
Resilient Rights Protection for Sensor Streams ∗

Radu Sion, Mikhail Atallah, Sunil Prabhakar
Center for Education and Research in Information Assurance

Indiana Center for Database Systems
Computer Sciences, Purdue University

{sion, mja, sunil}@cs.purdue.edu

Abstract

Today’s world of increasingly dynamic com-
puting environments naturally results in more
and more data being available as fast streams.
Applications such as stock market analysis,
environmental sensing, web clicks and intru-
sion detection are just a few of the exam-
ples where valuable data is streamed. Often,
streaming information is offered on the basis
of a non-exclusive, single-use customer license.
One major concern, especially given the digi-
tal nature of the valuable stream, is the abil-
ity to easily record and potentially “re-play”
parts of it in the future. If there is value asso-
ciated with such future re-plays, it could con-
stitute enough incentive for a malicious cus-
tomer (Mallory) to duplicate segments of such
recorded data, subsequently re-selling them
for profit. Being able to protect against such
infringements becomes a necessity.

In this paper we introduce the issue of rights
protection for streaming data through wa-
termarking. This is a novel problem with
many associated challenges including: operat-
ing in a finite window, single-pass, (possibly)
high-speed streaming model, surviving nat-
ural domain specific transforms and attacks
(e.g.extreme sparse sampling and summariza-
tions), while at the same time keeping data

∗Portions of this work were supported by Grants EIA-
9903545, IIS-0325345, IIS-0219560, IIS-0312357, IIS-9985019
and IIS-0242421 from the National Science Foundation, Con-
tract N00014-02-1-0364 from the Office of Naval Research, by
sponsors of the Purdue Center for Education and Research in
Information Assurance and Security, and by Purdue Discovery
Park’s e-enterprise Center.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

alterations within allowable bounds. We pro-
pose a solution and analyze its resilience to
various types of attacks as well as some of
the important expected domain-specific trans-
forms, such as sampling and summarization.
We implement a proof of concept software
(wms.*) and perform experiments on real sen-
sor data from the NASA Infrared Telescope
Facility at the University of Hawaii, to assess
encoding resilience levels in practice. Our so-
lution proves to be well suited for this new
domain. For example, we can recover an
over 97% confidence watermark from a highly
down-sampled (e.g. less than 8%) stream or
survive stream summarization (e.g. 20%) and
random alteration attacks with very high con-
fidence levels, often above 99%.

1 Introduction

Protecting rights over outsourced digital content be-
comes essential when considering areas where the data
is sensitive and valuable. One example is the outsourc-
ing of data for data mining. In this scenario data is
produced/collected by a data collector and then sold
to parties specialized in mining it. Different rights pro-
tection avenues are available, each with its advantages
and drawbacks. Enforcement by legal means is usually
ineffective, unless augmented by a digital counter-part
such as Information Hiding. Digital Watermarking de-
ploys Information Hiding as a method of Rights Pro-
tection to conceal an indelible “rights witness” (water-
mark) within the digital Work to be protected. The
soundness of such a method relies on the assumption
that altering the Work in the process of hiding the
mark does not destroy the value of the Work, and that
it is difficult for a malicious adversary (“Mallory”) to
remove or alter the mark beyond detection without de-
stroying the value of the Work. The ability to resist
attacks from such an adversary (mostly aiming at re-
moving the embedded watermark) is one of the major
concerns in the design of a sound solution.

A considerable amount of effort has been invested
in the problem of watermarking multimedia data (im-

ages, video and audio). More recently, the focus of
watermarking for digital rights protection is shifting
toward other data domains such as natural language
text [2], software, algorithms [7] [15] and relational
data [11] [18] [19]. Since these data domains often
have very well defined restrictive semantics (as com-
pared to those of images, video, or music) and may
be designed for machine ingestion, the identification
of the available “bandwidth” for watermarking is as
important a challenge as the algorithms for inserting
the watermarks themselves.

In this paper we introduce and study the problem of
watermarking sensor streams data, which to the best
of our knowledge, has not been addressed. Streaming
data sources represent an important class of emerg-
ing applications [3] [4]. These applications produce
a virtually endless stream of data that is too large
to be stored directly. Examples include output from
environmental sensors such as temperature, pressure,
brightness readings, stock prices etc. Recent efforts
in the broader area of streaming data deal with the
database challenges of its management [5] [9] [10] [13].

Existing work on itemized data types [11] [18] [19]
relies upon the availability of the entire dataset dur-
ing the watermarking process. While this is generally
a reasonable assumption, it does not hold true for the
case of streaming data [3]; since the streamed data is
typically available as soon as it is generated, it is de-
sirable that the watermarking process be applied im-
mediately on subsets of the data. Additionally, the
attack and transformation models in existing research
does not apply here. For example a process of summa-
rization would defeat any of the above schemes. Yet
another difference from previous research is the lack
of a “primary key” reference data set, an essential,
required, part in both [11] and [19]. Due to these dif-
ferences, earlier work on watermarking relational data
sets is not applicable to streams.

But why is watermarking streaming data impor-
tant? Couldn’t we simply watermark the data once
it is stored? This surely would work and enable rights
protection for the stored result. But it would not de-
ter a malicious customer (Mallory), with direct stream
access, to duplicate segments of the stream and re-sell
them or simply re-stream the data for profit. The main
rights protection scenario here (see Figure 1) is to pre-
vent exactly such leaks from a licensed customer.

Licensed
Data

Consumer

Third
Party

sensor
farmsensor

sensor

sensor

sensor

sensor

wm
STOP

Figure 1: Sensor Streams Watermarking Scenario.

Our contributions include (i) the proposal and defi-
nition of the problem of watermarking sensor streams,

(ii) the discovery and analysis of new watermark em-
bedding channels for such data, (iii) the design of novel
associated encoding algorithms, (iv) a proof of con-
cept implementation of the algorithms and (v) their
experimental evaluation. The algorithms introduced
here prove to be resilient to important domain-specific
classes of attacks, including stream re-sampling, sum-
marization (replacing a stream portion by its average
value) and random changes. For example, sampling
the data stream down to less than 8% still yields a
court-time confidence of watermark embedding of over
97%. Summarization (e.g. 20%) and random data
alterations are also survived very well, often with a
false-positive detection probability of under 1%.

The paper is structured as follows. Section 2 out-
lines the major challenges in this new domain. It pro-
poses an appropriate data and transform model, dis-
cusses associated attacks and overviews related work.
In Section 3 an initial solution is provided. Further
resilience-enhancing improvements and attack han-
dling capabilities are gradually introduced in Section 4.
Section 5 analyzes the ability to convince in court to
survive attacks and natural domain transformations.
Section 6 presents wms.*, a proof-of-concept java im-
plementation of our solution; our experimental setup
and results are introduced. Section 7 concludes.

2 Challenges

2.1 The Adversary

As outlined above, the nature of most “fast” time-
series data applications imposes a set of strict require-
ments on any on-the-fly data processing method, such
as watermarking. For one, it has to be able to keep
up with the incoming data rate and, the fact that only
a finite window of memory (e.g. of size $, see be-
low) is available for processing makes certain history-
dependent computations difficult or simply impossible.
At the same time, metrics of quality can only be han-
dled within this space; any preservation constraints
can be formulated only in terms of the current avail-
able data window. Including any history information
will come at the expense of being unable to store as
much new incoming data.

Moreover, the effectiveness of any rights protection
method is directly related to its ability to deal with
normal domain specific transformations as well as ma-
licious attacks. There are several transforms relevant
in a streaming scenario, including the following: (A1)
summarization, (A2) sampling, (A3) segmentation (we
would like to be able to recover a watermark from a
finite segment of data drawn from the stream), (A4)
linear changes 1 (there might be value in actual data
trends, that Mallory 2 could still exploit, by scaling
the initial values), (A5) addition of stream values and
(A6) random alterations.

1Taken care of by the initial normalization step.
2The traditional name of the maliciously acting party.

While we discuss most of these and other attacks in
the next sections, let us note here that with respect to
(A5), Mallory is bound to add only a limited amount
of data (in order to preserve the value in the original
stream) and these new values are to be drawn from
a similar data distribution, lest they become easy to
identify in the detection process as not conforming to
the known original distribution. Also (A6) can be nat-
urally modeled by a combination of (A2) and (A5).

2.2 Model

For the purpose of simplicity let us define a simple
data stream as an (almost) infinite timed sequence of
(x[t]) values “produced” by a set of data sources of a
particular type (e.g. temperature sensors, stock mar-
ket data). x[t] is a notation for the value yielded by
our source(s) at time t. Unless specified otherwise,
lets denote a stream as (x[], ς) where ς is the number
of incoming data values per time unit (data rate) 3.

Note: While a time-stamp t can be assigned nat-
urally to each and every data value when produced
by a data source, it often becomes irrelevant after
such domain-specific transformations as sampling and
summarization which destroy the exact association be-
tween the value x[t] and the time it was initially gen-
erated, t. Thus, the notation x[t] is merely used to
distinguish separate values in the stream and is not
intended for suggesting the preservation of the time-
stamp-value in the resulting stream (which is ulti-
mately just a sequence of values).

Any stream processing is necessarily both time and
space bound. The time bounds derive from the fact
that it has to keep up with incoming data. We are
going to model the space bound by the concept of a
window of size $. At each given point in time, no
more than $ of the stream (x[t]) values (or equivalent
amounts of arbitrary data) can be stored locally, at the
processing point. Unless specified otherwise, as more
incoming data becomes available, the default behavior
of the window model is to “push” older items out (i.e.
to be transmitted further, out of the processing facil-
ity) and “shift” the entire window (e.g. to the right)
to free up space for new entries.

For simplicity, without sacrificing generality, for
the remainder of the paper we are going to assume
the stream values being normalized in the interval
(−0.5, +0.5). This assumption does not need to hold
in general but instead just simplifies the task of un-
derstanding the algorithms.

For the purpose of the current framework, we de-
fine the uniform random sampling of degree χ of a
stream (x[], ς) as another stream (x′[], ς ′) with ς ′ = ς

χ

such that for each sample data item x′[t], there ex-
ists a contiguous subset of (x[]), (x[t1], x[t2]) such that
x′[t] ∈ (x[t1], x[t2]), {x

′[t−1], x′[t+1]}
�

(x[t1], x[t2]),
and t is uniformly distributed in (t1, t2). In other

3The proposed solution does not rely on any characteristic of
the actual stream data rate. For space and simplicity purposes
in this paper we are discussing streams with fixed data rates.

words, it is constructed by randomly choosing one
value out of every χ values in the original. A sub-
tle variation of uniform random sampling is the case
when x′[t] is not randomly chosen but rather always
the first element in it’s corresponding χ sized subset
(e.g. t = t1). We call this fixed random sampling of
degree χ.

We define the summarization of degree ν of a
stream (x[], ς) as another stream (x′[], ς ′) with ς ′ = ς

ν
such that for each two adjacent sample data items
x′1[t], x

′
2[t + ν], there exist two contiguous, adjacent,

non-overlapping ν-sized subsets of (x[]), (x[t − ν +
1], x[t − ν + 2], ..., x[t]), (x[t + 1], x[t + 2], ..., x[t + ν])

such that x′1[t] = � i∈(1,ν) x[t−ν+i]

ν
and x′2[t + ν] =

� i∈(1,ν) x[t+i]

ν
. In other words, for a continuous chunk

of ν elements from the original stream summarization
outputs its average.

A

B

C

D

E

F

G

H

I

J

K

+6.0

-7.3

+7.7

-7.2

+6.7

+2.0

+11.2
+8.7

-5.5

+6.0

EG:"1"
GI:"0"

IK:"0"
CE:"0"AC:"1"

time
e

d

characteristic subset

time

Figure 2: (a) A sample stream. If all the extremes are con-
sidered to be major, then the resulting label bits for K are
shown (for % = 2, Section 4.1) (b) δ-Radius characteristic
subset of extreme η.

We define an extreme η in a stream simply as either
a local minimum or local maximum value. We define
the extreme’s characteristic subset of radius δ, noted
Ξ(η, δ) (see Figure 2 (b)), as the subset of stream items
forming complete “chunks”, immediately adjacent to η
and conforming to the following criteria: item i, with
value vi ∈ Ξ(η, δ) iff |η − vi| < δ and all the items
“between” i and the extreme η, also belong to Ξ(η, δ).

A major extreme of degree χ and radius δ is defined
as an extreme η such that at least one item in Ξ(η, δ)
can be found in any uniform random sampling of de-
gree χ of (x[]) (i.e. some items in Ξ(η, δ) “survive”
sampling of χ degree). For example, in Figure 2 (a),
intuitively, it seems likely that extremes such as F,I
and J have a smaller chance of surviving sampling than
C,E or G. This is so because of the temporal shape of
the stream’s evolution. C,E,G seem to yield charac-
teristic subsets much “fatter” than F,I,J. Intuitively, δ
needs to be chosen such that the characteristic subsets
are going to be of an average size greater than χ, to
handle sampling of degree χ.

To model the “fluctuating” nature of a stream, let
ε(χ, δ) be the average number of stream data items
encountered/read per major extreme (i.e. before en-
countering a major extreme) of degree χ and radius
δ. 1

ε(χ,δ) defines the average “frequency of major ex-

tremes” in terms of the number of observed data items.
For any numeric value x let b(x) be the number

of bits required for its accurate representation and

msb(x, b) its most significant b bits. If b(x) < b we
left-pad x with (b − b(x)) zeroes to form a b-bit re-
sult. Similarly, lsb(x, b) is used to denote the least
significant b bits of x. Let wm be a watermark to be
embedded, wm[i] the i-th bit of wm.

In our solution we leverage the one-way crypto-
graphic hash, a special de-facto secure construct. If
crypto hash() is a cryptographic secure one-way hash,
of interest are two of its properties: (i) it is computa-
tionally infeasible, for a given value V ′ to find a V such
that crypto hash(V) = V ′ (one-wayness), and (ii)
changing even one bit of the hash input causes random
changes to the output bits (i.e. roughly half of them
change even if one bit of the input is flipped). Exam-
ples of potential candidates for crypto hash() are the
MD5 (used in the proof of concept implementation) or
SHA hash. For more details on cryptographic hashes
consult [17]. Let H(V, k) = crypto hash(k; V ; k)
(where “;” denotes concatenation).

2.3 Related Work

Could existing work in non-media data sets water-
marking such as relational data [11] [18] [19] be
adapted to the new domain? Our work in [19] re-
quires access to the entire data set in an almost ran-
dom access model, which is certainly not possible here
at embedding time. Also, these efforts seem to make
extensive use of the existence of a primary key (or
an additional attribute, in [18]), thus rendering a di-
rect adaptation impossible. Moreover, the expected
attacks and transformations are different. For exam-
ple a process of summarization would defeat any of
the above schemes. Nevertheless it might be worth
noting that, if a primary key is assumed to exist, e.g.
if there is a guarantee that the time-stamp information
for each stream value is going to be preserved in the
result, then both the bit alteration method proposed
by Kiernan et al in [11] (for numeric types) and the
solution in [18] (for discrete data) could be adapted to
work on a single attribute, namely the stream value.
The result would likely be resilient to (time-stamp pre-
serving) sampling, but fail with respect to any other
attack or transformation.

But what about multimedia watermarking? Given
the “streaming” nature of our data, would it not be
possible to simply adapt an existing audio (or media)
watermarking algorithm [6] [8] [12] [16] [20] since au-
dio data is also an example of a data stream? In other
words, why is our problem different? While there seem
to be similarities between watermarking audio and sen-
sor data for example, at a closer inspection these sim-
ilarities prove to be just appearances. A multitude
of differences are to be found between the two frame-
works mainly deriving from different data models, as-
sociated semantic scopes and the itemized nature of
sensor stream data.

In theory, a sensor stream could be viewed as an
audio signal for example and processed as such. How-
ever, for all practical purposes such an approach would

not suit reality and/or often yield undesired results.
For example, while in sensor data streams, summa-
rization and sampling are routinely expected natural
operations, audio streams are not to be summarized,
and sampling in the audio domain entails an entirely
different semantic. Summarization for example would
not be survived by any of the existing [8] efforts. More-
over, data quality to be preserved in audio streaming
is usually related to the human auditory system and
its limitations. Any watermark-related alteration can
be induced as long as the stream still “sounds” good.
In the case of sensor streams (e.g. temperature) on
the other hand, many scenarios involve widely differ-
ent quality metrics, that often need to also consider
overall stream characteristics 4.

A more in-depth comparison is out of scope here.
In summary, while experiences in the multi-media do-
main are valuable, due to the nature of this new ap-
plication domain, a solution for watermarking sensor
streams needs to naturally handle attacks and trans-
formations such as the ones outlined in Section 2.1.

3 An Initial Solution

This Section outlines the main solution and then grad-
ually improves it to a more robust and resilient version,
by identifying and fixing potential flaws.

3.1 Overview

At an overview level, watermark embedding proceeds
as follows: (a) first a set of “major” extremes (actual
stream items) are identified in the data stream, ex-
tremes that feature the property that they (or a major-
ity thereof) can be recovered after a suite of considered
alterations (possibly attacks) such as (random) sam-
pling and summarization. Next, (b) a certain criterion
is used to select some of these extremes as recipients
for parts of the watermark. Finally (c), the selected
ones are used to define subsets of items considered for
1-bit watermark embedding of bits of the global water-
mark. The fact that these extremes can be recovered
ensures a consistent overlap (or even complete iden-
tity) between the recovered subsets and the original
ones (in the un-altered data). In the watermark de-
tection process (d) all the extremes in the stream are
identified and the selection criteria in step (b) above is
used once again to identify potential watermark recip-
ients. For each selected extreme, (e) its correspond-
ing 1-bit watermark is extracted and ultimately the
global watermark is gradually re-constructed, by pos-
sibly also using error correction (e.g. majority voting).

Thus, one of the main insights behind our solu-
tion is the use of extreme values in the stream’s evo-
lution as watermark bit-carriers. The intuition here
lies in the fact that much of the stream value lies
in exactly its fluctuating behavior and the associ-

4e.g. the total alteration introduced per data item should
not exceed a certain threshold.

ated extremes, likely to be largely preserved in value-
preserving, domain-specific transforms.

3.2 Embedding

Using the notation in Section 2.2, let α, β ∈ � such
that α + β ≤ b(x[]), where b(x[]) is the bit-size of the
values in the considered stream (x[]). Let χ be a secret
integer and δ ∈ (0, 1) chosen such that δ < 2(b(x[])−α)

(i.e. all elements within a characteristic subset Ξ(η, δ)
have the same most significant α bits). α, β, δ, χ are
secret. We use the term “advance the window” to de-
note reading in more new data items while discarding
old ones from the current data window.

wm embed(δ,α,β,wm,k1,φ)
while (true) do

η ← first major extreme in win[]
compute Ξ(η, δ)
i← H(msb(η, α), k1)modφ
if i ≤ b(wm) then

bit ← H(msb(η, α), k1)modβ
foreach v ∈ Ξ(η, δ) do

v[bit − 1]← false
v[bit]← wm[i]
v[bit + 1]← false

advance win[] past η

Figure 3: Initial Embedding Algorithm

In the initial step of our embedding algorithm we
first identify the first major extreme of degree χ and ra-
dius δ in the current window. If no major extremes can
be found for given δ and χ values, one could consider
instead extremes with characteristic subsets smaller
than χ that guarantee an acceptable chance (e.g. 70%)
of survival in case of sampling (i.e. subset size

χ
> 70%?).

Once a major extreme (η) is identified in the cur-
rent window, in the second step, a selection criterion
is used to determine whether η is going to be used
in the embedding process or not: if H(msb(η, α), k1)
mod φ = i and i ≤ b(wm), then η is considered
for embedding bit i of the watermark, wm[i]. φ ∈
(b(wm), b(wm) + k2) (k2 > 0) is a secret unsigned in-
teger fixed at embedding time, ensuring that only a

limited number (a ratio of b(wm)
φ

) of these major ex-

tremes are going to be selected for embedding. We
used a similar “fitness” selection criteria in [18]. Its
power derives strength from both the one-wayness and
randomness properties of the deployed one-way cryp-
tographic hash, forcing Mallory into a “guessing” po-
sition with respect to watermark encoding location.
The reason behind the use of the most significant bits
of η in the above formula, is resilience to minor al-
terations and errors due to sampling. As discussed
above, the assumption is that for any value x ∈ Ξ(η, δ),
msb(x, α) = msb(η, α).

If η is the result of the previous selection step, in the
third step we embed bit wm[i] into Ξ(η). This is done
by first, selecting a certain bit position bit = H(msb(η,
α), k1) mod β for embedding. Next, for each value
v ∈ Ξ(η, δ) and in η itself, that bit position is set to

wm[i] and the adjacent bits are set to false (to prevent
overflow in case of summarization). In other words
v[bit−1] = false, v[bit] = wm[i] and v[bit+1] = false.
The reasoning behind modifying an entire subset of
items (Ξ(η, δ)) is to survive summarizations. This is
the case if the bit encoding is such that the average
of any combination of (ν < |Ξ(η)| or less) items in
Ξ(η, δ), would preserve the embedded bit. It is easy to
show that this is indeed the case. Finally, the window
is advanced past η and the process re-starts.

3.3 Detection

In the detection process the watermark is gradually
reconstructed as more and more of the stream data is
processed. The reconstruction process relies on an ar-
ray of majority voting “buckets” as follows. For each
bit wm[i] in the original watermark wm, let wm[i]T

and wm[i]F be “buckets” (unsigned integers) which
are incremented accordingly each time we recover a
corresponding true/false bit wmdet[i] from the stream.
In other words, if the detection process yields at some
point wmdet[i] = false, then the wm[i]F value is in-
cremented. Similarly, for wmdet[i] = true, wm[i]T is
incremented. In the end, the actual wm[i] will be esti-
mated by the difference between wm[i]T and wm[i]F ,
i.e. if wm[i]T − wm[i]F > υ then the estimated value
for this particular bit becomes wmest[i] = true and
conversely if wm[i]F − wm[i]T > υ then wmest[i] =
false, where υ > 0. If detection would be applied on
random, un-watermarked data, the probability of de-
tecting wmdet[i] = false would equal the probability
of wmdet[i] = true, thus yielding virtually identical
(υ is used to distinguish this exact case) values for
wm[i]T and wm[i]F . In this case, wmest[i] would be
un-defined, thus the data considered un-watermarked.
The watermark effectively lies in a statistical bias in
the true/false distribution for each bit encoding.

wm detect(δ,α,β,wm,k1,φ)
while (true) do

η ← first extreme in win[]
i ←H(msb(η, α), k1)modφ
if i ≤b(wm) then

bit ←H(msb(η, α), k1)modβ
if (η[bit]==true) then

wm[i]T ←wm[i]T + 1
else

wm[i]F ←wm[i]F + 1
advance win[] past η

wm construct(wm[]T ,wm[]F ,υ)
for (i ← 0;i < b(wm);i← i + 1)

if (wm[i]T − wm[i]F > υ) then
wm[i]←true

else

if (wm[i]F − wm[i]T > υ) then
wm[i]←false

else
wm[i]←undefined

return wm[]

Figure 4: Initial Detection Algorithm

Detection starts by identifying the first extreme

η in the current window. The selection criteria de-
ployed in the embedding phase is tested on η. If
H(msb(η, α), k1) mod φ = i and i ≤ b(wm), then η
was likely used in embedding bit i of the watermark,
wm[i]. This bit is then extracted from bit-position
H(msb(η, α), k1) mod β and depending on its value,
the corresponding bucket wm[i]T or wm[i]F is incre-
mented. Finally, the window is advanced past η and
the process re-starts.

4 Improvements

Given the initial solution introduced above, we devised
a set of improvements aimed at boosting its resilience
level including: the ability to handle correlation de-
tection attacks, handling repeated labels, label recon-
struction after attacks, introducing a certain hysteresis
in the label reconstruction scheme, aimed at defeating
targeted extreme values altering attacks, alternative
encodings, handling ability of offline multi-pass detec-
tion, multi-layer marks aiming to better handle sum-
marization. Due to space constraints we now discuss
some of the more important ones.

4.1 Defeating Correlation Detection

One particular issue of concern in the above solution
is the fact that because there exists a correlation be-
tween the watermarking alteration (the wm[i] bit) and
its actual location (determined by H(msb(η, α), k1))),
Mallory can mount a special attack with the undesir-
able result of revealing the mark embedding locations.
The attack proceeds by first realizing that, despite the
one-wayness of the deployed hash function H(), in fact,
η is the only variable that determines both the bit em-
bedding location as well as its value. Mallory can now
simply build a set of “hash buckets” for each separate
value of msb(η, α) (if α is secret the job becomes harder
but not impossible) and count, for each extreme η en-
countered, which of the lower β bits of η is set (resp.
reset) more often. For each η for which a bias in a bit
position is discovered, that particular bit position is
considered mark-carrying and randomized.

Thus, the problem lies here in the correlation be-
tween the actual bit location and the bit value, cor-
relation induced by the fact that a single variable (η)
determines both of these. A fix could possibly rely on
a separate source of information to determine the lo-
cation of the embedded bit, independently of the bit
value. Also, this source of information would need to
be consistently recoverable at detection time. For ex-
ample, if time-stamp information would be assumed
available, i.e. if all the processing and the attacks
on the data stream could be assumed to preserve the
time-stamp to value association, then the actual time-
stamp would present an ideal candidate, effectively la-
beling each and every stream extreme uniquely while
at the same time not being correlated (directly) to
their values. This unique label could then be used in
computing the bit position for embedding. In the se-

lection of the bit embedding location, instead of using
bit = H(msb(η, α), k1) mod β which yields a result
correlated to the actual embedded bit value (wm[i],
where i = H(msb(η, α), k1) mod φ) we propose to use
bit = H(msb(label(η), α), k1) mod β where label(η) is
the (virtually) unique label of extreme η. A labeling
scheme like this would make “bucket counting” attacks
impossible. In our model however, timestamps are not
assumed to be preserved. Can we envision a different
labeling scheme (at least) for extremes, that would sur-
vive the attacks and transformations outlined in Sec-
tion 2.1? We propose to build it from scratch.

One of the challenging aspects of such a label-
ing scheme becomes clear when one considers data
segmentation. To support segmentation, it needs to
function based solely on information available close
(in terms of stream location) to the considered to-
be-labeled extreme. Also, labels computed at detec-
tion time from potential segments of sampled and/or
summarized data, need to (at least) converge to the
original ones, as more and more watermarked data
is available. Let λ be the (secret) bit length of the
labels resulting in our labeling scheme. Let % > 1
be a (secret) unsigned integer. We propose the fol-
lowing labeling scheme: given two extremes i and a
subsequent i + %, we define label bit(i, i + %) = true
iff msb(abs(val(i)), α) < msb(abs(val(i + %)), α) and
false otherwise. We define the the label for extreme
i+λ, label(val(i+λ)) is defined as the bit string com-
posed of the concatenation of ”1” (binary true) fol-
lowed by each and every label bit(j, j +%) in ascending
order of j ∈ (i, i + λ). In other words, an extreme is
labeled by a certain differential interpretation of some
of the preceding extreme values, e.g. in Figure 2 (a),
the label for extreme K becomes “110100” (% = 2).

Before going any further, let us analyze what hap-
pens if an important extreme is “lost”, e.g. if one ex-
treme i is altered so much that its α most significant
bits flip the msb(abs(val(i)), α) < msb(abs(val(i +
%)), α) inequality, corrupting its corresponding label
bit. What happens is in fact not too damaging: labels
that were constructed using this particular extreme
will be corrupted, until the detection process encoun-
ters again a continuous sequence of extremes not al-
tered beyond recognition. But Mallory cannot afford
altering extremes to such extents, and the secrecy of %
makes a random alteration attack the only choice.

In summary, the main purpose of such a labeling
scheme is to ensure that Mallory cannot mount the
“bucket counting” type of statistical analysis attack as
outlined above. Different labels for adjacent extremes
together with the use of one-way hashing completely
defeat such an attack. The labeling scheme provides
an independent, un-correlated source of information
for determining the bit position to be altered.

4.2 Reconstructing Labels

Labeling, while providing a defense for the correlation
attack, introduces the requirement to be able to iden-

tify major extremes at detection times, possibly in a
summarized and/or sampled stream. This becomes a
challenge as the definition of “major” does not make
sense anymore in the context of a sampled version of
the original stream. We propose the following solution.
In a first stage, the degree of the transformation per-
formed is determined. In a second stage, the definition
of majority of an extreme is updated to reflect the fact
that the considered stream is already transformed. A
major extreme of degree χ and radius δ in the original
stream (x[], ς), becomes a major extreme of degree χ

γ

and radius δ in the transformed stream (x′[], ς
γ
), where

γ is the degree of the transformation (e.g. summariza-
tion, sampling) applied to (x[], ς). Once we know γ
identifying major extremes in the transformed stream
is simply a matter of considering this updated defi-
nition. In a dynamic stream, with consistent stream
data rates, γ can be determined by simply dividing
the original stream rate to the current (transformed)
stream rate, γ = ς

ς′
. The more challenging scenario is

to determine the value of γ corresponding to a (pos-
sibly transformed) stream (x′[], ς ′) for which only a
segment is available. A reasonable assumption that
can be made is that the transform was applied uni-
formly to the entire stream. In this case, one solution
would start by preserving some information about the
initial stream, namely the average size of the charac-
teristic subsets of extremes, for a given δ. Then, in
the transformed segment, extremes are identified and
their average characteristic subset size for the same δ
is computed. It is to be expected (arguably) that in
a transformed (sampled and/or summarized) stream
these sizes would shrink according to the actual trans-
form degree. Dividing the original average character-
istic subset size by the sampled stream average would
thus yield an estimate of the transform degree γ. In
our proof of concept implementation this method is
used successfully. Space considerations prevent fur-
ther elaboration.

4.3 Defeating Bias Detection

But what prevents Mallory from identifying all the ma-
jor extremes for which there exists a majority of (pos-
sibly all) items in the characteristic subset with a cer-
tain bit position set to the same identical value? These
extremes would then be (rightfully so) considered wa-
termark carrying and Mallory could mount a simple
attack of randomizing those bit positions. We propose
a new approach that survives summarization and re-
sults in alterations effectively appearing random to the
eyes of an attacker. Let Ξ(η, δ) = {x1, x2, ..., xa}. For

each i ≤ j ∈ [1, a], let mij = � u∈[i,j] xu

|j−i+1| . Then we de-

fine the characteristic subset bit encoding convention
as follows: (i) we say that a bit value of “true” is em-
bedded in Ξ(η, δ) iff ∀j, i we have lsb(H(lsb(mij, β),
label(η)), ζ) = 2ζ − 1; similarly, (ii) we say that
“false” is embedded iff ∀j, i we have lsb(H(lsb(mij, β),
label(η)), ζ) = 0, where ζ > 0 is a secret fixed at em-

bedding time. The embedding method simply alters
the least significant β bits in the values in Ξ(η, δ) until
the criteria is satisfied for the desired to-be-embedded
wm[i] bit value. It is to be noted that these alter-
ations should aim to minimize the Euclidean distance
(or possibly any other desired distance metric) from
the starting point defined by {x1, x2, ..., xa}. We call
this a “multi-hash encoding”.

The use of mij ensures survival to summarization,
while the cryptographic hash provides the appearance
of randomness. But is it feasible to assume that one
could find such a point in the a-dimensional space de-
fined by the items in Ξ(η, δ)? How many computations

are required to at least find one? There are a(a+1)
2 pos-

sible mij averages (including all mii = xi values). For
each we consider the last ζ bits of its hash, effectively

getting an output space of ζ a(a+1)
2 bits. The probabil-

ity that a desired pattern occurs in this space is then

2−ζ
a(a+1)

2 . Thus, on average, the expected number of
configurations in the input space that would need to
be tested in an exhaustive search before yielding one

that results in the desired output, is 2ζ
a(a+1)

2 . For ex-
ample if ζ = 1 and a = 5 we have 215, that is, approx.
32,000 computations would need to be performed (for
each considered major extreme in the window). See
Section 6.4 for an experimental analysis.

Given the exponential nature of the increase in re-
quired computations for an increasing number of items
in the characteristic subset, it is probably not likely to
be able to exhaustively handle subsets with more than
8 − 10 items efficiently. While out of the scope of the
current paper, the design and use of efficient pruned-
space algorithms would be required to significantly re-
duce these requirements. Alternately, we could deploy
a computation-reducing technique that limits the num-
ber of mij averages for which (i) or (ii) needs to hold
in the subset bit encoding convention above. In other
words, the search process (in the {x1, x2, ..., xa} space)
will be stopped once a certain number of the mij av-
erages feature the desired encoding convention ((i) or
(ii)). We call these mij values “active”. The resulting
decrease in required computation time comes at the
expense of decreased resilience to transforms.

Also, an (arguably) fast(er) encoding than the use
of cryptographic hashes above could be adapted from
[1]. The method works by altering the β least signif-
icant bits until every one of the longest k pre-fixes of
the whole value (most significant bits included), when
treated as an integer, becomes a quadratic residue
modulo a secret large prime, for embedding a ‘true”
value and a quadratic non-residue modulo the secret
prime for embedding a ‘false” value.

4.4 On-the-fly Quality Assessment

In any watermarking framework, it is important to
preserve structural and semantic properties of the wa-
termarked data. Because by its very nature, water-
marking alters its input, one has to provide a mech-

anism ensuring that these alterations do not degrade
the data beyond usability. In [19] we introduced this
essential desiderata in the relational data watermark-
ing framework. We propose to augment our sensor
stream marking algorithm with such semantic con-
straints awareness. Each data property that needs to
be preserved is written as a constraint on the allow-
able change to the dataset, the watermarking process
is then applied with these constraints as input and re-
evaluates them continuously for each alteration. An
“undo” log (quite like the “rollback” log in [19]) is kept
to allow undo operations in case certain constraints are
violated by the current watermarking step (see Figure
5). The new challenges in this framework are related
to the fact that now, due to storage limitations, any
data quality preservation constraints can only be for-
mulated in terms of the current available data window.
Likely only few window slots can be used to store data
aggregates, possibly including some history informa-
tion to be used in the quality evaluation process but
this will all come at the expense of being unable to
store and process as much new incoming data. Space
considerations prevent us to elaborate further.

5 Analysis

In this Section we analyze the ability of our method
to convince in court, survive attacks and transforms.

Court-convinceability can be naturally expressed as
follows: given a one bit (e.g. true) watermark, what
is the probability of false positives (Pfp) for the wa-
termark encoding? In other words, we ask: What is
the probability of a one-bit (true) watermark to be de-
tected in a random data stream? If this probability
is low enough, then a positive detection would consti-
tute a strong proof of rights, with a “confidence” of
1 − Pfp. Here we define confidence as the probability
that a given detected watermark was indeed purpose-
fully embedded in the data by the rights owner.

Using the notation in Section 4.3, for each consid-
ered extreme η, the occurrence probability of a “good”
corresponding mij (i.e. encoding “true” with respect
to the bit encoding convention) in a random stream is
naturally 1

2 , because of the cryptographic hash used in

the encoding. There are a(a+1)
2 possible mij averages

(including all mii = xi values). Because for each we
consider the last ζ bits of its hash, we effectively have

an output space of ζ a(a+1)
2 bits. Thus the probability

of the bit “true” being encoded consistently by all of

these becomes 2−ζ
a(a+1)

2 (per extreme). Now, for each
ε(χ, δ) items there is a potential major extreme recip-
ient of a one-bit encoding. Out of these how many are
actually selected for encoding? As discussed in Sec-
tion 3.2 only a fraction of 1

φ
(because now b(wm)=1)

of them are actually selected for embedding. Thus if
ς is the stream data rate, we can determine the re-
lationship between the time elapsed since we started
reading the incoming stream (t) and the reached level
of persuasiveness, as follows.

If ε(χ, δ) models the average number of items that
need to be read before a major extreme is encoun-

tered, then ε(χ,δ)
ς

represents the average time-interval

“between” major extremes. But only 1
φ

of the major

extremes are selected for embedding, and so the time-
interval between two major extremes that encode the

watermark is φε(χ,δ)
ς

. In a time interval of t we are

thus likely to see tς
φε(χ,δ) extremes.

As discussed above, each major extreme has an as-

sociated probability of false positives of 2−ζ
a(a+1)

2 , thus
if we discover a consistent pattern of embedding in
a time interval t, the probability of a false-positive

becomes Pfp(t) = (2−ζ
a(a+1)

2)
tς

φε(χ,δ) . For example if
ζ = 1, a = 5, ς = 100Hz, φ = 20%, ε(χ, δ) = 50,
after detecting a bit “true” for only t = 2 seconds we
have Pfp(2) = (2−15)20 ≈ 0 and an associated proof
of rights, with a confidence of close to 100%. Even,
at the limit, when due to transforms such as sampling
and summarization, for each extreme, only one single
mij average survives and the probability of false posi-
tives for each extreme becomes only 1

2 , Pfp(2) becomes
roughly only “one in a million”. Thus, the persuasion
power of our method quickly converges to a comfort-
able level. In Section 6 we provide experimental results
for watermark resilience to various transforms, includ-
ing random attacks.

Next we explore a theoretical analysis of the vul-
nerability of our scheme under the following attack
model: Mallory starts to modify randomly every a1-th
(a1 > 1) extreme (η) in such a way as to alter a ratio
of a2 ∈ (0, 1) of the items in the extreme’s character-
istic subset of radius a3, Ξ(η, a3). (Thus, on average,
Mallory alters only one in every a′1 = a1φ bit-carrying
extremes).

The assumption here is that these alterations do
not impact the associated labeling scheme, in other
words, they don’t change the “greater than” relation-
ship between extremes used in the labeling process.
An extension considering this case is out of the cur-
rent limited-space scope. Due to space constraints we
are going to focus directly on a more challenging, “in-
formed”, Mallory, aware of the characteristic subset
radius used at encoding time. This will strengthen
our derived bounds. In other words, we assume that
a3 = δ is known to Mallory, see Section 3.2.

We propose two ways to analyze the vulnerability
of the proposed solution: (i) looking at how much
an attack “weakens” the encoding, i.e. how many of
the active mij values are actually destroyed divided
by the total number of active ones (making it thus
proportionally harder to detect a watermark in court)
and (ii) what is the probability that all of the ac-
tive ones are obliterated? It is easy to see that, for
a given extreme η, for which Ξ(η, a3) = {x1, x2, ..., xa}
the number of corresponding mij values altered is
cm = 1

2aa2(2a − aa2 + 1).

Now, for (i) the “weakening” of the encoding can
be defined as cm × 2

a(a+1) , the ratio of mij values

that are altered from the total number of potential
active ones for each altered extreme. Because one
in every a′1 = a1φ bit-carrying extremes gets im-
pacted, the overall “weakening” factor can be defined
as a1 × cm × 2

a(a+1) . To answer (ii) we first model

this scenario by a sampling experiment without re-
placement. In this experiment, x + t, t > 0 balls are
randomly removed from a bowl with a total of y balls.
The question answered is: if the bowl contained ex-
actly x black balls what is the probability that the
x + t removals emptied the bowl of all y black balls.

It can be shown that this is P (x + t, x, y) =
(y−x
t)
(y
x+t)

. In

our model (x + t) = cm, y = a(a + 1) 1
2 and if x = a4y

(a4 is the ratio of active mij values) we can compute
the probability that all of them are altered.

Thus, for each attacked extreme we have a non-zero
probability of altering all active mij values and remov-
ing the corresponding watermark bit. Next we ask,
how do these alterations impact our ability to convince
in court and detect a watermark bias in the resulting
data? Because the alteration is necessarily random
(the randomness of the one-way hashes in the encoding
in Section 4.3 guarantee this) we can model the attack
as essentially a random noise addition attack. Evaluat-
ing the resilience of any watermark bias becomes now a
matter of asking how many of the embeddings actually
survive until detection time. Are there enough of them
to actually convincingly reconstruct the multi-bit wa-
termark after error correction? At the beginning of the
section we looked at how the watermark bias becomes
more convincing in time (and seen data). Loosing a
fraction of the mark bit encoding extremes can be in
fact seen as a reduction of the φ value (see Section 3.2).
If, for each of the a′1 = a1φ bit carrying extremes that
are altered by Mallory, the attack success probability
is given by P (x + t, x, y), we can perform a similar
reasoning with a new φ′ = φ + a′1 × P (x + t, x, y).
What now happens is that the persuasiveness (court-
time convince-ability) converges proportionally slower.
In other words, we need to see a1 ×P (x+ t, x, y) more
stream data to be able to provide an equally convinc-
ing proof in court.

For example, for a1 = 5, a = 6, a4 = 50%, a2 = 50%
we get the average probability P (15, 10, 21) ≈ 0.85%
of a complete alteration of all the active mij values at
each extreme. This effectively translates in the need
to see only an average of a1 × P (x + t, x, y) ≈ 4.25%
more data to be equally convincing at detection.

But how does our encoding handle transforms? By
construction it certainly survives sampling (A2) up to
a degree of χmax = |Ξ(η, δ)|. Indeed this is so if at
least one element in the characteristic subset of η is to
be found in a sampling of degree χmax. This element
can be used in the detection process to recover the
corresponding watermark bit for η. Higher degrees of
sampling are also quite likely to be survived as there
is a non-zero probability of elements in Ξ(η, δ) to be
in the sampled stream even for χ > χmax. Due to

space constraints we do not elaborate further. This is
experimentally analyzed in Section 6.

Summarization (A1) up to a degree of νmax =
|Ξ(η, δ)| is also handled well by design, for example
due to the use of mij in the bit-encoding procedure
illustrated in Section 4.3. Any summarization of a de-
gree ν ≤ νmax naturally results in at least one of the
mij averages being in the summarized stream. Even in
the initial algorithm, the bit encoding pattern used on
the elements in the characteristic subset ensured sur-
vival of the pattern in the process of averaging (thus
surviving summarization) within the subset. Summa-
rization is experimentally analyzed in Section 6.

But how well is segmentation (A3) survived? More
specifically, what is the minimum size of a stream seg-
ment from which we are able to recover the water-
mark? For simplicity let us assume a one-bit water-
mark, i.e. b(wm) = 1. In the following we are try-
ing to determine the minimum required size of a con-
tiguous watermarked stream segment that would en-
able a proof more “convincing” than a coin-flip stating
that a watermark is embedded in the data. This proof
would be obtained if we can correctly detect at least
two consistent bits (equal to wm[0]) from two differ-
ent extremes found in the segment. In that case, the
probability of a false-positive becomes lower than a
random coin-flip. But what is the minimum amount
of data we need to see to be able to decode two bits?
In the best case, the two extremes are adjacent and
we need to see enough data to build correct labels for
those two extremes. To build the labels correctly, we
need to have seen all the previous λ% major extremes
correctly. Further qualitative analysis must be data
dependent, for example if the fluctuating nature of the
stream features a major extreme of degree χ and ra-
dius δ for every ε(χ, δ) data items, then the minimum
required size of a segment enabling watermark detec-
tion is ε(χ, δ)λ%.

6 Experimental Results

We implemented wms.* a Java proof-of-concept of
the watermarking solution. Our experimental setup
included one 1.8GHz CPU Linux box with Sun JDK
1.4 and 384MB RAM.

agg.
data

in out

window

wm quality
eval.

constraint A

constraint Bkey

mark

undo log constraint C

Figure 5: Overview of proof of concept implementation.

We implemented also a temperature sensor syn-
thetic data stream generator with controllable param-
eters, including the ability to adjust the data stream

distribution, fluctuating behavior (e.g. ε(χ, δ)) and
rate (ς). This sensor was used in the initial design
phase of some of our experiments because of the abil-
ity to produce various fine-tuned data inputs impact-
ing specific strengths of the encoding.

We explored experiment scenarios modeling both
the behavior of sub-systems such as the on-the-fly la-
beling module as well as the overall watermark re-
silience. Synthetic (temperature sensor model) and
real-world data was used in our evaluation.

Because, as discussed in Section 3.3, watermark en-
coding relies on altering a certain secret statistical bias
within the data, when we present resilience results we
refer to the ability to detect and reconstruct this bias
as an overall measure of encoding performance. In
this case, the notion of a “watermark bias” refers to
the number of instances of active extremes for which
the characteristic subset bit encoding (see Section 4.3),
survives with a positive true-bit embedding bias 5.

Unless specified otherwise, the experimental re-
sults presented here refer to an underlying normalized
stream with values distributed normally with a mean
of 0 and a standard deviation of 0.5. The fluctuating
behavior of the stream was determined by an aver-
age ε(χ, δ) = 100 (100 items per each major extreme)
and ς = 100Hz (100 items per second). Other pa-
rameters include: φ = 3, α = 16, β = 16, υ = 2, k1

was chosen by a random number generator. Whenever
exact quantitative results are shown, they refer to a
data set drawn from about 50 seconds of stream data
(i.e. roughly 5000 data values). Additionally, when
experiments were performed on real-life test data this
is specified in the figure captions. The real life data
sets [14] were obtained from the environmental moni-
tors of the NASA Infrared Telescope on the summit of
Mauna Kea, at the University of Hawaii. They repre-
sent multiple sets of once-every-two-minutes environ-
mental sensor (i.e. temperature) readings at various
telescope site locations. The reference data set used
refers to 30 days worth of data from the month of
September 2003, totaling a number of 21630 tempera-
ture readings (with values on the Celsius scale roughly
between 0 and 35 degrees).

6.1 Random Alterations

In [19] we defined the epsilon-attack in the relational
data framework, a transformation that modifies a per-
centage τ of the input data values within certain
bounds defined by two variables ε (amplitude of al-
teration) and µ (mean of alteration). Epsilon-attacks
can model any uninformed, random alteration – of-
ten the only available attack alternative. A uniform
altering epsilon-attack (as defined in [19]) modifies τ
percent of the input tuples by multiplication with a
uniformly distributed value in the (1− ε+µ, 1+ ε+µ)

5With respect to court-time confidence, for example, a de-
tected watermark bias of 10 yields a false-positive probability
of 1

210 , and an associated proof of rights with a confidence of

roughly 99.9%, as discussed in Section 5.

interval. We believe this attack closely resembles (A6),
a very likely combination of (A5) and (A2). In Fig-

 0

 10

 20

 30

 40

 50

 60

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

la
be

ls
 a

lte
re

d
(%

)

epsilon

label size=25
label size=10

 0

 5

 10

 15

 20

 25

 30

 35

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

la
be

ls
 a

lte
re

d
(%

)

epsilon

2% of data
1% of data

Figure 6: Label alteration for increasingly aggressive uni-
form altering epsilon attacks. (a) Different label bit sizes
shown. A smaller label size seems to survive better. (b)
Different altered data percentages shown.

ures 6 and 7 (µ = 0) we analyze the sensitivity of both
our labeling module and overall watermarking scheme
to such randomly occurring changes, as direct mea-
sures for encoding resilience. In Figure 6 (a), label
alteration increases with an increasing degree of data
change. Smaller label bit sizes seem to better survive
such an attack. In Figure 6 (b), as the percentage of
altered data items increases, the labeling scheme nat-
urally degrades.

tau epsilon
 0

 0.2
 0.4 0

 0.2
 0.4

 0.6

 0
 10
 20
 30
 40
 50

detected bias

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5

de
te

ct
ed

 w
at

er
m

ar
k

bi
as

tau

Figure 7: Watermark survival to epsilon-attacks. (a) Nat-
urally, increasing τ and ε values result in a decreasing wa-
termark bias. (b) Same shown for ε = 10%. (real data)

In Figure 7, an embedded watermark (bias) is de-
tected in a randomly altered stream. Naturally, an
increasing distortion results in a decreasing bias de-
tection. Nevertheless, it is to be noted that the en-
coding scheme proves to be quite resilient by design,
for example for τ = 50% of the data altered within
ε = 10% (Figure 7 (b)), the detected bias is still above
25, yielding a false-positive rate of less than “one in
thirty million”.

6.2 Sampling and Summarization

The ability to survive summarization (A1) and sam-
pling (A2) is of extreme importance as both are ex-
pected attacks. In Figure 8 the labeling algorithm is
evaluated with respect to (a) sampling and (b) sum-
marization. Intuitively, a higher label bit-size results
in increased fragility to sampling (shown is a sampling
degree of 3). Summarization seems to be naturally
survived by our design. For example, a summariza-
tion of the data down to 5% (ν = 20) still preserves

over 20% of the original label values, thus conferring
a strong back-bone to watermark embedding.

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25

la
be

ls
 a

lte
re

d
(%

)

label size

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20

la
be

ls
 a

lte
re

d
(%

)

summarization degree

Figure 8: (a) Label resilience under sampling conditions.
A higher label bit-size naturally yields an increased fragility
to sampling. (b) Label alteration for summarization of
increasing degree.

The behavior of the watermark encoding algorithm
to sampling and summarization is outlined in Figure
9. The natural strength of the bit encoding convention
is clearly illustrated here. Both transformations are
survived extremely well.

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28

 2 3 4 5 6 7 8 9 10 11

de
te

ct
ed

 w
at

er
m

ar
k

bi
as

summarization degree

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28

 2 3 4 5 6 7 8 9 10 11

de
te

ct
ed

 w
at

er
m

ar
k

bi
as

sampling degree

Figure 9: (a) Watermark survival to summarization. An
increasing summarization degree results in a decreasing de-
tected watermark bias. (b) Watermark survival to sam-
pling. A bias of 10 ensures a true-positive probability of
99.999%. (real data)

6.3 Segmentation. Combinations

In Section 5 we theoretically assessed the ability of
our scheme to survive segmentation (A3), by answer-
ing the question: what is the minimum size of a stream
segment from which we are able to recover the water-
mark? In Figure 10 (a) we analyze the impact of ac-
tual recovered segment size on the detected watermark
bias. From a segment of only 2000 stream values we
can detect a watermark bias of 10, corresponding to a
very convincing low false positive rate of roughly 0.001.
In Figure 10 (b) we outline the impact of a combined
transformation (sampling and summarization) on the
watermark embedding. Because of the nature of both
transformations and of the resilience featured in each
case, the combination seems to be survived equally
well. For example, a 25% sampling, followed by a 25%
summarization process still yields a watermark bias of
up to 20, corresponding to a low false-positive rate of
“one in a million”.

 0

 20

 40

 60

 80

 100

 120

 1000 2000 3000 4000 5000

de
te

ct
ed

 w
at

er
m

ar
k

bi
as

segment size

sampling summarization

 2 2.5 3 3.5 4 2
 2.5

 3
 3.5

 4
 20
 25
 30
 35

detected bias

Figure 10: (a) Watermark survival to segmentation. (b)
Watermark survival to combined sampling and summariza-
tion. (real data)

6.4 Overhead and Impact on Data Quality

The proposed watermarking solution is highly adap-
tive to both speed and space constraints. By far the
most computationally intensive operation is the one-
bit encoding operation which alters the characteristic
subset data to conform to the bit encoding convention
defined in Section 4.3. At the expense of embedding
resilience, this operation can be sped up significantly
by both pruning of the search space or, more impor-
tantly, deployment of a computation-reducing tech-
nique as described in Section 4.3. Depending on the
actual stream rate, these speed-ups can be gradually
deployed to be able to keep up with the incoming data.
Additionally, the average amount of computation to be
performed per window-load of data is defined also by
the actual fraction of extremes “selected” to be bit-
carriers. This fraction is determined by b(wm)

φ
. If the

incoming data rate is too high, φ can be increased to
reduce the workload.

We performed experiments aimed at evaluating the
introduced watermarking computation overhead. Un-
less specified otherwise, we used the multi-hash encod-
ing discussed in Section 4.3 and parameters set such
that the resulting watermark survives 100% any com-
bined sampling and summarization up to a degree of
6. First, we compared the computing times required
by the watermarking process with the times spent in a
simple read and copy model in which each stream item
is read and copied to an output port (with fixed writ-
ing time-cost). We obtained consistent value classes
clearly identifying each of the separate encoding meth-
ods presented. It became clear that, as expected, the
majority of time is spent in the actual bit encoding
convention routine (and not as much in the labeling
module). Not surprising, the encoding convention in-
troduced in Section 3.2 performed fastest with an av-
erage of only 5.7% increase in processing times per
stream item. The poorest performer was the more
complex multi-hash routine in Section 4.3 with an av-
erage increase of over 1000%, as expected decreasing
almost perfectly exponential with the decrease of the
guaranteed resilience (see Figure 11 (a)).

There are two lessons to be learned here. First, dif-
ferent encodings should be used for different scenarios
with associated value models. For example for a tem-
perature stream with a likely average reading rate of

under 1Hz, deploying the multi-hash encoding routine
for high resilience would be best suited whereas in a
very fast streaming scenario the encoding in Section
3.2 would perform much better. Additionally, subject
to future research is the issue of better pruning algo-
rithms as discussed in Section 4.3.

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6

ite
ra

tio
ns

 (
lo

g)

guaranteed resilience

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7

al
te

ra
tio

n
(%

)

phi

mean
standard deviation

Figure 11: (a) Computation overhead (iterations) in
multi-hash encoding increases with increasing guaranteed
resilience (e.g. sampling degree) levels (logarithmic scale).
(b) Decreasing the number of considered bit-encoding ex-
tremes (increasing φ) decreases the impact on mean and
standard deviation in the watermarked data.

We also performed experiments evaluating the im-
pact of our encoding on data quality. More specifically
we analyzed the alterations incurred by the mean and
standard deviation of the stream data. For the above
parameter settings, over a large number (12000+) of
runs over the real (and synthetic) data sets, the value
of the mean of the watermarked stream varied less than
a mere 0.21% average from the original. The alter-
ation to the standard deviation also maintained itself
nicely within 0.27% of the original data. There exists
a tunable trade-off between attack/transformation re-
silience and the incurred alterations. A lower level of
resilience would definitely require less modifications to
the data and have a lower impact on global statistics.
In Figure 11 (b) we show how decreasing the number
of considered bit-encoding major extremes decreases
the impact on the average and standard deviation in
the result.

7 Conclusions

In the present paper we introduced the issue of rights
protection for sensor streams. We proposed a water-
marking solution, based on novel ideas such as on-the-
fly labeling and watermark encoding, resilient to im-
portant domain-specific transforms. We implemented
a proof of concept of the proposed solution and eval-
uated it experimentally on real data. The method
proves to be extremely resilient to all considered trans-
forms, including sampling, summarization, random al-
terations and combined transforms. In upcoming re-
search we propose to analyze streams of categorical
data, to investigate other aggregates (instead of aver-
ages) in the summarization process (e.g. min, max,
most likely value) and to experiment with alternative
resilient and fast(er) bit-encodings.

References
[1] M. J. Atallah and Jr. S. S. Wagstaff. Watermarking with

quadratic residues. In Proc. of IS-T/SPIE Conf. on Secu-
rity and Watermarking of Multimedia Contents, SPIE Vol.
3657, pp. 283–288., 1999.

[2] M.J. Atallah, V. Raskin, C. F. Hempelmann, M. Karahan,
R. Sion, K. E. Triezenberg, and U. Topkara. Natural language
watermarking and tamperproofing. In Lecture Notes in Com-
puter Science, Proc. 5th International Information Hiding
Workshop 2002. Springer Verlag, 2002.

[3] B. Babcock, S. Babu, M. Datar, and Motwani R. Models and
issues in data stream systems. In Proc. ACM Symp. on Prin-
ciples of Database Systems (PODS), page 1.

[4] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, N. Stonebraker, M.and Tatbul, and S. Zdonik.
Monitoring streams – a new class of data management appli-
cations. In Proceedings of the Int. Conf. on Very Large Data
Bases (VLDB), 2002.

[5] S. Chandrasekaran and M. J. Franklin. Streaming queries over
streaming data. In Proceedings of the Int. Conf. on Very
Large Data Bases (VLDB), pages 203–214, 2002.

[6] B. Chen and G. W. Wornell. Quantization index modulation:
A class of provably good methods for digital watermarking and
information embedding. IEEE Transactions on Information
Theory, 47(4), 2001.

[7] Christian Collberg and Clark Thomborson. On the limits of
software watermarking, August 1998.

[8] I. Cox, J. Bloom, and M. Miller. Digital watermarking. In
Digital Watermarking. Morgan Kaufmann, 2001.

[9] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining
stream statistics over sliding windows. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, pages 635–
644, 2002.

[10] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window
joins over unbounded streams. In Proceedings of ICDE, 2003.

[11] J. Kiernan and R. Agrawal. Watermarking relational
databases. In Proceedings of the 28th International Confer-
ence on Very Large Databases VLDB, 2002.

[12] D. Kirovski and H.S. Malvar. Spread-spectrum watermarking
of audio signals. IEEE Transactions on Signal Processing,
51(4), 2003.

[13] F. Korn, S. Muthukrishnan, and D. Srivastava. Reverse nearest
neighbor aggregates over streams. In Proceedings of the Int.
Conf. on Very Large Data Bases (VLDB), 2002.

[14] NASA. The Hawaii University Infrared Telescope Facility
(http://irtfweb.ifa.hawaii.edu/).

[15] J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shao, and
Y. Zhang. Experience with software watermarking. In Pro-
ceedings of ACSAC, 16th Annual Computer Security Appli-
cations Conference, pages 308–316, 2000.

[16] F. A. P. Petitcolas, R. J. Anderson, and M. G. Kuhn. Attacks
on copyright marking systems. In David Aucsmith, editor, In-
formation Hiding: Second International Workshop, volume
1525 of Lecture Notes in Computer Science, pages 218–238,
Portland, 1998. Springer-Verlag.

[17] Bruce Schneier. Applied cryptography: Protocols, algorithms
and source code in c. In Applied Cryptography. John Wiley
and Sons, 1996.

[18] Radu Sion. Proving ownership over categorical data. In Pro-
ceedings of the IEEE International Conference on Data En-
gineering ICDE, 2004.

[19] Radu Sion, Mikhail Atallah, and Sunil Prabhakar. Rights pro-
tection for relational data. In Proceedings of ACM SIGMOD,
2003.

[20] M. D. Swanson, B. Zhu, and A. H. Tewfik. Audio watermarking
and data embedding – current state of the art, challenges and
future directions. In J. Dittmann, P. Wohlmacher, P. Horster,
and R. Steinmetz, editors, Multimedia and Security Work-
shop at ACM Multimedia, volume 41 of GMD, Bristol, United
Kingdom, September 1998. ACM.

