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Recent research efforts have demonstrated the great potential of building cost-effective media
streaming systems on top of peer-to-peer (P2P) networks. A P2P media streaming architecture can
reach a large streaming capacity that is difficult to achieve in conventional server-based streaming
services. Hybrid streaming systems that combine the use of dedicated streaming servers and P2P
networks were proposed to build on the advantages of both paradigms. However, the dynamics
of such systems and the impact of various factors on system behavior are not totally clear. In

this paper, we present an analytical framework to quantitatively study the features of a hybrid
media streaming model. Based on this framework, we derive an equation to describe the capacity
growth of a single-file streaming system. We then extend the analysis to multi-file scenarios.
We also show how the system achieves optimal allocation of server bandwidth among different
media objects. The unpredictable departure/failure of peers is a critical factor that affects the
performance of P2P systems. We utilize the concept of peer lifespan to model peer failures. The
original capacity growth equation is enhanced with coefficients generated from peer lifespans that
follow an exponential distribution. We also propose a failure model under arbitrarily distributed
peer lifespan. Results from large-scale simulations support our analysis.

Categories and Subject Descriptors: H.1 [Information Systems]: Models and Principles

General Terms: performance

Additional Key Words and Phrases: media streaming, peer-to-peer, media-on-demand

1. INTRODUCTION

Multimedia streaming over the Internet has become a reality with the development
of media compression methods, high-throughput storage systems, and broadband
networking technology. Attractive applications such as entertainment video-on-
demand, digital libraries, and on-line news services built on top of real-time media
streaming architectures are now publicly available. However, there are still many
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challenges towards building cost-effective, robust and scalable multimedia streaming
systems [Wu et al. 2001] due to the stringent bandwidth, packet loss and delay
requirements for media streaming.

A majority of media streaming architectures follow a server/client design. In
a large streaming system where user requests arrive at a high rate, a server has
to support a large number of concurrent streaming sessions. Multiple servers or
proxies can be deployed to increase total system capacity. In this design, media
content is replicated on these proxies and clients receive streaming data from the
closest proxy. There are two advantages of using proxies: (i) user requests are
handled by all proxies with a combined capacity greater than the capacity provided
by the single-server architecture; (ii) better QoS (in terms of latency and packet
loss) in streaming due to the shortened packet delivery path. Such systems are
sometimes called Content Distribution Networks (CDNs) [Biliris et al. 2002].

The cost of maintaining a CDN is extremely high considering the massive CPU
power, storage space and bandwidth needed. As the service becomes more popular,
more servers have to be deployed. One approach to solve the above problem is
motivated by the emerging concept of peer-to-peer (P2P) computing [Milojicic et al.
2002; Rowstron and Druschel 2001a; Crowcroft and Pratt 2002]. In a P2P system,
there is no centralized entity controlling the behavior of peers. Instead, each peer
contributes its share of resources and cooperates with other peers according to
some predefined rules for communications. In the context of media streaming, a
well-organized community of clients can significantly lower the service load of CDN
servers by taking over some of the streaming tasks. The basic idea is to let clients
that have acquired a media object act as streaming servers for subsequent requests
to that object. One of the key features of a P2P streaming system is that its total
capacity grows when the content it manages becomes more popular [Xu et al. 2002].
This is the most important difference between P2P and the server/client paradigms.

Hybrid media streaming systems that combine centralized servers and peer-to-
peer networks have been proposed in [Xu et al. 2003] and [Hefeeda et al. 2003].
As compared to a P2P-only architecture, the hybrid streaming system can dissem-
inate media content faster and responds quicker to requests. System performance
in media streaming services is mainly bottlenecked by bandwidth [Padmanabhan
et al. 2002]. Some operations such as directory management and searching that
consume less bandwidth can be processed at a centralized server for efficiency rea-
sons. Furthermore, peers are heterogeneous in the duration of their commitment to
the community [Saroiu et al. 2003]: each peer could leave or fail at any time. In or-
der to minimize the effects of this come-and-go behavior, servers can act as backup
resource providers even when the P2P network has enough capacity. Servers are
qualified to play this role because of their robustness.

The focus of this paper is to study the features of a hybrid media streaming
architecture by mathematical analysis. We are primarily interested in the pattern
of system capacity growth and the effects of various factors on that growth. The
system capacity is defined as the total streaming bandwidth available from both
servers as well as peers. Conclusions drawn from such analysis improve our under-
standing of system dynamics and provide guidelines for the design and realization
of media delivery services based on hybrid architectures. In this paper, we propose
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a generic media streaming model that utilizes both a CDN and P2P network. The
model differs from those found in [Xu et al. 2003] and [Hefeeda et al. 2003] in that
it is applicable to a more general environment and is more amenable to quantitative
analysis of system performance. Using a deterministic discrete-time analysis ap-
proach, we derive the growth equation for system capacity. This equation is used to
analyze the time threshold at which the system capacity is sufficient to handle the
total load. We extend the results from a single-file system to a multi-file system.
We also show that our streaming architecture achieves near-optimal performance
in terms of the time needed for a complete load hand-over from servers to peers.
Furthermore, peer failures are factored into the analytical model. We study peer
failures by associating a ‘lifespan’ with each peer and analyzing the system perfor-
mance under different lifespan distributions. We also present two enhancements of
the analysis. In the first, we analyze a media streaming system in which a peer
can start serving a file to others before completely receiving it. We show that this
overlapping of receiving and serving can significantly accelerate the capacity growth
and reduce the server-peer transition time. In the second enhancement, we study a
general multi-file streaming system in which files may have different lengths and bit
rates. We describe how the optimal transition time can be computed numerically.
In addition, we evaluate several performance metrics by extensive simulations, the
results of which confirm the validity of our analysis.

This paper continues with Section 2 by comparing our research with related
work. Then we introduce the streaming model in Section 3. We start our analysis
by studying single-file systems without failures in Section 4. Then we extend to
multi-file systems (Section 5) and systems with peer failures (Section 6). Two
extensions of the main results are presented in Section 7. Section 8 presents the
simulation results. We conclude the paper with Section 9.

2. RELATED WORK

A review on Internet video streaming can be found in [Wu et al. 2001]. The key
research areas of video streaming are identified and methodologies are discussed.
Research on P2P computing was greatly motivated by the success of Gnutella1 and
Napster2. The general philosophy and current research efforts of P2P computing
are introduced in [Milojicic et al. 2002] and [Crowcroft and Pratt 2002]. Pastry
[Rowstron and Druschel 2001a], Chord [Stoica et al. 2001], and CAN [Ratnasamy
et al. 2001] are the most popular P2P searching/routing protocols. P2P appli-
cations built on top of these protocols are presented in [Rowstron and Druschel
2001b] and [Dabek et al. 2001]. Other topics of P2P research include system de-
sign [Ripeanu et al. 2002], traffic measurement [Saroiu et al. 2003], and usage of
coupons/incentives [Horne et al. 2001; Golle et al. 2001].

In the context of peer-to-peer media streaming, both the CoopNet project [Pad-
manabhan et al. 2002] and the ZIGZAG prototype [Tran et al. 2003] explore how
media streams should be delivered to many clients under the situation of flash
crowd. Both projects concentrate on how to efficiently maintain a multicast tree in
an environment where user behavior is unpredictable. CoopNet utilizes the method

1http://www.gnutella.com
2http://www.napster.com
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of Multiple Description Coding (MDC) to deal with the in-session departure/failure
of streaming peers. Our system model differs from these efforts in the sense that we
focus on the delivery of on-demand media instead of live media. Commercial con-
tent delivery services such as Allcast3 and C-Star4 are close in spirit to on-demand
P2P media streaming. In [Xu et al. 2002], an algorithm that assigns media segments
to different supplying peers and an admission protocol for requests are introduced.
[Nguyen and Zakhor 2002] emphasizes streaming protocol design. In their work,
an RTP-like protocol with the features of rate control and packet synchronization
is developed.

Research on hybrid media streaming architecture shown in [Xu et al. 2003] is
directly related to our work. A similar P2P streaming architecture can be found in
[Hefeeda et al. 2003] and [Hefeeda et al. 2004], in which efficient algorithms for dis-
semination of media content and economical analysis of P2P streaming services are
presented. They show that, with small initial investment and the use of incentives,
a large-scale and profitable media streaming service can be built.

Several recent efforts emphasize performance analysis of P2P networks. In [Yang
and de Veciana 2004], a branching model and a Markov chain model are used to
study the system dynamics of a BitTorrent5-like file sharing network in its tran-
sient and steady states, respectively. They find that the capacity of such systems
grows exponentially in transient and stabilizes at steady state. The above work
is extended in [Qiu and Srikant 2004] where a fluid model is exploited to quantify
system capacity at steady state so that explicit expressions of performance metric
are obtained (vs. numerical results obtained in [Yang and de Veciana 2004]). Fur-
thermore, other features of the BitTorrent network such as downloading efficiency
and incentives are discussed. In [Ramachandran and Sikdar 2005], downloading
speed in similar systems are analyzed with consideration of network topology and
peer heterogeneity. Our work differs from the above efforts in the following aspects:

1. We deal with P2P media streaming rather than file downloading. We study
system capacity and transition time using a discrete-time analytical method;

2. We accomplish a quantitative analysis of the performance of a multi-file system
and prove optimality in terms of the transition time of the system model. Ours
is the only work that accomplishes this, to the best of our knowledge;

3. We explore the impact of peer failure under different failure models. Among
them, the matrix model is not found in any other P2P research.

Among the above contributions, items 1 and 3 can be readily used to study pure-
P2P streaming systems (i.e., those without servers). Our study greatly improves
the analytical research on a hybrid streaming system presented in [Xu et al. 2003] as
the latter only considers single-file system without failures. Finally, we extend the
conference version of this paper [Tu et al. 2004] by relaxing several assumptions such
that the analysis applies to more general cases of system operation. For instance,
we study system performance under the effects of arbitrary distributions of peer
lifespan (Section 6.2), shortened inter-session delays (Section 7.1), and variable

3http://www.allcast.com
4http://www.centerspan.com
5http://www.bittorrent.com
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Fig. 1. A comparison between CDN and hybrid media streaming architectures. Dotted lines show
the directions of the streaming.

streaming length and bitrate of media objects (Section 7.2). Due to the space
limitation, some details of this study are not included in this paper and can be
found in our technical report [Tu et al. 2005].

3. SYSTEM MODEL, ASSUMPTIONS, AND NOTATIONS

Our analysis is based on the media streaming infrastructure shown in Figure 1B.
The model is similar to the hybrid structure proposed in [Xu et al. 2003] and
[Hefeeda et al. 2003] with some modifications. The main entities of the system are:

• Directory Server. The role of the directory server is to maintain an index of
media location (i.e. what peers hold copies of the media). It is also responsible
for processing queries 6.

• Server.7 A server holds a copy of all media files and is responsible for streaming
when the requested media cannot be served through the P2P network. Each
server has a fixed bandwidth. We assume a zero downtime for the servers.

• Peer (client). The set of user machines participating in the streaming system
are known as peers. A peer asking for a media object is called a requesting peer

and a peer that has acquired any media object(s) is called a qualified peer. Upon
joining the system, each peer announces its maximum bandwidth and storage
contribution. We divide peers into a number of classes based on their bandwidth
contributions. The average bandwidth contribution of peers in all classes is α.

• Media content. The target resource a client requests. We can view this as a
collection of media files. To simplify the analysis, we assume that all streams are
Constant Bit Rate (CBR) media streams.

Figure 1B shows all entities in the hybrid streaming architecture and how they
interact. For the sake of comparison, Figure 1A shows a CDN-based streaming
architecture. Note that the main difference between the CDN architecture and the
hybrid architecture is that client machines can be data senders in the latter.

6If we replace the directory server with non-centralized object lookup solutions (e.g. Pastry), our
analysis still works as we focus on system throughput rather than lookup latency.
7In this paper, the terms ‘streaming server’, ‘CDN server’ and ‘server’ are used interchangeably.
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In our model, the system operates as follows. When a peer requests a media ob-
ject, it first sends out a query to the directory server. The directory server searches
its local database and returns a list of available qualified peers and CDN servers
to the requesting peer. We first choose CDN servers with available bandwidth as
data senders. If all CDN servers are busy, the requesting peer chooses from the
list of qualified peers a subset that satisfies the bandwidth and QoS requirements
and the streaming starts.8 The peers that act as data senders are called supplying

peers. When the streaming is finished, the requesting peer becomes a qualified
peer. If there is not enough bandwidth from both the servers and qualified peers,
the request is rejected immediately (without waiting).

We model the arrival of streaming requests as a Poisson process with a time-
invariant rate λ. We are interested in a system where the streaming capacity of
the servers is small compared to the total capacity needed to handle all requests.
In other words, servers act as ‘seeds’ for the media content and we expect that the
streaming load will eventually be shifted to peers.

3.1 Assumptions

The system analysis is performed in a top-down manner. We start from a simple
model with assumptions on the factors we are interested in and then enhance the
results derived from the simple model by relaxing these assumptions. In the initial
analysis, we make the following assumptions:

1. The system contains only one media file. In Section 5, the analysis is extended
to multi-file systems;

2. Peers never fail. Peer failure is addressed in Section 6;

3. Requests are uniformly distributed among the peer population;

4. The bottleneck link for a streaming session can only be the upload link capacity
of the data sender (CDN server or supplying peer); and

5. Each participating peer has infinite storage contribution. We shall see in Section
8 that only a small storage contribution is actually needed from each peer, which
makes this a harmless assumption.

3.2 Metrics and Notations for Analysis

The total number of qualified peers and their bandwidth contributions are direct
measures of system capacity. Our analysis focuses on these two metrics. Previous
work [Xu et al. 2003] on hybrid streaming systems has shown that the streaming
load can be fully taken over by peers after some time. This can be illustrated by

8The mechanism of selecting the subset of peers to stream the media object is orthogonal to
the analysis presented in this paper. We note that there are a number of ways to perform the
selection. A simple mechanism is to choose suppliers that are topologically close to the receiver
based on IP addresses. This can be done by clustering peers in the system using their IP addresses
[Hefeeda et al. 2004]. As another mechanism, the receiver could leverage Internet measurement
infrastructures such as IDMaps [Francis et al. 2001] to measure relative distances between each
potential supplier and itself. A third selection mechanism infers characteristics of the network
paths connecting the potential suppliers. These characteristics are then used to select the best
subset of suppliers [Hefeeda et al. 2003].
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Fig. 2. Proposed peer bandwidth growth and transition point in the hybrid streaming architecture.

Figure 2 where the tentative system bandwidth is plotted. As more and more peers
become qualified peers, we have reason to believe that the system capacity grows
over time (not necessarily linear growth as shown in Figure 2). Suppose the total
capacity required to handle all requests is R, then at a certain point in time, the
system capacity outgrows R. This time point is called server-peer transition time

(denoted as k0). Knowing k0, we can modify the protocol to let the requesting
peers obtain bandwidth from qualified peers first and use servers as backup sources
of bandwidth after transition. For service providers, k0 can be used, for example,
to indicate when server resources can be reallocated to stream other media objects,
or to determine the length of their contracts with resource vendors.

Another metric we consider is reject rate. The reject rate at time x is defined
as the ratio of total number of rejected requests to the total number of requests
within a time interval [x−∆x, x+∆x]. Here we see that reject rate depends on the
window size 2∆x. Intuitively, reject rate decreases as system capacity increases.

Symbols used in the analysis are listed in Table I.

Table I. Notations and Symbols.
Symbol Definition

L Length of one streaming session
k Discrete time index, each unit has a length of L
N Total server bandwidth
M Total number of peers
λ Request rate to the system, in requests per unit time
k0 Server-Peer transition time, in number of streaming periods

P (k) Number of qualified peers at interval k
C(k) Total system capacity (i.e. bandwidth) at interval k

F Total number of media files
b Bandwidth required to stream a file
α Average bandwidth contribution of all peers

4. MAIN RESULT: SINGLE-FILE SYSTEM WITHOUT FAILURE

In this section, we focus our analysis on a system containing only one media file
without considering peer failures. A salient feature of the media streaming ap-
plication is that all streaming sessions of the same media object last for L time

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. V, No. N, May 2005.
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units. This feature can be leveraged to analyze (qualified) peer population in a
discrete-time manner. Suppose, within the k-th time interval (Figure 3), the sys-
tem initiates n streaming sessions S1, S2, . . . , Sn. Then we are certain that the
n requesting peers in these sessions will become qualified peers in the (k + 1)–th
interval as all sessions will terminate by the end of the next interval. To project
the total number of qualified peers from period k to period k+ 1, we need to know
how many sessions are initiated during period k.

S1

k k+1 k+2

Time

Session start

Session end
S2

Sn-1

Sn

L L

Fig. 3. Streaming sessions within a time interval of length L.

Before the server-peer transition time k0, the bandwidth of both servers and
qualified peers is fully utilized as demands are overwhelming. Therefore, the number
of new qualified peers produced between two consecutive time intervals k and k+1
can be expressed as:

P (k + 1) − P (k) =
N

b
+ P (k)

α

b
, 0 ≤ k ≤ k0. (1)

The two terms on the right-hand side of the above equation are the number of new
qualified peers generated by servers and that of the qualified peers generated by
previously qualified peers, respectively. Eq.(1) can be rewritten as

P (k + 1) +
N

α
=

(

P (k) +
N

α

)

(

1 +
α

b

)

.

Solving the above geometric progression with P (0) = 0, we get

P (k) =
N

α

[

(

1 +
α

b

)k

− 1

]

. (2)

We name the term α
b as the capacity growth factor of the system. The total system

capacity (in terms of bandwidth) at interval k is thus given by:

C(k) = N + αP (k) = N
(

1 +
α

b

)k

, for k ≤ k0. (3)

From the discussions in Section 3, we know that the total system capacity at k0

is equal to the capacity required to serve all requests. The total capacity needed
to satisfy all requests in L time units is λLb. Therefore, we have the following
equation to solve k0:

N
(

1 +
α

b

)k0

= λLb. (4)
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In the above equation, N,α, λ, L, b are known constants, therefore we get k0 as

k0 = log(1+ α
b
)

(

λLb

N

)

=
lg(λLb) − lgN

lg(1 + α
b )

. (5)

From Eq.(2), we also see that P (k0) = N
α (λLb

N − 1) peers are needed in addition to
the servers so that total system bandwidth is able to handle all subsequent requests.
Note that the unit for k0 is time intervals rather than natural time units.

The above analysis (refer to Eq.(3)) shows an exponential growth pattern of
system capacity, which is similar to the results of a recent study on P2P file sharing
applications [Yang and de Veciana 2004]. The discrete-time analysis approach is
also used in [Xu et al. 2003] and similar results (with numerical solution for k0)
are found. We improve their analysis by giving a closed-form expression for the
server-peer transition time.

Remark 4.1. In practice, the capacity growth factor α
b is small (typically less

than 1.0), because the average bandwidth contribution from a peer (α) is less than
the bandwidth required to stream the media object (b). As a result, k0 is almost
linearly related to α

b since

k0 =
lg(λLb) − lgN

lg(1 + α
b )

≈
lg(λLb) − lgN

α
b

.

This shows that k0 is more sensitive to α
b than to λ and N . The effect of L on

k0 is also similar to that of λ and b. Note that there is a super-linear relationship
between L and the absolute transition time (denoted as T0). T0 is measured in
natural time units rather than generations and is given by T0 = Lk0. In Section
7.2, we shall see more discussions on T0.

4.0.1 Dynamics of reject rate. As mentioned earlier, there is no unique way to
quantify the reject rate as it depends on the size of time window (∆x) we use. Let us
first discuss the scenario when window size is much smaller than L. An observation
under such circumstances is: in early streaming periods, the majority (if not all)
of streaming sessions start at the very beginning of that period. This is due to
the heavy load put to the system: bandwidth is quickly utilized and all subsequent
requests in that period will be rejected. As a result, the reject rate is close to zero
at the beginning and reaches almost 100% until the end of the current streaming
period. The above pattern repeats itself in every streaming period. However, within
each cycle, the time when the reject rate is low becomes longer as system capacity
grows. At period k0, the reject rate for the whole streaming period will be low. In
other words, k0 can be viewed as the time after which no more fluctuations of reject
rate can be observed. One thing to point out is that the fluctuations of reject rate
can be smoothed out if we choose larger window sizes.

5. MULTI–FILE SYSTEM

In the previous section, we derived explicit expressions for the system capacity
C(k) and the server-peer transition time k0 for a single-file system. In deriving
these expressions, we used Eq.(1) to capture the increase in number of qualified
peers in two consecutive time intervals. However, we cannot directly use Eq.(1) to
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study the dynamics of a multi-file system because of the interactions among peers
holding and/or requesting more than one file. To clarify, consider a peer that has
received a file f1 in the past, i.e., it is considered a qualified peer for f1. If that
peer requests and receives another file f2, it should not be counted as a qualified
peer for both files because it may not have enough streaming capacity to serve both
files at the same time. Intuitively, the rate of increase of the number of qualified
peers will be smaller in a multi-file system than in a single-file system. Another
problem is: when the growth of file-specific capacity are not well synchronized, we
could also have long transition time. In this section, we analyze a multi-file system
in which all files have the same length L and the same bit rate b. We first consider
a simplified multi-file system model, for which we derive the optimal (i.e., shortest)
server-peer transition time k0 for the system and the conditions to achieve this
optimal value. We then study a general multi-file system by analyzing the impact
of the assumptions made in the simplified model.

In the simplified multi-file system, we divide the whole system into F virtual
subsystems, each of which deals with only one file. Each individual subsystem is
assigned a fixed share Nf of the total server bandwidth N . In other words, we
divide the server capacity into F private channels. Naturally, each subsystem has
its own request rate λf . Immediately, we have

F
∑

f=1

Nf = N, and

F
∑

f=1

λf = λ. (6)

We further assume that the one-file subsystems are independent, i.e. a peer that has
acquired file f will request no other files and remains a qualified peer of subsystem
f forever. The whole system can then be viewed as F independent subsystems
sharing the total server bandwidth N . The simple model differs from the original
model by two factors: private channeling of the server bandwidth to individual files,
and lack of interactions among subsystems. We discuss the effects of these factors
in Section 5.1 and Section 5.2, respectively.

It is easy to see that the growth of each subsystem capacity follows Eq.(1) with
N replaced by Nf and λ by λf . Therefore, the server-peer transition time for any
single-file subsystem (denoted as k0,f ) can be obtained from Eq.(5) as follows:

k0,f =
lg(λfLb) − lgNf

lg(1 + α
b )

. (7)

Eq.(7) shows that the server-peer transition time in each subsystem depends
only on the bandwidth allocation (Nf ) and the per-file request rate (λf ). Now
we need to derive the system-level server-peer transition time k0 from those of
the subsystems. We can easily see that different allocations of server bandwidth
may result in different server-peer transition times. Instead of deriving general
expressions for k0 as a function of Nf , we concentrate on the bandwidth allocations
that lead to the optimal k0. The problem of finding such allocation(s) can be
formally stated as: for each media file f , how much server bandwidth is to be
assigned (Nf ) given the request rate of that file (λf ) such that the system-level
transition time (k0) is minimized. One important observation is that the system-
level transition time is the maximum value among those of all subsystems. This
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is because the whole system reaches the transition point only when all subsystems
reach theirs. The problem can be further interpreted as an optimization subject to
the constraints represented by Equations (6) and (7), with the objective function

minimize max
1≤f≤F

{k0,f} .

It is well-known [Chong and Żak 2001] that the solution for the above optimization
is obtained when all k0,f are the same, i.e.,

k0 = k0,1 = k0,2 = · · · = k0,F .

Applying Eq.(7) to the above solution, we get

λ1Lb

N1
=
λ2Lb

N2
= · · · =

λFLb

NF
=

∑F
i=1 λiLb

∑F
i=1Ni

=
Lb

∑F
i=1 λi

N
=
Lbλ

N
.

Hence for any file f , the optimal choice of Nf is

Nf =
λf

λ
N, f = 1, 2, . . . , F. (8)

In other words, the share of server bandwidth assigned to each single-file subsystem
has to be proportional to the request rate of that file to achieve optimal k0 at the
system level. Now we can derive k0 from Eq.(7) and Eq.(8):

k0 =
lg(λLb) − lgN

lg(1 + α
b )

. (9)

Note that the above equation is the same as Eq.(5). From Eq.(9) we can also get
the number of qualified peers for file f at time k0:

Pf (k0) =
Nf

α

(

λfLb

Nf
− 1

)

=
λfLb

α
−
Nf

α
, f = 1, 2, . . . , F. (10)

5.1 Optimality of the Original System Model.

The above result is important since it shows that the simple model is optimal in
terms of server-peer transition time when the bandwidth allocation follows Eq.(8).
Let us go back to the original system model. In this model, no private channels are
assigned to individual files. Instead, requests come at random and can be admitted
to any server channel that is available. We call this statistical multiplexing of server
capacity. This makes Nf a random variable instead of a constant. For any file
f , we model the request arrivals as a Poisson process with rate λf . The following
theorem shows that the original system model is stochastically optimal.

Theorem 5.1. In a multi-file hybrid streaming system that performs statistical

multiplexing of server capacity, the expectation of the server bandwidth utilized in

streaming file f is E[Nf ] =
λf

λ N .

Proof. The server bandwidth can be viewed as N
b channels, each of which can

serve a streaming session. The F file-specific request streams can be viewed as a
single Poisson stream with a fixed rate λ =

∑F
f=1 λf . Channel holding time for

all requests is a constant L and requests do not stay in a waiting queue. With all
these conditions, it follows that the CDN servers in our streaming system can be
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mapped to an Erlang loss system with N
b service lines, arrival rate of λ, and service

rate 1
L [Cooper 1981].

In the aggregate stream, the probability that a single request is to file f is
λf

λ .
According to well-established results in queuing theory ([Cooper 1981], page 84),
the probability of rejection (blocking) is the same for all file-specific streams in such
systems. Therefore, for any non-blocked request, the probability that it is to file f is
still

λf

λ . Consider any N
b consecutive non-blocked requests in the aggregate stream,

the number of requests to file f can be denoted as a random variable Xf , which

follows a binomial distribution B(N
b ,

λf

λ ). Therefore, the bandwidth consumed by

file f is Nf = bXf . It follows that E[Nf ] = bE[Xf ] = bN
b

λf

λ =
λf

λ N .

From Theorem 5.1, we see that since E[Nf ] gets the optimal bandwidth given by
Eq.(8), the server-peer transition time for the statistical multiplexing system will
approximately achieve the optimal k0 value in Eq.(9). The above proof requires
familiarity with Erlang systems, a self-contained proof based on probability density
functions of exponential distributions can be found in [Tu et al. 2005].

Theorem 5.1 only shows the expectation of Nf without considering the effects of
the variance of Nf on k0. We can use standard statistical tools to estimate k0 with
the consideration of such variances. First of all, the variance of Nf is

σ2 = b2
N

b

λf

λ

(

1 −
λf

λ

)

=
bNλf

λ

(

1 −
λf

λ

)

.

We now can analyze Nf using confidence intervals. If the random variable Nf

falls into an 95% interval, say, Nf ∈ (E[Nf ] − 0.05σ,E[Nf ] + 0.05σ), we get Nf ≥

E[Nf ] − 0.05σ =
λf

λ N − 0.05σ. By Eq.(7), we have k0 ≤
lg(λf Lb)−lg(

λf
λ

N−0.05σ)

lg(1+ α
b
) .

This result gives an upper bound for k0 taking the variance of randomly distributed
Nf into consideration. Since the effects of σ on k0 are diluted by the log function,

k0 is not sensitive to the variance of Nf . As long as σ is relatively large (i.e.,
bNλf

λ
is not so small), k0 is very close to our result in Eq.(7).

5.2 Dependence Among Subsystems

In the analysis of a multi-file system, we assume that different subsystems grow
independently. However, interactions exist among these virtual subsystems in the
original model. As described earlier in this section, the problem comes from those
peers that access more than one media object. It is difficult to quantify such
interactions among media files. In this section, we give an upper bound of the level
of these interactions. The following analysis shows that k0 is only slightly larger
than the value given by Eq.(5).

We assume that any request to file f comes uniformly from allM potential clients,
i.e., there is no tendency that a peer already holding file A has a better chance to
ask for file B. Let us go back to the analysis of multi-file systems, reconsider Eq.(1),
and take the peer interactions into account, we have:

Pf (k + 1) = Pf (k) + βk,f

(

Nf

b
+ Pf (k)

α

b

)

, 0 ≤ k ≤ k0 (11)

where βk,f (0 < βk,f ≤ 1) is a coefficient for the ‘valid’ proliferation in the subsystem
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of file f . This means that βk,f is the probability that peers in this subsystem hold
only file f during time interval k. We call such peers as valid peers of file f . If a
peer holds other media file(s) when it acquires file f , it is called an invalid peer of
media f . Suppose at time k, Pf (k) is the number of valid peers. By the assumption
of uniformly-distributed requests, the probability of getting a request from a peer

that holds another file g is at most
Pg(k)

M . Since g could be any of the F − 1 files
other than f , the total probability of having an invalid peer (denoted by δk,f ) is

δk,f ≤
∑

g 6=f

Pg(k)

M
,

which captures the portion of peers that should not be counted as contributors in
the subsystem of file f . At any time up to k0, Eq.(10) gives an upper bound for
the number of valid peers in any subsystem g, and we have

∑

g 6=f

Pg(k) ≤

F
∑

g=1

λfLb

α
−
λfN

αλ

(

λfLb

N
− 1

)

≤
λLb

α
−
N

α
,

which is independent of the total peer population M . Thus, δk,f ≤ λLb−N
Mα . Now,

the probability of having valid peers for file f is βk,f = 1− δk,f ≥ 1− λLb−N
Mα . Note

that if the pool size of peers is large enough, i.e., the request rate is small compared
to M , we have βk,f ≥ 1 − λLb−N

Mα ≈ 1. From Eq.(11), we get

Pf (k + 1) ≥ Pf (k) +

(

1 −
λLb−N

Mα

) (

Nf

b
+ Pf (k)

α

b

)

.

Following the same procedures as in the derivation of Eq.(9) and Eq.(10) and setting

β = 1 − λLb−N
Mα , we obtain Pf (k) ≥

Nf

α

[

(

1 + αβ
b

)k
− 1

]

, which leads to k0 ≤

lg(λLb)−lg N

lg(1+ αβ
b

)
.

6. IMPACT OF PEER FAILURE

P2P systems are intrinsically dynamic [Saroiu et al. 2003]. A major difference
between a peer and a server is that a peer’s commitment to the community is not
guaranteed: it may leave the network at any time. In this section, we study the
effects of peer failure on the capacity growth of our media streaming system. Peer
failure in our analysis means that a peer leaves the system permanently [Bhagwan
et al. 2003]. We start by presenting a simple peer failure model that is based on
experimental studies performed by other researchers. Then we present a general
peer failure model that considers an arbitrary distribution for peer lifespan.

6.1 Simple Model for Peer Failure

In this failure model, we assume that at the end of each streaming period (i.e.,
generation), the number of surviving qualified peers is proportional to the number
of surviving qualified peers at the beginning of that streaming period. The propor-
tionality factor is called the survival rate and is denoted by γ (γ < 1). We discuss
how to determine γ later in this section.
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At generation k+ 1, the number of inherited qualified peers from generation k is
γP (k). Consider the case for the single-file system, Eq.(1) becomes

P (k + 1) = γP (k) +
N

b
+ γP (k)

α

b
, 0 ≤ k ≤ k0. (12)

Rewriting the above equation, we have

P (k + 1) +
N

bθ
=

(

P (k) +
N

bθ

)

γ
(

1 +
α

b

)

,

where θ is the new capacity growth factor and θ = γ(1 + α
b ) − 1 6= 0.

Then Eq.(2) and Eq.(5) become

P (k) =
N

bθ

[

γk
(

1 +
α

b

)k

− 1

]

=
N

b
·
γk(1 + α

b )k − 1

γ(1 + α
b ) − 1

(13)

and

k0 =
lg

(

b(γ−1)+γα
αγ

(

λLb
N − 1

)

+ 1
)

lg γ(1 + α
b )

, (14)

respectively. Note that Eq.(2) and Eq.(5) are special cases of Eq.(13) and Eq.(14)
when γ = 1. To guarantee positive growth of the system capacity, we must have
θ > 0 and therefore γ > b

α+b .
Once we have Eq.(14), we can follow the same analysis as in Section 5 to derive

the upper bound for multi-file systems and get λ1Lb
N1

= λ2Lb
N2

= · · · = λF Lb
NF

=
PF

i=1
λiLb

P

F
i=1

Ni
=

Lb
PF

i=1
λi

N = Lbλ
N . That is, we have the optimal choice of Nf as Nf =

λf

λ N (f = 1, 2, . . . , F ), which is the same as in Eq.(8). Thus, we get the same
equation as Eq.(14) for the system-level transition time of a multi-file system with
peer failures. Once we have the above equations, the other results in Section 5 can
be derived accordingly.

6.1.1 Computing the survival rate γ. To determine the survival rate γ, we asso-
ciate with each qualified peer a random variable X to model its lifespan. Assuming
peers fail independently, then the survival rate γ can be interpreted as the condi-
tional probability:

γ = Pr{X ≥ T + L | X > T}, (15)

where T is the starting time of any streaming period k. Generally, it is difficult to
solve Eq.(12) using Eq.(15) when the peer lifespan follows an arbitrary statistical
distribution. The reason is that the above probability for any individual peer
depends on its age T . In other words, γ is a variable that is related to k. Two
large-scale measurement studies analyzed the lifespan of peers ([Saroiu et al. 2003]
and [Bustamante and Qiao 2003]). According to [Saroiu et al. 2003], the lifespan
of peers approximately follows an exponential distribution. Since the exponential
distribution is memoryless, the probability for any peer to live beyond time T + t
given it is alive at time T is e−tq , where 1/q is the average lifespan of all peers.
Thus, in our case, γ = e−Lq.

The measurement study in [Bustamante and Qiao 2003] indicates that a long-
tail Pareto distribution is a better fit for the lifespan data collected from more
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than 500,000 peers. Since Pareto distribution is not memoryless, computing γ from
Eq.(15) is not easy. However, it is shown in [Feldmann and Whitt 1997] that long-
tail distributions can accurately be approximated by a weighted sum of a small
number of exponential distributions over a finite time interval. The maximum peer
lifespan can be assumed to be a sufficiently large (e.g., 100 days) but finite value
for all practical purposes. Therefore, we can approximate the distribution of the
peer lifespan as

∑m
i=1 wie

−µit where the parameters m,wi and µi are estimated
using the recursive algorithm described in [Feldmann and Whitt 1997]. Using this
approximate distribution for peer lifespan in Eq.(15), the survival rate is given by:
γ =

∑m
i=1 wie

−µiL.

6.2 General Model for Peer Failure

The previous section presented a peer failure model for two commonly conceived
distributions for peer lifespan. Although these two distributions are corroborated by
extensive measurement studies, they are system and environment specific. There-
fore, they may not be applicable to other P2P systems, or their accuracy may
degrade under different conditions. In this section, we develop a more general peer
failure model that is not restricted to particular peer lifespan distributions.

With a general lifespan distribution, we lose the nice feature of representing the
survival probability within any time interval as a constant. What we can do is
to divide the continuous peer age (i.e., the length of time since a peer becomes
online) into discrete age classes and associate a survival probability p with each
age class. In our analysis, we use age classes with length L. Without loss of
generality, we ignore peers with age more than m, and m < k0. We denote the
survival probability from age k to age k+1 as pk. Suppose we obtain the probability
density function of peer lifespan f(x) from measurement studies. Based on Eq.(15),

we have pk =
R

∞

k+1
f(x)dx

R

∞

k
f(x)dx

. The overall survival rate γ at time k is thus determined

by the age structure of all P (k) qualified peers, i.e.,

γ = [x0, x1, . . . , xm][p0, p1, . . . , pm]T ,

where xi is the percentage of peers of age i among the P (k) qualified peers.
Following the same strategy as in Section 4, we develop a model to project the

number of qualified peers from time k to k+ 1. Define nx k as the number of peers
with age x at generation k, where x ≥ 0, and k ≥ 0 are integers. We have the
following relations between different age groups in the single-file system:

N

b
+
α

b

m
∑

x=0

nx k = n0 k+1, k = 0, 1, . . . , k0 − 1,

pxnx k = nx+1k+1, x = 0, 1, . . . ,m− 1, and k = 0, 1, . . . , k0.

The first relation shows that the number of qualified peers of age 0 at time k+ 1
is the sum of those generated by servers and by peers of all other age classes. The
second relation shows that the peers of age x+1 at time k+1 are those of age x at
time k and survived through time period k with probability px. Employing matrix
notation, the system capacity can be expressed as

~B + A~nk = ~nk+1, (16)
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where

~B =











N
b
0
...
0











, ~nk =











n0 k

n1 k

...
nm k











, ~nk+1 =











n0 k+1

n1 k+1

...
nm k+1











, and A =

















α

b

α

b
· · ·

α

b

α

b
p0 0 · · · 0 0
0 p1 · · · 0 0
...

...
. . .

...
...

0 0 · · · pm−1 0

















.

Note that the above formula has a similar form as Eq.(1). Set p(k) = p0p1 · · · pk (k ≥
0) and p(−1) = 1. We also define the following column vector

~v =
N

−b+ α
∑m

k=0 p(k−1)

[

1, p(0), p(1), . . . , p(m−1)

]T
.

We explain more about this vector later. For vector ~v, it can be verified that
A~v − ~v = ~B. Plugging it into Eq.(16), we obtain

~nk+1 + ~v = A (~nk + ~v) , ~n0 = ~0 . (17)

Solving the above equation, we get:

~nk = (Ak − I)~v, k = 1, 2, . . . , k0, (18)

where I is the (m+ 1) × (m+ 1) identity matrix. This can be viewed as a matrix
counterpart of Eq.(2). We now can see that the purpose of introducing vector ~v is
to get the nice form shown in Eq.(17) such that ~nk can be solved as an exponential
function of k.

Now let us discuss under what conditions the system capacity grows positively.

For convenience, let ψ = −1 +
α

b

∑m
k=0 p(k−1), which immediately gives ~v =

N

bψ

[

1, p(0), p(1), . . . , p(m−1)

]T
. Obviously, the elements in ~v should all be positive to

achieve positive capacity growth. Therefore, we must have ψ > 0. We may also see
that, to guarantee positive growth, the largest eigenvalue of A should be greater
than 1.

To find the server-peer transition time k0 (assuming the above conditions hold
such that the capacity grows positively), we need to solve

N

b
+
α

b

m
∑

x=0

nx k0
= λL,

or equivalently, solve

N

b
+
α

b
(Ak0 − I)~v = λL.

Divide both sides by
N

b
, we obtain

1 +
1

ψ

α

b
(Ak0 − I)

[

1, p(0), p(1), . . . , p(m−1)

]T
=
λbL

N
. (19)

Since the system grows exponentially, the left-hand side of Eq.(19) is proportional
to the increased population of the system, it is an increasing function of k0, and we
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will have a unique k0 satisfying Eq.(19). Unfortunately, we could not find a simple
explicit expression for k0. Instead, we can calculate k0 numerically. Moreover,
since the right-hand side depends on the ratio of the bandwidth and the request
rate rather than their absolute values, the solution of k0 will depend only on this
ratio. Hence, if we generalize the single-file solution to multi-file systems, where
each media object has it own request rate λf , we will have the same result as in
Eq.(8), i.e. the optimal bandwidth is proportional to the request rate.

7. OTHER EXTENSIONS

7.1 Acceleration of Capacity Growth

In the previous sections, we assume that a peer can only serve others after it finishes
receiving the entire stream. In practice, it is feasible to allow peers to start serving
others after receiving the first few blocks of the media file. Formally, we set a
delay d (d ≤ L) after which a requesting peer in a streaming session can serve as
a supplying peer in a new session. In this section, we study how the inter-session
delay d affects system performance.

A

0 L/3 2L/3 L
Time

B C

Fig. 4. Streaming sessions initiated in a generation when d = L/3.

For simplicity, we only consider the situation of d = L/n where n is a positive
integer. When n is not an integer, we can estimate k0 using the two neighboring
integers of n. Revisiting the arguments used to generate Eq.(1) in Section 4, an
important observation is: within one streaming period, a newly started session will
have the chance to start n− 1 rounds of new sessions. Figure 4 shows an example
of n = 3 and we use cluster A to represent the chunk of sessions initiated at the
beginning of a streaming period. The requesting peer in a session in cluster A
could be a supplying peer in a new session that starts in the beginning of time
interval [L

3 ,
2L
3 ] (cluster B). The requesting peer of a cluster B session can in turn

be a supplying peer in a session in cluster C. On average, one session in cluster

A can give rise to α
b sessions in cluster B and α

b · α
b = α2

b2 sessions in cluster C.
Knowing this, the number of sessions initiated in the period shown in Figure 4 is

|A|+ |B|+ |C| = |A|(1 + α
b + α2

b2 ) where |A|, |B|, |C| are the numbers of sessions in
cluster A, B, and C, respectively. Generalizing this idea, Eq.(1) can be written as:

P (k + 1) − P (k) =

(

N

b
+ P (k)

α

b

) (

1 +
α

b
+
α2

b2
+ · · · +

αn−1

bn−1

)

(20)

with 0 ≤ k ≤ k0 and P (0) = 0. Let Φn = 1 + α
b + α2

b2 + · · · + αn−1

bn−1 . Similar to the
derivation of Eq.(2), we obtain

P (k) =
N

α

[

(

1 +
α

b
Φn

)k

− 1

]

.
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The server-peer transition time becomes

k0 = log(1+ α
b
Φn)

(

λLb

N

)

=
lg(λLb) − lgN

lg(1 + α
b Φn)

. (21)

Comparing this with Eq.(5), we see that the improvement is significant because
the system capacity growth factor increases to 1 + α

b Φn while other factors remain
unchanged. A smaller delay d leads to a smaller k0 value. However, this does not
mean it is always better to choose a smaller d (i.e., a larger n) value. Since we
have α

b < 1 in practice, k0 converges rapidly as n increases: it is well-known that

for Φn =
1−( α

b
)n

1−α
b

, we have limn→∞ Φn = b
b−α . It follows that we get limn→∞ k0 =

lg(λLb)−lg N
lg(1+ α

b−α
) . From the point of view of streaming protocol design, an excessively

short delay is also infeasible: there will inevitably be some delays in setting up the
network connections, and some buffer time is needed for maintaining QoS in any
streaming sessions.

7.2 General Multi-file System

In the analysis of multi-file systems (Section 5), we assume that all media files re-
quire the same bandwidth b and have the same length L. Our analysis can be gener-
alized to media files with different bandwidth requirements and streaming lengths.
Assume that a media file f requires bandwidth bf , and streaming length Lf . Then
the proliferation of each subsystem capacity follows Eq.(1) with N replaced by Nf

and b by bf . Therefore, the server-peer transition time for any single-file subsystem
(k0,f ) can be obtained from Eq.(5) as:

k0,f =
lg(λfLfbf ) − lgNf

lg(1 + α
bf

)
. (22)

Note that the time unit for every subsystem is its streaming length Lf , so that the
objective function of the optimization problem becomes:

minimize max
1≤f≤F

{Lfk0,f} . (23)

If we allow k0,f to have continuous solutions, the solution of the above optimization
problem is achieved when Lfk0,f are equal to each other for each f . Let T0 be the
optimal transition time, we have T0 = k0,fLf , ∀f , which is the same as

T0 =
lg(λ1L1b1) − lgN1

lg(1 + α
b1

)
L1 =

lg(λ2L2b2) − lgN2

lg(1 + α
b2

)
L2 = · · · =

lg(λFLF bF ) − lgNF

lg(1 + α
bF

)
LF

where N1, N2, · · · , NF are the unknowns. With the condition
∑F

f=1Nf = N ,
we could solve N1, N2, · · · , NF by iteration methods. That is, we first solve T0

by representing Nf through T0 and plugging it into the sum condition. Since

Nf = λfLfbf

(

bf

bf+α

)T0/Lf

, we have

F
∑

f=1

λfLfbf

(

bf
bf + α

)T0/Lf

= N.
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The left-hand side of the above equation monotonically decreases about T0. This
means the equation has a unique root. There are many quick iteration techniques
to solve T0 such as the bisection method, Newton’s method, and the secant method,
details of which can be found in general numerical analysis texts such as [Burden and
Faires 2001]. Note our original system model is not optimal under such conditions
therefore we have to assign private channels to files based on the solution of the
above equation to achieve the shortest T0.

Remark 7.1. The above analysis can be further generalized to the scenario where
each media file attracts a different group of peers with different bandwidth contri-
butions (i.e., the quantity α in Eq.(22) is replaced by a file-specific item αf ). Under
such changes, T0 can still be solved by the same iteration methods.

8. EXPERIMENTAL RESULTS

We study the dynamics of the proposed hybrid media streaming system by ex-
tensive simulations. We implement our media streaming simulator using the Tool
Command Language (TCL)9.

Unless specified otherwise, the example system contains a pool of 200,000 peers
(M = 200, 000). The playback bit rate for all video objects is b = 800Kbps and
length is one hour (L = 3, 600, basic time unit is second). Bandwidth contribution
of peers is: 5% of the peers with 800Kbps, 10% with 400Kbps, 55% with 200Kbps,
and 30% with 100Kbps, which translates into an α

b value of 0.275. System receives
requests at a rate (λ) of 1 request per second. Total server bandwidth is 480Mbps.
Due to space limit, we only present the most important experimental results.

8.1 Dynamics of Single-File Systems

In Figure 5, various metrics of the simulated system are plotted. After a short initial
stage, server bandwidth usage (Figure 5a) is close to the maximum value all the
time. We plot reject rates resulted from two window sizes, 8000 seconds and 1000
seconds, in Figure 5c. For the one with smaller window size, reject rate fluctuates
between zero and one. These fluctuations almost disappear in the experiment using
windows of size 8000. For both experiments, the reject rate stays at zero after 8.06
hours. According to Section 4.0.1, the time point 8.06 can be regarded as the k0

value for this experiment as no fluctuations occur afterwards. We also test windows
with other sizes but the same k0 value is observed.

The growth of system capacity is illustrated by the change of total number of
qualified peers (Figure 5b) and bandwidth contributions of these peers (Figure 5d).
Both peer number and peer bandwidth show geometric growth at the first 8 hours
and linear growth afterwards. One thing to point out is that the curves for system
capacity growth are not smooth. They tend to appear as step functions of time,
as illustrated by the small graph in Figure 5. The height of steps increases as time
goes by, thus an exponential growth is achieved. From Figure 5d we can also see
that the system capacity reaches the requested bandwidth at about the 8th hour,
which confirms our conclusion about transition time drawn from reject rate data.

9http://tcl.sourceforge.net
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Fig. 5. Performance of a typical hybrid media streaming system. a. Bandwidth usage of CDN
servers; b. Number of qualified peers; c. System reject rate; d. Peer capacity.
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Fig. 6. System performance under different capacity growth factors (a, b) and request rates (c,
d). a,c: Smoothed system reject rate; b,d: Peer bandwidth.

Peer bandwidth usage first increases and then stabilizes (after transition point) at
exactly the same level with the requested bandwidth.

8.1.1 Effects of peer bandwidth contribution and request rate. The impact of
parameters α

b and λ on performance is also investigated. Figure 6a and 6b show
the reject rate and total peer bandwidth under different choices of α while all other
parameters remain unchanged. The legends in Figure 6a and Figure 6b indicate
the α

b values of individual simulations. A four-fold increase of α
b (from 0.125 to 0.5)

significantly shortened the server-peer transition time from 16 hours to 5 hours.
This shows that k0 is almost linearly related to α

b (recall Remark 4.1).
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Fig. 7. System performance under different number of media files. a. Smoothed system reject
rate; b. Number of qualified peers.

A similar set of experiments are designed to study the impact of system request
rate (λ) on k0. The results for three request rates, 0.5, 1, and 2 requests per
second, are shown in Figures 6c and 6d. The value of k0 observed increases as the
request rate increases. However, the change of k0 due to the change of λ is less
dramatic than that caused by the change of α

b . When λ increases 20 times to 10
requests/second, a k0 of 17.27 hours was obtained (data not plotted). The effects
of streaming length (L) and bitrate (b) are similar to those of request rate (data
not shown).

8.2 Performance of Multi-file Systems

As specified in Section 5, the theoretical value of the server-peer transition time
k0 in a multi-file environment is the same for a single-file system. Figure 7 shows
how the system performs under different F values. First of all, we can see that
the results for experiments with total file number 1 and 100 are almost identical.
In this set of experiments, the observed k0 value does not change until the total
number of files goes beyond 120.

Table II. Storage usage of peers at transition time
# of media files stored

Experiment k0 (h) 1 2 3 4 β

F = 1 8 10895 0 0 0 1.000

F = 50 8 10791 21 0 0 0.998

F = 100 8 10678 21 0 0 0.998

F = 250 9 11268 31 0 0 0.997

F = 500 11 13808 89 0 0 0.994

F = 1000 13 14896 196 1 0 0.987

However, k0 is found to be greater than the ideal value when F further increases
(Fig 7a). According to Section 5, two factors could account for the long transition
time in a multi-file system: (i) peers that acquired multiple files, and (ii) lack of
synchronization in the growth of per-file capacity. We investigate the effects of the
first factor in the same set of experiments by recording the storage usage of qualified
peers. In Table II, the number of qualified peers at transition time is listed by their
storage consumption. For example, there are 11268 peers holding one media file
(valid peer) and 31 peers holding two files for the simulation with 250 files. The
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Fig. 8. Effects of peer failure on system dynamics. a. Smoothed system reject rate; b. Total
number of qualified peers.

β values in the last column are ratios of the number of valid peers to all qualified
peers, which can be viewed as the lower bound of βk,f in Eq.(11). All β values
shown are very close to 1.0. Another conclusion we may draw from Table II is
that the space contribution of peers can be made minimal without affecting system
performance.

Now it is clear that factor (ii) above accounts for the degraded performance.

According to Section 5.1, when F is large,
bNλf

λ is small and k0 deviates from
theoretical value. In other words, the average number of sessions allocated to each
file ( N

Fb ) cannot be too small. Another way to interpret this is: when N
Fb is too

small (e.g. F = 500 in Fig 7), there is no guarantee that each file can occupy at
least one server channel. Hence, the files take turns in using the server bandwidth
and transition is delayed. For the above experiments, we see that N

Fb has to be at
least 5 for the system to get near-optimal transition time.

8.3 Systems with Peer Failures

The introduction of finite peer lifespans significantly reduces the speed of system
proliferation (Figure 8). We experiment with three simulations with different av-
erage peer lifespan – eight, six and four hours. In all tests, peer lifespan is expo-
nentially distributed. A system with no peer failures (i.e. infinite peer lifespan) is
used as control. As the average lifespan of peers increases, the reject rate drops
more dramatically (Figure 8a) and the system accomplishes server-peer transition
faster. For the system with average lifespan of 4.0 hours, the peers fail too early
to serve other peers so that it never reaches a transition point. The above results
are confirmed by capacity growth of all tested systems plotted in Figure 8b. For
the systems simulated, the calculated threshold value of survival rate γ to guaran-
tee positive capacity growth is 0.7843, which also means the peers should have an
average lifespan of at least 4.12 hours.

8.4 Service Acceleration

We verify our conclusions about service acceleration (Section 7.1) by allowing re-
questing peers to act as supplying peers before the whole media stream is delivered.
We test inter-session delays with different values (from L/5 to L/2, and L as the
control). From Figure 9, we can see that the usage of inter-session delays shorter
than L does accelerate the server-peer transition: k0 decreases from 8.0 to about
6.0 when delay changes from L to L/2. Further decrease of k0 can also be observed
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Fig. 9. System under different inter-session delays. a. Smoothed system reject rate; b. Total
number of qualified peers.

when d gets even smaller. However, this effect on k0 quickly diminishes: the results
of d = L/4 and d = L/5 are almost identical. We test different sequences of ran-
dom inputs and very similar results are obtained and the k0 values observed match
closely to the theoretical value given by Eq.(21)(data not shown).

9. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the capacity growth of P2P media streaming systems us-
ing a discrete-time analytical model. The capacity is defined as the total streaming
bandwidth available from both servers and peers that previously acquired the me-
dia files. Based on the analytical model, we found that the capacity of such systems
increases exponentially with time. Knowing the exact pattern of the system capac-
ity growth enabled us to determine the moment at which the streaming load can
be shifted from servers to peers. We obtained explicit expressions to determine this
moment, which we call the server-peer transition time k0. The server-peer transi-
tion time can be used by the system operator to decide when to reallocate server
resources. We analyzed the capacity and server-peer transition time for single- and
multi-file streaming systems. We showed that the equations derived for single-file
systems can approximate the behavior of multi-file systems, within some boundary
conditions.

We extended our analysis to quantify the effects of peer failures on the system
performance. In particular, we model the unreliability and limited commitment of
peers to the system by a lifespan random variable. We derived explicit expressions
for the server-peer transition time using two commonly-known lifespan distributions
in the literature: exponential and Pareto. Furthermore, we considered a general
peer failure model in which the lifespan could follow any arbitrary distribution.
Although we did not obtain explicit expressions in this case, we showed how the so-
lution can be computed using simple numerical methods. In addition, we conducted
extensive simulation experiments which: (i) validated our analytical conclusions,
and (ii) studied the effects of changing several parameters, e.g., request rate, average
peer bandwidth contribution, and average peer lifespan on system performance.

Finally, our results from the analysis and the simulation experiments leads to
better understanding of the operation of P2P media streaming systems. To that
end, we have the following comments and suggestions for designers of P2P media
streaming systems:

1. The system performance is most sensitive to the capacity growth factor, which is

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. V, No. N, May 2005.



24 · An Analytical Study of Peer-to-Peer Media Streaming Systems

the average peer bandwidth contribution (α) divided by the bandwidth required
to stream the media file (b). Therefore, we should concentrate on maintaining
a large α

b value. One idea is to give higher priorities to peers with higher
bandwidth contributions. Specifically, we could reserve some server bandwidth
for high-capacity peers to enable them to get early admission to the system;

2. Peers receiving a media file should be allowed to serve others before receiving
the entire file. However, a receiving peer does not need to become a serving
peer too early in the session. As a rule of thumb: a delay of about one-third
of the session length would yield better performance in terms of faster system
capacity growth rates;

3. Peer failure negatively affects the system capacity by decreasing the capacity
growth factor. Thus, maintaining a sufficiently large P2P community is the
key to success. Incentive mechanisms could be used to encourage peers to stay
longer in the system.

4. System performance can deteriorate when too many media files are introduced
in the system. To some extent, this may be mitigated by synchronizing the
growth of file-specific subsystems using private channels, especially when files
are of different lengths and bitrates.

This study can be extended in several directions. For example, it could be in-
teresting to analyze the strategies proposed above (e.g., fast track channels for
high-capacity peers and providing incentives for peers to stay longer) and how
these strategies enhance system performance. Since the focus of our analysis was
on the early stages of system operation, another extension can be studying the sys-
tem dynamics after the server-peer transition point. At the individual peer level,
we may need to design file replacement policies especially when peers request many
files and have limited storage capacity. It is important to design these replacement
policies with minimal or no global information about other peers in the system.
Other possible research directions include QoS management and handling security
and integrity concerns in P2P media systems.
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