further study other possibilities for modifying an
R-tree in order to make it more “resilient” to data changes,
so as to minimize the costs of updates.

2.1 Tolerance to Change

Many index structures are inherently tolerant to changes
in data values without requiring a change in the index struc-
ture. Consider an R-tree [8], which can be viewed as a gen-
eralization of the B-tree for indexing objects in a multidi-
mensional space. Each node of the R-tree (internal as well
as leaf node) represents a hyper-rectangle ind dimensions.
The leaf level rectangles contain objects, and the rectangles
for internal nodes contain rectangles one level below. The
boundaries of the rectangles are made as tight as possible.
These rectangles are calledMinimum Bounding Rectangles
or MBRs. Unlike B-Tree, the MBRs of nodes at the same

level in an R-Tree are allowed to overlap. Hence searching
an object may involve traversing several paths in this tree.
When a node becomes overfull it undergoes a split. Effi-
cient heuristics and pruning are used to reduce the expected
number of paths visited by subsequent searches.

Suppose the R-tree is used to index constantly evolving
data such as locations of mobile objects. An update from
a moving objecti typically has the form: “move from cur-
rent location(x1,y1) to new location(x2,y2)”, which can
be handled in an R-tree by first deleting this object from its
current location and then re-inserting it in the new location.
We can improve the performance of this process by main-
taining a secondary hash index onid [11]. This secondary
index stores, for eachid, the pointer to the leaf page con-
taining the corresponding object in the R-tree, as shown in
Figure 1. The supplementary index facilitates fast deletion
because when removing an object’s current location value,
we can retrieve the page containing the location value di-
rectly by looking up the objectid from the hash table. This
is much faster than finding the same page through traversing
the R-tree based on spatial coordinates.

More importantly, the R-tree has achange-tolerantprop-
erty: if the new location of the object remains in the same
leaf-node, we can simply update the page corresponding to
the leaf node in order to store the new location. Thus, all
updates where the new location is in the same MBR as the
old location can be accomplished with a constant number
of I/Os. Note that the R-tree structure does not change due
to such updates (only the location of the updated object is
changed in the corresponding leaf node). We can thus first
use the secondary (hash) structure to locate the value to be
deleted, and the cost is further reduced if insertion can be
done in the same page.

The question is: how often can insertion be done in the
same leaf node that stores the old data? To answer this
question, we observe that in many applications, data change
slowly most of the time, followed by short periods of time
when the data show a much larger variation. For example,
consider the movement of people within a city. For most of
the time a large fraction of the population is inside offices
or homes. They may change their locations, but the varia-
tions usually occur within a building and therefore are not
large or rapid. Then sometimes, when they are on the road,
the changes in their locations are rapid. However, this hap-
pens for relatively shorter periods of time compared with
the time they stay in a building.

Similar observation holds for sensor data, for instance,
temperature and pressure. An index can be used to store
contains temperature and pressure values from different ar-
eas. For each region, the variation in these parameters
against time is not rapid for most of the time. However,
during evenings or during special events like thunderstorms,
they can change rapidly. They then settle around their new
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values.
Given these observations, it is thus possible that in an

R-tree, many objects remain within their MBRs even when
their values change. Update can thus be done faster if the
new value occurs in the same leaf node as the old value. We
say the R-tree is inherentlychange-tolerant.

2.2 Optimizing for Updates

We just observed that the available tolerance of an index
to data change can be used to improve update performance
with no impact on search performance. We now explore the
possibility of altering the design of the index structure to
increase the available tolerance of an index while balancing
the potential increase in the cost for querying. Again, we
focus on R-trees as the running example.

The structure of an R-tree index is determined by two
critical parameters: the node size, and the order of inserts
and deletes. The node size is chosen to be a multiple of disk
blocks. The structure that results is largely determined by
the splitting of overfull nodes. The R-tree (like other in-
dex structures) attempts to find a split of the children of the
overfull node in order to achieve balance (each of the split
nodes has roughly the same number of children), and im-
prove search performance. It is assumed that the area of the
resulting MBR of each child is proportional to the number
of queries that will access the corresponding node. Conse-
quently, the goal is to minimize this area. Other structures
such as R*-trees use a slightly more complicated decision
process to determine the split, but with the same goal of
minimizing the expected number of queries that will inter-
sect with the resulting nodes. In either case, the impact of
the split on future updates is not taken into account. For
example, the split may result in a situation wherein objects
frequently cross from one MBR to another – thereby result-
ing in a high update cost.

In the traditional R-tree, the MBR is tight (i.e. it is
the smallest rectangle that contains all underlying objects).
This implies that there is at least one object touching each
side of the MBR (otherwise it would shrink further). Having
a small MBR improves search performance and pruning. In
situations where the objects move constantly, these bound-
ary objects are likely to move in and out of the MBR very
frequently. Each time an object leaves the MBR, it has to be
re-inserted (either into a different MBR or stays in the same
MBR after expansion). Note that the use of lazy updating
through the secondary index discussed above does not elim-
inate this cost. Thus, tight MBR boundaries are good for
search performance but can result in a high update cost. The
concept of having slightly larger MBRs than needed (that is,
the MBR is no longer aminimumbounding rectangle) is ex-
plored in [11]. The proposed index, called theα-tree, is es-
sentially an R-tree with “loose” MBRs. Whenever an MBR

of the α-tree needs to be expanded, it is expanded byα%
more than its minimum size. Thus, the boundary objects
get some leeway to move and stay within the same MBR.
Naturally, this implies poorer query performance. Let us ex-
amine how the savings for updates can be balanced against
increased costs for queries.

3 CT-R-tree–a Change Tolerant Index

As explained previously, in certain kinds of data streams
such as location values and sensor readings, data changes
occur slowly for most of the time. TheCT-R-tree we de-
velop exploits this property. The structure of theCT-R-
tree is based on the R-tree, where data are hierarchically
arranged in bounding rectangles (MBRs). The design of
MBRs of theCT-R-tree are designed not to be governed
solely by current values of the data being indexed. Instead,
the MBRs are defined based upon the nature of changes to
data values. As we will see soon, this can maximize the op-
portunity for applying lazy updates and reduce the number
of updates that cross MBR boundaries. While the future up-
dates (or queries) cannot be predicted, we assume that the
past behavior is a good indicator of events in the future.1

With this in mind, our algorithm utilizes the history of up-
dates to create aCT-R-tree, in order to facilitate future up-
dates. In this section, we describe how this index is created,
followed by a discussion of index maintenance operations.

In some of the models for changing data, the data vari-
ations are modeled as a straight line with constant rate of
change. For example, indexes based on kinetic data struc-
tures [5] assume mobility of objects in straight lines with
constant velocity. Our model does not assume data changes
are well behaved. We only expect the changes are restricted
to small range of values and in only a few moments rapid
changes occur. The rapid changes are followed by another
set of small changes – again the changes are confined and
random.

3.1 Creating aCT-R-Tree

Creating aCT-R-tree involves the following steps:
1. Identification of MBRs (calledquasi-static regions

(qs-regions)) that maximize the “tolerance” of the in-
dex to updates. A qs-region is simply a range of the
domain which encloses numerous updates. Updates
that change the value from one qs-region to another
should be relatively infrequent (since these are expen-
sive updates). For the case of moving objects, these
are regions of space in which objects tend to remain

1Note that the design of existing index structures is based upon a pre-
diction of future queries under the assumption that queries are uniformly
distributed (i.e. the area of a MBR is a rough indicator of how often it will
be accessed by queries).

3



!

"

#

$

(a) (b)

Figure 2. (a) Initial qs-regions from object trails. (b) Object update graph.

Input: Hi
Output: Bi,l ,τi,l (l = 1, . . . ,no. of qs-regions forOi)
1. j ← 1, l ← 1
2. Bi(1,1)← (xi,1,yi,1)
3. for k = 2 to |Hi | do

A. Let Bi( j,k) be the MBR after expanding
Bi( j,k−1) to include(xi,k,yi,k)

B. if di( j,k) > Tdist and
di( j,k)−di( j,k−1)

tk−tk−1
> Trate then

a. if tk−1− t j > Ttime and Ai( j,k−1) < Tarea then
i. Bi,l ← Bi( j,k−1)
ii. τi,l ← tk−1− t j
iii. l ← l +1

b. elseDiscardBi( j,k−1)
c. j ← k
d. Bi( j, j)← (xi,k,yi,k)

Figure 3. Identifying qs-regions for object Oi .

for a long period of time. Qs-regions are generated by
consulting the history of updates received from each
object (Section 3.1.1).

2. Using qs-regions found in step 1, construct a structure
called theupdate graph, which depicts traffic among
qs-regions (Section3.1.2).

3. The update graph is used to merge qs-regions (Sec-
tion 3.1.3).

4. Creation of an empty, skeletal R-tree structure using
the identified qs-regions as MBRs at the leaf level, fol-
lowed by insertion of current data values to generate
theCT-R-tree (Section 3.1.4).

3.1.1 Phase 1: Identifying object qs-regions

This phase identifies rectangular regions of the domain that
are small and enclose numerous updates of an object. These
rectangles are essentiallyqs-regions, since they represent
ranges of values where the data changes constantly in a con-
fined space. We begin by dividing the update trail of each
object into pieces that do not have very large changes over
a short period of time. As an example, consider Figure 2(a),
where some individual object trails are segmented into qs-
regions. The connected bold lines show the update trails of
objects. The dashed boxes represent the bounding rectan-
gles for initial qs-regions. For ease of exposition, we use an
example of mobile objects in two-dimensional space to de-
scribe the scenario. However, the algorithms presented here
are applicable to the general case of any multidimensional
data where the movement of an object represents the change
in data value.

Formally, let O1,O2, . . . ,On be n moving objects.
Let Hi denote the trail history of objectOi . Then
Hi is a set of points{(xi,1,yi,1, ti,1), . . . ,(xi,k,yi,k, ti,k), . . . ,
(xi,|Hi |,yi,|Hi |, ti,|Hi |)}, whereti,k is the time when thekth lo-
cation update(xi,k,yi,k) occurs, and|Hi | is the total number
of samples inHi . Let Bi( j,k) be the bounding rectangle
(MBR) for Oi which encloses{(xi, j ,yi, j), . . . ,(xi,k,yi,k)} in
Hi . Let Ai( j,k) be the area ofBi( j,k). Further, letdi( j,k)
be the diameter (i.e. diagonal) ofBi( j,k). We assume that
Hi is ordered by increasing values ofti,k’s.

Figure 3 describes the algorithm for this phase. It
“grow”s MBRs to enclose samples while tracing history
records, and if an MBR satisfies certain criteria, it is
“frozen” as aqs-region. We maintain a list of qualified
MBRs for each objectOi , where we denote thel th MBR
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of this list by Bi,l . Let Ai,l be the area ofBi,l , andτi,l the
time objectOi spent inBi,l . Step 1 introduces the variable
j, which indicates the timet j at which the oldest sample is
included in thel th MBR (Bi,l ). Both j andl are set to 1, and
the first MBR,Bi,1, contains only the first sample,(xi,1,yi,1)
(Step 2).

Step 3 scans the trail of the object in increasing order
of time, identifyingqs-regions on the way. In Step 3(A),
Bi,l is expanded to include thekth sample ofHi . Step 3(B)
decides ifBi,l should befrozenas aqs-region, based on the
following conditions:

di( j,k) > Tdist (1)

di( j,k)−di( j,k−1)
tk− tk−1

> Trate (2)

That is to say, after expandingBi( j,k) to some particular
threshold diameterTdist, if Bi( j,k) grows at the rate faster
thanTrate, we stop it from growing further. This relies on the
fact that after the initial growth of the rectangle, if there is a
sudden increase in growth rate of the region, the object has
started moving faster and thus should not be considered as
lying in a qs-region. As long as one of these two conditions
are false,Bi,l continues to grow to enclose more samples.

Steps (a) to (d) in 3(B) take care of the situation when
Bi,l ceases to grow. First, we decide whetherBi,l should be
considered as aqs-region (Steps (a) and (b)).Bi,l is only
qualified as a qs-region when

1. tk−1− t j is larger thanTtime. This verifiesOi has stayed
long enough inBi,l . Singleton rectangles, such as those
labeled ‘a’, ‘b’, ‘c’, and ‘d’, in Figure 2(a), are also
eliminated.

2. The area ofBi,l , i.e.,Ai,l , is smaller thanTarea. This re-
moves rectangles that are too large, whose dead space
may lead to poor query performance.

in which case we “freeze”Bi,l (Step (a)(i)) and calculateτi,l ,
the time spent by the object inBi,l (Step (b)(ii)). Steps (c)
and (d) create a new MBR(Bi,l+1), which only contains the
kth sample. The whole process is repeated again until all
the samples inHi are exhausted, at which time we obtain a
sequence ofqs-regions forOi .

3.1.2 Phase 2: Creating an update graph

We can represent the sequence of rectangular qs-regions just
generated as a chain graph with the set of MBRsBi,l as ver-
tices and link between each consecutive rectangles in this
sequence (initially each edge is assumed to have a weight
1). Figure 2(b) shows this chain graph for the example his-
tories shown in Figure 2(a) (for clarity not all nodes and
edges of this graph are shown).

We now discuss how to cluster the chain graph of each
object to obtain theobject update graph, where the cluster-
ing is based on grouping subsets of vertices (i.e., rectangular

1. for i = 1 ton do
A. for r = 1 toCi do M[r]← 0
B. while (∃ j,k∈ [1,Ci ] and M[ j] = 0 and M[k] = 0) such that

τi, j/Ai, j < (τi, j + τi,k)/(Ai, j,k) and
τi,k/Ai,k < (τi, j + τi,k)/(Ai, j,k) and Ai, j,k < Tarea do

a. ExpandBi, j to includeBi,k
b. Replace common links ofBi, j andBi,k

by a single link, and update the weight of the link
c. τi, j ← τi, j + τi,k
d. M[k]← 1

Figure 4. Merging qs-regions.

qs-regions). Figure 4 illustrates the details of how the graph
is formed for each object. For convenience, letCi denote the
number ofqs-regions generated fromHi . Also define the
term “resident density”, which is the total amount of time
that objects spend inside the qs-region (τi,l ), divided by the
area of the qs-region. In Step 1(A) we define an arrayM to
mark the regions that have already been merged and require
no more attention. Step 1(B) chooses anyj andk in [1,Ci ]
which have not yet been merged. They have to satisfy the
following conditions in order to be merged:

τi, j/Ai, j < (τi, j + τi,k)/(Ai, j,k) (3)

τi,k/Ai,k < (τi, j + τi,k)/(Ai, j,k) (4)

Ai, j,k < Tarea (5)

whereAi, j,k denote the area of the new rectangle that
tightly enclosesBi, j andBi,k. These three conditions enforce
the rule that the pair of rectangles are merged only when
the resulting “resident density” of the resulting rectangle is
greater than each of the “resident densities” of the individ-
ual rectangles. Moreover, rectangles are only merged when
there is sufficient overlap.

When all these conditions are satisfied,Bi, j is expanded
to includeBi,k (Step (a)). Further, the links that are destined
to the same qs-region fromBi, j andBi,k are replaced by a
single link (Step (b)), with the weight of the new link up-
dated as the sum of the weights of the links being replaced.
The time valueτi, j is then assigned to be the sum of the
time values of the merging rectangles (Step (c)). Notice
that the algorithm merges the rectangles in arbitrary order,
until none of them satisfies the above criteria. This process
is repeated for every object (Step 1).

Once the update graphs for all objects are generated, we
take the union of all these graphs. A merging procedure
similar to Figure 4 is applied to this unified graph. This
merging gives us a set of qs-regions as rectangles and a
graph on it called theupdate graph. The time value of each
rectangle gives the total amount of time that objects spent in
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that rectangle, and the weight of link(i, j) between two rect-
anglesi and j in the update graph gives the total number of
updates betweenBi andBj . Finally, we scale down all the
edge weights by the factor oftTot, wheretTot = max(ti,|Hi |
(i.e., the longest duration of the trail histories). Each edge
weight now reflects the number of updates between two qs-
regions per unit time.
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Figure 5. Merged qs-regions.

3.1.3 Phase 3: Merging qs-regions via update graph

In the previous phase, merging occurs only when qs-regions
have a reasonable amount of overlap. In other words, two
rectangles that do not overlap will not be merged by the
above phase. However, there could be two unmerged rect-
angles between which a large number of objects move. In
such a situation, it is reasonable to merge these rectangle to
form a single MBR and save update cost. In this stage, we
use the update graph to detect such occurrences, and merge
qs-regions if necessary.

The high volume of traffic between qs-regions by itself
cannot guarantee a good merge. This is because these rect-
angle can be far apart, in which case the merging of these
qs-regions into a single MBR will result in a very large
MBR, with lots of dead space. If this happens, many queries
will hit this MBR unnecessarily, resulting in higher query
cost. Thus there is a trade-off between merging qs-regions
and query cost.

We capture the effect of the various factors that con-
tribute to this trade-off. Let∆A be the increase in area due
to the merging operation,A be the total area spanned by the
structure, andrq be the query arrival rate. Then, we expect
that rq∆A/A queries per unit time will hit the dead space.
This represents the loss due to this merge. On the other
hand, if the weight of the edge between these two qs-regions
in the update graph isw, thenw is the rate of updates caused
by not merging these rectangles. LetCq andCu be the scal-
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Figure 6. Structural R-tree over qs-regions

ing factors for queries and updates respectively. Then we
merge two qs-regions if the following criterion holds:

Cuw > Cqrq
∆A
A

(6)

Figure 5 shows the qs-regions as a result of these merging
steps for the example history.

3.1.4 Phase 4: Creating a structural R-tree

Given the set of qs-regions identified in the earlier phases,
we first create an R-tree index on these qs-regions. This is
achieved by inserting the qs-regions into an empty R-tree.
This forms aStructural R-tree, where the leaf level of this
R-tree contains the qs-regions. Note that bulk loading tech-
niques [3] for R-tree can be applied here with appropriate
modifications, but since this is not the focus of this paper,
we choose repeated insertions, a simpler method. We are
not concerned here with the cost of constructing the index,
since index construction is seen as an offline process. We
are more interested in the online query and update perfor-
mance of the index. Figure 6 shows the structural R-tree
that results for our running example.

Using the structural R-tree, we create the change tolerant
R-tree (CT-R-Tree) over current data. The structural R-tree
does not index data – it indexes qs-regions. We begin by
inserting the current data values into the structural R-tree,
treating the leaf level nodes of this index as one level above
the leaf for theCT-R-Tree. The qs-regions in the leaves
of the structural R-tree serve as the parent MBRs for the
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data being inserted. Although these MBRs serve a similar
purpose as MBRs in a regular R-tree, they are treated spe-
cially in two respects: (i) they are never removed from the
index (i.e. they are allowed to be underfull – in fact they
are all empty at the beginning of theCT-R-Tree construc-
tion)2 and (ii) they are not split when overfull – this avoids
the high cost for updates. Thus there is a possibly unlimited
overflow buffer (which can span multiple pages) attached to
these MBRs, as in theX-tree [6].

We also attach a linked list of overflow buffers to each in-
ternal (non-leaf) MBR. When an object’s new position does
not fall in any of the qs-region MBRs (MBRs at leaf level),
it is stored in the lowest internal node whose MBR contains
the new location. The objects which are stored in the in-
ternal node buffers are likely to be those whose values are
changing rapidly. Usually, there are relatively fewer ob-
jects of this kind unless the movement patterns of objects
change significantly. In case any linked list overflow buffer
becomes too large, it is converted to anα-R-tree. This issue
is addressed in more detail in [7].

To conclude, objects can be stored in the internal nodes,
and each MBR (leaf or internal) has a special pointer to
its set of buffer pages. Figure 7 shows the structure of the
CT-R-tree for our example. This index has four levels as
opposed to the three levels of the structural R-tree of Fig-
ure 6. Examples of data points are shown in the top figure
of the domain. The nodes shown in dashed lines are either
linked lists of overflow buffers orα-R-trees for the internal
nodes. The data objects are inserted at the new leaf level of
this tree.

Along with this structure we also maintain a secondary
hash-index. Each entry in this hash-index consists of two
fields: (1) object id and (2) a pointer to the page in R-tree
which contains its location. This structure is the same as the
secondary index described in Section 2.1. Figure 1 shows
the structure. When we insert an object into the CT-R-Tree,
it is also simultaneously inserted into the hash-index and the
pointer in its corresponding entry in the hash index is set to
the page in the CT-R-tree where it is stored. More details
on insertions and other dynamic operations are presented in
the next subsection.

3.2 Dynamic operations

Once the index structure is created for rectangular qs-
regions, they are usually not deleted, even if they are empty.
Thus the structure of the index is basically intact even when
objects are inserted or deleted. Query processing is similar
to that of the R-tree while updates, insertions and deletions

2For now we assume the movement patterns of objects is never
changed. If a qs-region becomes useless due to movement pattern changes,
it is possible to remove the qs-region from theCT-R-tree. For details,
please refer to [7].
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Figure 7. The Change Tolerant R-tree

are handled differently. We now describe how these oper-
ations are supported. Although all these operations are de-
scribed in terms of a two-dimensional space structure, they
can be extended to multiple dimensions.
Insert(o). Insert objecto with location(o.x,o.y) into the
index. Determine all the leaf level MBRs (qs-regions) that
contain this point. If multiple MBRs contain the point, we
choose the one with minimum area (to optimize query per-
formance). The object is inserted into the first non-full page
of this MBR. If all pages are full, a new page is allocated
and the object is inserted into it. If none of the leaf-level
MBRs contain the point, a lowest level MBR that contains
this point is chosen. If more than one such MBRs exist, the
one with minimum area is chosen. Note that the overflow
buffer associated with an internal node can be in the form
of either a linked list or anα-R-tree. If the number of pages
of the linked list is less thanTlist after insertion, the point is
inserted to the linked list. Otherwise, anα-R-tree is created,
to which all data in the linked list are moved. Theα-R-tree
is then attached to the internal node. Subsequent insertions
to the internal node will be directed to theα-R-tree. Finally,
the entry foro in the hash-index is updated to point to the
page which containso.
Delete(o). Search the hash-index foro. Deleteo from the
page and deallocate the page if it is empty. Set the hash-
index entry foro to null.
UpdateLoc(o,(x1,y1),(x2,y2)). Consult the hash index for

7



o. Seto.x = x2,o.y = y2. If (x2,y2) does not belong to the
same MBR, performDelete(o) andInsert(o).
Search(x,y). Searching for point(x,y) follows the search
pattern of R-tree. Since objects can also be stored in the
internal nodes, the search visits the set of buffer pages at
each internal node. If the overflow buffer is a linked list, the
search checks all the pages since the data in the linked list
is unordered. If it is anα-R-tree, an R-tree range search is
performed.
RangeSearch((x1,y1),(x2,y2)). This is similar toSearch.
Each MBR which intersects with the rectangle (lower left
(x1,y1) and upper right(x2,y2)) qualifies.

As long as traffic patterns do not change significantly,
the qs-regions discovered by our algorithms remain valid,
and our index performs well. However, when the pattern
of movement changes, previously undiscovered qs-regions
may appear. Many objects may not fall into a qs-region, and
they are accumulated in theα-R-trees of internal nodes. We
can detect which MBRs of theseα-R-trees show stability,
change them into qs-regions, and insert them to the main
structure of theCT-R-tree. Details can be found in [7].

4 Experimental Results

We performed an extensive simulation study on the per-
formance of change-tolerant indexing. We implemented the
CT-R-tree, and compared its performance with three vari-
ants of R-trees. A study of the sensitivity of theCT-R-tree to
various parameters was also conducted. Below we discuss
the simulation model, followed by the experimental results.
The experiment results for changing traffic patterns can be
found in [7].

4.1 Simulation Model

Our experiments are based upon data generated by the
City Simulator 2.0 [9] developed independently at IBM.
The City Simulator simulates the realistic motion of up to
1 million people (Nob j) moving in a city. The input to the
simulator is a map of a city. We used the sample map pro-
vided with the simulator that models a city containing 71
buildings, 48 roads, six road intersections and one park.
Each building is three-dimensional and contains a number
of floors. The simulator models the movement of objects
within the building and on the roads and park. To generate
reasonable movement and occupation of buildings, the sim-
ulator keeps track of two conditions based on parameters
Tf ill andTempty. The simulator ensures that the fraction of
people at the ground level lies betweenTf ill andTempty.

Each object reports its location to the server at an average
rate ofλu. Before recording the simulation results, the sim-
ulator enters a warm-up phase, where at mostNrelax samples

for each object are generated, or at leastTstart of the popula-
tion are at the ground level of buildings. Next, the simulator
records the location updates of each object in a trace file,
which contains the timestamp of the update and the spa-
tial coordinates of the object at that time. The trace file
serves as the data source for our experiments. It captures,
for each object, a total ofNhist + Nupdate location updates.
We use the firstNhist updates as the history profile. The first
Nhist−1 records are used to generate an R-tree composed of
qs-regions. TheNhist-th sample is then inserted to the R-tree
to produce theCT-R-tree. Once theCT-R-tree is built, the
remainingNupdatesamples are modeled as dynamic updates
to theCT-R-tree, as well as other R-tree variants. At the
same time, range queries are generated at an average rate of
λq. Each range query has the shape of a square, with central
point chosen randomly within the city area and size equal to
a fraction fq of the city area. It should be noted that the city
map is used only by the City Simulator to generate realistic
movement of objects – it is not used for the generation of
theCT-R-tree index structure.

Since these are disk-based index structures, the number
of page I/Os is the natural metric for measuring the perfor-
mance of the indexes. We measure the number of page I/Os
for reads and writes of both dynamic updates and queries
during the simulation. We do not distinguish between se-
quential page I/Os and random page I/Os – each page is
treated equally. This is likely to be a disadvantage for the
CT-R-tree since its node buffer pages may often be multi-
ple pages long, unlike the other trees for which the nodes
are always the same size. Each page has a size ofSpage,
with a fan-out ofNentry. The secondary index of theCT-R-
tree (i.e., the hash table) has sizeShash. We assume all tree
structures and the hash table are stored on disk.

The City Simulator is implemented in Java and run under
Windows XP. The programs for generating theCT-R-tree
are written in C++ and Java, and the testbed is run on a
UNIX server. Although we focus on the performance of
dynamic updates and queries, it is worth notice that the time
required to generate the CT-R-tree using the history profiles
is usually less than ten minutes. Also, since this process
can be done in an offline fashion, it does not interrupt the
processing of online updates. Table 1 shows the parameters
of the simulation model, the parameters of theCT-R-tree,
as well as their corresponding values.

4.2 Results

Here we present the simulation results of theCT-R-tree.
Four index structures are evaluated in our experiments: (i)
the traditional R-tree [16]; (ii) the traditional R-tree aug-
mented with lazy updating using the secondary index struc-
ture shown in Figure 1. We call thislazy-R-tree; (iii) the
α-tree which is essentially an R-tree with lazy updating
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and expanded MBRs (i.e. the MBRs are not minimal, but
widened by a factor ofα (we usedα = 0.1 in our experi-
ments); and (iv) theCT-R-tree.

4.2.1 Effect of Update/Query Ratio

We begin by studying the relative performance of the vari-
ous index structures as the number of queries and updates
is varied. Figure 8 shows the total number of page I/Os per-
formed for query and update for the R-tree, thelazy-R-tree,
theα-tree and theCT-R-tree. The performance is measured
under the same query generation rate but different update
arrival rates. To generate a slower update rate, some loca-
tion samples are skipped. It should be noted that this graph
uses a Log-scale on both axes. As the ratio of update rate
over the query rate (abbreviated as update/query ratio) is in-
creased from 10−2 to 103, all four indexes show an increase
in the number of I/Os. This is because increasing the update
rate implies more demands on the index, and consequently
more I/Os are needed.

When the update/query ratio is low, theCT-R-tree takes
about two times as many I/Os than other R-tree variants.
Recall that the R-tree and thelazy-R-tree uses MBRs, which
are tight bounds over the enclosed objects’ values. On the
other hand, theCT-R-tree employs qs-regions that do not
necessarily enclose as tightly as MBRs. When a query is ex-
ecuted, its query region potentially has less overlap with the
R-tree’s MBRs than with qs-regions. This results in fewer
searches and better performance. With anα of 0.1, the ex-
panded MBR of theα-tree is slightly larger than the other
R-trees. Thus it also suffers the same problem as theCT-
R-tree and its performance is worse than the R-tree. The
advantage of using the secondary structure in thelazy-R-
tree gives it a minor edge over the traditional R-tree since
it saves the cost of accessing the R-tree when an updated
object remains inside the same leaf node.

Towards the right end of the graph, when the update
workload dominates the query workload, theCT-R-tree
registers a significant improvement over other R-tree vari-
ants. In fact, once the update/query ratio crosses over 5.6,
the number of I/Os needed by all three R-trees increases
sharply, whereas theCT-R-tree gracefully handles the high
update burden. When updates are much more frequent than
queries, which is a typical scenario in sensor and moving
object databases, the R-tree suffers from expensive updates.
The distinction between the R-tree and thelazy-R-tree be-
gins to show in this high update setting as the secondary
index yields significant gains from cheaper updates. Theα-
tree improves further over thelazy-R-tree since it can han-
dle more updates through the secondary index on account
of its more lax MBR. TheCT-R-tree clearly outperforms
the other indexes in this high update environment since its
structure is inherently designed to maximize tolerance to

changes in object values. The advantage of better update
performance more than compensates for the slightly poorer
query performance.

Param Default Meaning

Simulation parameters
λu 5,000 Location update rate (sec−1)
Tstart 0.15 Start threshold
Tf ill 0.09 Fill threshold
Tempty 0.5 Empty threshold
Nob j 105 # of moving objects
Nrelax 2000 Max samples skipped before recording
Nhist 110 # of historic samples (per object)
Nupdate 20 # of online updates (per object)
λq 50 Query arrival rate (sec−1)
fq 0.1 Query size (% of the city area)

CT-R-tree parameters
Tdist 25 Distance threshold in Eqn 1 (m)
Trate 1 Max growth rate of qs-region (m/sec)
Ttime 300 Min time objects in qs-region (sec)
Tarea 22500 Max area of qs-region (m2)
Cq 1 Query scaling factor (Eqn 6)
Cu 1 Update Scaling factor (Eqn 6)

Spage 4096 Size of a page (bytes)
Nentry 20 # of entries (per page)
Shash 8 Size of secondary index (Mbytes)

Table 1. Parameters and baseline values.

The CT-R-tree works the best under high update rates
because it is aware of the presence of qs-regions, and uses
them to cluster the search space. Further, these qs-regions
are not split further into smaller units. Therefore, when an
object moves inside the qs-region, no matter how frequently
it reports its value, only the secondary index is consulted
and the current value is directly updated in the leaf node. As
the update/query ratio increases, the improvement over R-
trees is more obvious. In particular, when the update/query
ratio is 1000, the number of I/Os required by theCT-R-tree
is only 1/4th that of theα-tree, 1/7th that of thelazy-R-tree,
and 1/27th that of the R-tree.

4.2.2 Effect of Query Size

Since thelazy-R-tree maintains tighter bounding rectangles
than theα-tree and theCT-R-tree, it is expected to outper-
form them for querying. In this experiment, we examine
more precisely how well thelazy-R-tree outperforms the
two indexes by measuring the ratio of the query I/Os of two
trees over the query I/Os for thelazy-R-tree. Note that the
lazy-R-tree and the traditional R-tree have identical query
performance. Figure 9 shows the ratios over different query
sizes. The query size is varied from 0.1% to 2% of the do-
main. We observe that both theα-tree and theCT-R-tree

9



14

15

16

17

18

19

20

21

22

23

24

-2 -1 0 1 2 3

Lo
g2

(d
is

k 
I/O

s)

Log10(update/query ratio)

RTree
CTRtree

Lazy RTree
alpha RTree

Figure 8. Total I/O vs. Update/Query Ratio

require more query I/Os than the R-tree. Also, theCT-R-
tree needs more query I/Os than theα-tree. As the query
size increases, their performance starts to converge to that
of the R-tree. The reason is that with a large query area, the
probability that a given region will be covered by a query in-
creases. Thus the advantage of having a smaller area MBR
reduces. To see this, consider a very large query that covers
95% of the space – it is highly likely that most MBRs will
overlap with this query and therefore need to be searched.
In that case, searching a qs-region in theCT-R-tree can be
even more effective than searching in the R-tree, because
in a qs-region (i.e., leaf-level of theCT-R-tree), objects are
stored in a linked list of buckets. If most of the qs-region is
covered by the query, then accessing the objects in theCT-
R-tree is likely faster than accessing the corresponding area
in the R-tree, where a tree traversal is necessary. Hence, the
performance ofCT-R-tree improves over large query size.

Although theCT-R-tree does not perform as well for
queries as the other two indexes, we can see from Fig-
ure 10 that it is the clear winner in terms of overall perfor-
mance (total number of I/Os). TheCT-R-tree is designed
for databases with more updates than queries. Its loss in
query performance is compensated with a significant gain
in update performance, resulting in three-fold improvement
over theα-tree, and four-fold improvement over the lazy-R-
tree, consistently over all query sizes considered.

4.2.3 Scalability ofCT-R-tree

In this experiment, we study the scalability of theCT-R-
tree. The number of I/Os for thelazy-R-tree and theCT-R-
tree are reported for up to 500K objects (Figure 11). We ob-
serve that theCT-R-tree performs better than thelazy-R-tree
as the number of objects is increased from the baseline value
(100K). This shows that theCT-R-tree scales with the num-
ber of objects. A closer look at the graph reveals that the
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performance gap between the two indexeswidenswith in-
creasing number of objects. The rationale is two-fold: First,
when more objects are maintained in the system, more up-
date requests are generated. As discussed in 4.2.1, the per-
formance of the R-tree degrades more than that of theCT-R-
tree. Second, the city plan is fixed. Injecting more objects to
the city implies a higher population density. Many objects
are close to each other, so that they have a higher chance
of being clustered to the same MBR. As a result, an MBR
gets full easily, and more splits are necessary to maintain
the R-tree. ACT-R-tree does not perform splits. Instead, a
new bucket is created and added to the linked list pointed to
the leaf node. Since a qs-region has limited size, the linked
list maintained in the qs-region requires fewer I/Os than the
R-tree with increased density.

4.2.4 Sensitivity to Parameter Values

This set of experiments studies the sensitivity of theCT-R-
tree to its parameter values, namelyTdist, Trate, Tarea, and
Ttime. These parameters are used in the first step of identi-
fying qs-regions, so their values can be critical to the per-
formance results. We examine the I/O performance of the
CT-R-tree over a wide range of values for these parameters.
The results forTrate andTarea are shown in Figures 12(a)
and (b) respectively. The results forTdist andTtime showed
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trends very similar to those forTrate and the graphs are om-
mitted due to space constraints. Each graph plots the num-
ber of page I/Os for query and update for theCT-R-tree as
a function of the respective parameter.

In general, these graphs illustrate flat curves for update,
query and overall I/O performance, over a wide range of
values. This indicates that theCT-R-tree is not sensitive to
these parameters and therefore it is not critical to choose
precise parameter values for theCT-R-Tree to work effi-
ciently. As long as the parameter values are “reasonable”,
theCT-R-tree behaves well. Special care needs to be taken
in choosing a value forTarea, though. In particular, one
needs to avoid choosing a value that is too small, otherwise
the number of qs-regions may be too small, or qs-regions
may tend to be smaller than they should be. Many objects
that should be in a qs-region may then not be able to hit
one of these small qs-regions. They are forced to be placed
in the overflow pages of the internal nodes, leading to poor
performance.

In practice, the appropriate values of the parameters de-
pend on particular applications. It is suggested to have an
initial study of the application semantics, for example, by
examining a few records of history trails, in order to per-
form a “reasonable guess” over the parameter values.

We also studied the effect of changing traffic patterns on
α-R-tree experimentally. We modified our scheme to adapt
to changes, i.e., by discovering and removingqs-regions.
Our experiment results shows that the new scheme can ad-
just the structure of theCT-R-tree in accordance to traffic
changes. Due to space limitation, interested readers are re-
ferred to [7] for more details.

5 Related Work

Developing an efficient index structure for constantly
evolving data is an important research issue for databases.
Most works in this area so far focus on moving object envi-
ronments, where the positions of objects keep changing. As
a simple approach, multi-dimensional spatial index struc-

tures can be used for indexing the positions of moving ob-
jects. However, they are not efficient because of frequent
and numerous update operations.

To reduce the number of updates, many approaches de-
scribe a moving object’s location by a linear function, and
the index is updated only when the parameters of the func-
tion change, for example, when the moving object changes
its speed or direction. Saltenis et al. [13] proposed the time-
parameterized R-tree (TPR-tree). In this scheme, the posi-
tion of a moving point is represented by a reference position
and a corresponding velocity vector. The MBRs of the tree
vary with time as a function of the enclosed objects. When
splitting nodes, the TPRtree considers both the positions of
the moving points and their velocities. Later, Tao et al. [14]
presented TPR∗-tree, which extends the idea of TPR-trees
by employing a different set of insertion and deletion al-
gorithms in order to minimize the query cost. Kollios et
al. [10] proposed an efficient indexing scheme using parti-
tion trees. Tayeb et al. [15] introduced the issue of index-
ing moving objects to query the present and future positions
and proposed PMR-Quadtree for indexing moving objects.
Agarwal et al. [1] proposed various schemes based on the
duality and developed an efficient indexing scheme to an-
swer approximate nearest-neighbor queries. The problem
with all these techniques is that there hardly exists a good
function for describing the objects’ movements in reality. In
many applications, the movement of objects is complicated
and non-linear. In such situations, the approaches based
on a linear function cannot work efficiently– the function
changes too often. Approximation technique using thresh-
old such as maximal velocity has been proposed to reduce
the update cost. However, this approximation technique can
decrease the efficiency of the index.

In the computational geometry community, kinetic data
structures [5] were introduced for mobile data. These are
main memory structures that assume that the objects move
in a rectilinear motion with fixed velocities. The updates
are in the form of change in velocity or direction of an ob-
ject. A kinetic event occurs when objects change their ve-
locities or directions or when the combinatorial structure
changes e.g. when two points cross each other. The idea
is that the structure only needs to be updated when such a
kinetic event occurs. These data structures were applied to
solve geometry problems such as closest pair, convex hull
and Voronoi diagram problems efficiently while objects are
moving continuously. Kinetic space partitioning tree (or
cell-trees) were introduced by [2]. Based on this notion
of kinetic data structures, Agarwal et al. [1] proposed a ki-
netic version of the kd-tree, where the medians are dynam-
ically maintained. However, most works have been on the
main memory data structures. For external memory, Agar-
wal et al. [1] applied this idea to external range trees [4] and
bounds on query performance are proved.
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6 Conclusion and Future Work

Traditionally, index structures are optimized for im-
proved query performance in the presence of less frequent
updates. For environments such as sensor and moving ob-
ject databases where data is constantly evolving traditional
index structures give poor performance. We introduced the
notion of Change Tolerantindexing for these high update
environments. Change tolerant indexes optimize for both
query and update performance. We developed the algo-
rithms for creation and use of a change tolerant R-tree in-
dex. Experimental results showed the superior performance
of the proposed index structure. The proposedCT-R-tree
trades slightly poorer query performance for much superior
update performance resulting in better overall performance.
The performance was also found to be robust with regards to
number of objects and queries, and query sizes. We observe
that the generic idea of change tolerant indexing can be ap-
plied to other index structures. We plan to study change
tolerant versions of these other index structures in more de-
tail.
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