
Scalable Spatio-temporal Continuous Query Processing for

Location-aware Services

Xiaopeng Xiong Mohamed F. Mokbel Walid G. Aref Susanne E. Hambrusch Sunil Prabhakar

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398

{xxiong,mokbel,aref,seh,sunil}@cs.purdue.edu

Abstract

The emergence of location-aware services calls for
new real-time spatio-temporal query processing algo-
rithms that deal with large numbers of moving ob-
jects and large numbers of continuous spatio-temporal
queries. In this paper, we use shared execution as
a mechanism to support scalability in location-aware
servers. The main idea is to maintain a query ta-
ble that stores information about continuous spatio-
temporal queries. Then, answering spatio-temporal
queries is abstracted as a spatial join among the mov-
ing objects and queries. Three query join polices are
proposed aiming to minimize the cost of the join op-
eration under the shared execution paradigm, namely
the Clock-triggered Join Policy, the Incremental Join
Policy, and the Hot Join Policy. We introduce the con-
cept of a No-Action Region that is used in conjunction
with the hot join policy. We propose algorithms that
calculate the No-Action region for objects and queries.
Experimental performance demonstrates that the No-
Action region is more efficient than other approaches
when used along with the hot join policy. Experiments
also demonstrate that the hot join policy outperforms
the clock-triggered join policy and the incremental join
policy in terms of both I/O and CPU costs.

1 Introduction

Combining the functionality of personal locator
technologies, global positioning systems (GPSs), wire-
less and cellular telephone technologies, and informa-
tion technologies enables new environments where vir-
tually all objects of interest can determine their loca-
tions. These technologies are the foundation for per-
vasive location-aware environments and services. Such
services have the potential to improve the quality of
life by adding location-awareness to virtually all ob-
jects of interest such as humans, cars, laptops, eye-

glasses, canes, desktops, pets, wild animals, bicycles,
and buildings.

Location-aware environments have the following dis-
tinguished characteristics: (1) A large number of ob-
jects and a large number of queries interested on these
objects, (2) Most of the queries issued to the location-
aware server are continuous spatio-temporal queries.
Unlike snapshot queries that are evaluated only once,
continuous queries require continuous evaluation as the
query result becomes invalid with the change of infor-
mation, and (3) Queries as well as objects have the
ability to be stationary or moving. Thus a location-
aware server should have the ability to support a wide
variety of continuous spatio-temporal queries, e.g., sta-
tionary queries on moving objects, moving queries on
stationary objects, and moving queries on moving ob-
jects.

By employing the shared execution paradigm [6, 7,
16] in location-aware servers, the problem of concur-
rently evaluating a set of continuous spatio-temporal
queries is abstracted into a spatial join problem. The
main idea is to group the set of continuous spatio-
temporal queries in one table that is joined with an-
other table that contains the locations of moving ob-
jects. So, instead of having one query evaluation plan
per query, we have only one shared execution query
evaluation plan for all the queries. The shared execu-
tion paradigm has been widely utilized for continuous
web queries, and continuous streaming queries. For
continuous spatio-temporal queries, the shared execu-
tion paradigm is utilized to support only the case of
stationary queries over moving objects. The underly-
ing join operation in the shared execution paradigm is
mainly dependent on the underlying application.

In this paper, we focus on realizing the join op-
eration of the shared execution paradigm to support
all mutability variations of continuous spatio-temporal
queries. We propose three join policies that aim to
minimize the number of computations. In addition,
we propose the notion of a No-Action Region, which is

1

the region that an object or a query can move inside
without affecting the latest reported result of any con-
tinuous query. No-Action Regions are utilized to mini-
mize the required join operations in a shared execution
query plan. Although our focus is on continuous spatio-
temporal range queries, the ideas and concepts are ap-
plicable to other kinds of continuous spatio-temporal
queries. The contributions of this paper are summa-
rized as follows:

1. We utilize the shared execution of spatio-temporal
queries to achieve scalability in terms of large
query and object numbers, and abstract the
problem of evaluating multiple continuous spatio-
temporal range queries to the spatial join problem.

2. We propose three join policies; the Clock-triggered
Join Policy, the Incremental Join Policy, and the
Hot Join Policy that join a set of spatio-temporal
objects with a set of spatio-temporal queries. The
three join policies fit with the shared execution
paradigm.

3. We propose the concept of No-Action Region that
generalizes the concepts of validity region [21] and
safe region [18]. The No-Action region concept is
used in conjunction with the Hot Join Policy to
minimize the number of join operations.

4. We provide a comprehensive set of experiments
that show the performance of the proposed join
policies. In addition, we show that utilizing No-
Action regions is more efficient than utilizing va-
lidity regions or safe regions.

The rest of the paper is organized as follows: Sec-
tion 2 gives some preliminaries that are used through-
out the paper. In Section 3, we introduce the shared
execution paradigm that is used as a means for achiev-
ing scalability in location-aware servers. Section 4 pro-
poses three join policies that fit with the shared execu-
tion paradigm. Section 5 provides an extensive set of
experiments to study the performance of the proposed
join policies and No-Action regions. In Section 6, we
highlight related work for continuous spatio-temporal
query processing. Finally, Section 7 concludes the pa-
per.

2 Preliminaries

2.1 Location-aware Environment Model

In this section, we briefly introduce the Perva-
sive Location Aware Computing Environments Project

(PLACE); a project being developed at Purdue Uni-
versity [1, 16]. Location-detection devices (e.g., GPS
devices) provide the objects with their geographic lo-
cations. Objects connect directly to regional servers
that handle the incoming data and process time-critical
spatio-temporal queries. Regional servers communi-
cate with each other, as well as with higher level repos-
itory servers.

The PLACE server keeps track of stationary objects
(e.g., gas stations) as well as moving objects (e.g., cars).
Moving objects update their location in the PLACE
server every T seconds. An object is considered station-
ary at the time interval [Ti, Tj] if the server does not
receive any update from o during this interval. Moving
objects have the ability to issue stationary or moving
spatio-temporal queries. To cope with the continuous
nature of spatio-temporal queries, the PLACE server
updates the answer of a continuous spatio-temporal
query every T seconds.

2.2 Spatio-temporal Query Types

Unlike traditional and spatial queries, in spatio-
temporal queries, both objects and query regions may
change their locations over time. In this section, we
classify the spatio-temporal queries based on the mu-
tability of both objects and queries.

• Moving Queries on Stationary Objects. In
this category, query regions are moving, while ob-
jects are stationary. An example of this category
is ”As I am moving in a certain trajectory, show
me all gas stations within 3 miles of my location”.

• Stationary Queries on Moving Objects. In
this category, the query regions are stationary,
while objects are moving. Examples of these
queries include ”How many trucks are within the
city boundary?” and ”Find the nearest 100 taxis
to a certain hotel”. In these queries, the query
regions (city boundary and hotel neighborhood)
are fixed, while the objects of interest (trucks and
cars) are moving.

• Moving Queries on Moving Objects. In this
category, both query regions and objects are mov-
ing. An example of such queries is ”As I (the
sheriff) am moving, make sure that the number of
police cars within 3 miles of my location is more
than a certain threshold”. In this case, the query
region is moving. Also, the objects of interest (po-
lice cars) are moving.

2

Q1 Q2

R1
R2

Q2Q1
Select ID Where
location inside R1

Select ID Where
location inside R2

File Scan File Scan File Scan File Scan

Spatial
Join

Moving Objects Moving Objects Moving Objects Moving Queries

(a) Local query plan for two range queries (b) A global shared plan for two range queries

Figure 1. Shared execution of continuous queries

3 Shared Execution

The main idea behind shared execution is to group
all continuous spatio-temporal queries in a query ta-
ble QT . In addition, we keep track of all the moving
objects in an object table OT that contains the recent
locations of moving objects. Then, the evaluation of a
set of continuous spatio-temporal queries is abstracted
as a spatial join between the moving objects table OT

(table of points) and the moving queries table QT (ta-
ble of query rectangles) where the join predicate is the
containment (i.e., find all pairs of (p, r) of points and
rectangles where the point p is contained in the rect-
angle r).

Figure 1a gives the execution plans of two simple
continuous spatio-temporal queries, Q1: ”Find the ob-
jects inside region R1”, and Q2: ”Find the objects in-
side region R2”. Each query performs a file scan on
the moving object table followed by a selection filter.
With shared execution, we have the execution plan of
Figure 1b. The table for moving queries contains the
regions of the range queries. Then, a spatial join is per-
formed between the table of objects (points) and the
table of queries (regions). The output of the spatial
join is split and is sent to the queries.

Shared execution has been exploited for continuous
web queries in the NiagaraCQ project [6, 7], for contin-
uous streaming queries in PSoup [5] and [10, 15], and
for continuous spatio-temporal queries [16, 18]. How-
ever, the realization of the join operation depends on
the underlying application. For example, in the case of
web queries, the join operation can use traditional in-
dex structures. For streaming queries, indexes are not
available. In this paper, we are concerned with spatio-
temporal queries. Thus the join operation between the
objects and queries is a spatial join.

For stationary objects (e.g., gas stations), the spatial
join can be performed using a simple R-tree index [9]
on the object table. Then, queries are used to probe
the R-tree as range queries. In contrast, if queries are

Object Query Object Query Object Query

(c) HJP(b) IJP(a) CJP

Hot
ColdCold

Hot

Figure 2. Illustration of join policies

stationary and the objects are moving, an index on the
queries, e.g., the Q-index [18], can be used to index the
queries rather than the objects. Then, the objects are
used to probe the query index to determine the queries
that are satisfied by each object.

If both objects and queries are moving, then we can
use a variation of the traditional R-tree that supports
frequent updates (e.g., the Lazy Update R-tree (LUR-
tree) [12], and the Frequently Updated R-tree (FUR-
tree) [14]). In this case, the spatial join operation can
be performed with two R-trees as in [3]. However, if
objects and queries are highly dynamic, then it is more
efficient not to use an index but use a non-index spatial
join (e.g., [17, 2]).

4 Shared Execution in Location-aware

Servers

In this section, we focus on the spatial join opera-
tion between the object and query tables. Ideally, the
spatial join should be reevaluated as soon as an object
or a query reports a change in location. However, with
a large number of updates from objects and/or queries,
it becomes impractical to continuously reevaluate the
spatial join. Thus, we propose three join policies that
aim to provide a practical realization of the shared ex-
ecution paradigm in location-aware servers.

4.1 POLICY I: Clock-triggered Join Policy

We include this basic policy for comparison pur-
poses. The main purpose of the Clock-triggered Join
Policy (CJP, for short) is to avoid the continuous
reevaluation of spatio-temporal queries. In the CJP
policy, we reevaluate the spatial join every T seconds.
Thus, for any evaluation time Ti, any change in the ob-
jects and/or the queries location information will not
take effect until the next evaluation time Ti+1 = Ti+T .
The spatial join is reevaluated every T seconds by join-
ing all the records from the object table with all the
records from the query table. A larger value of T would
result in having long periods of outdated results. How-
ever, smaller values of T may result in an excessive

3

3Q

1Q

e

d

a

c

b

e

2

0 1(a) Snapshot at time T

YY

XX

2Q

3Q

1Q

Q
b

0 1(b) Snapshot at time T

f
c

a
d

f

Figure 3. Example of IJP

number of computations. Typically, the interval T is
around one minute [11] or 50 seconds [18]. A major
drawback in the CJP policy is that at time Ti+1, CJP
joins all objects with all queries even if most of the
objects and queries did not change their location infor-
mation from Ti.

4.2 POLICY II: Incremental Join Policy

The Incremental Join Policy, IJP for short, aims
to avoid the drawbacks of the CJP policy by avoid-
ing the recomputation of the spatial join for objects
and queries that do not report any change of infor-
mation from the previous evaluation time. Figure 2b
sketches the IJP policy. The white parts in the object
and query tables indicate the set of objects and queries
that do not change their locations from the last evalu-
ation time. The shaded parts in the tables indicate the
set of objects and queries that change their locations
from the last evaluation time. Then, the spatial join is
performed in two steps: (1) The set of moving objects
is joined with the set of stationary queries, (2) The set
of moving queries is joined with all objects (stationary
and moving). Notice that in the first operation, moving
objects are joined with only stationary queries. This is
mainly to avoid duplications in join results that would
result from the second operation where moving queries
is joined with moving objects.

Figure 3 gives an example of a set of objects and
queries. Query Q1 and objects a and b are the only
moving query and moving objects, respectively, during
the time interval [T0, T1]. According to IJP, in Step
(1), a and b (moving objects) are joined with Q2, Q3

(stationary queries). In this step, b is added into Q2’s
query result. Then in Step (2), Q1 (moving query) is
joined with a, b and c (all objects). b, c are deleted
from Q’s query result and a is added into Q1’s result
in this step.

4.3 POLICY III: Hot Join Policy

The Hot Join Policy (HJP, for short) is enhanced
from the incremental join policy. At every evaluation
time Ti, moving entities 1 are classified into two cate-
gories, namely, cold and hot entities. An entity is iden-
tified as cold if its movement has no effect on the status
of any query answer. On the contrary, if the entity’s
movement may cause changes to some query answers,
the entity is identified as hot. In order to identify an
entity as being hot or cold, we introduce the notion of a
No-Action Region for each entity. A No-Action region
is a region that the object or the query (actually, the
centroid of the query) can move inside without affect-
ing the latest result of any continuous query. At every
evaluation time, we identify a moving object/query as
hot if the object/centroid of the query moves out of the
former calculated No-Action region. Otherwise, the ob-
ject/query is identified as cold.

Figure 2c gives a sketch of HJP. The white parts
in the object and query tables represent the set of
objects and queries that did not report location up-
dates from the last evaluation time. The shaded parts
marked as ”Hot” in the tables represent moved enti-
ties that became hot, while the shaded parts marked
as ”Cold” represent moved entities that remain cold.
At every evaluation time, HJP executes the follow-
ing steps: (1) Categorize every moved entity as hot
or cold by comparing the entity’s current position with
the former computed No-Action region; (2) The set
of hot objects is joined with all queries. During this
step, the No-Action region of each hot object is re-
computed; (3) The set of hot queries is joined with all
objects. During this step, the No-Action region of each
hot query is recomputed.

We focus on the problem of computing the No-
Action regions for objects and queries in HJP. In the
case of moving queries on stationary objects, cold and
hot entities apply only to queries. So HJP calculates
No-Action regions only for queries. In Section 4.3.1, we
propose an efficient algorithm for computing a rectan-
gular No-Action region for every query. In the context
of stationary queries on moving objects, the concept
of cold and hot entities apply only to objects and it is
natural to compute a No-Action region for each object.
We discuss the algorithm that computes a rectangular
No-Action region for each object in Section 4.3.2. In
Section 4.3.3, we further introduce the notion of Adap-
tive No-Action regions to deal with moving queries on
moving objects, and propose an algorithm to calculate
adaptive No-Action regions. Section 5 demonstrates
that the proposed No-Action region algorithms out-

1An entity is either an object or a continuous query.

4

Procedure NoActionRegionCalc(q, Oset) Begin

//Input: the query q and the object set Oset;

//Output: the No-Action region of q.

1. Divide the data space into nine non-overlapped regions with

Q’s boundaries and boundary extensions.

2. De,s,w,n = INFINITY . //De,s,w,n are the maximum

distances q can move in the east, south, west or north di-

rections, respectively.

3. For each object o in Oset:

(a) Based on which region o lies at, compute de(o, q),

ds(o, q), dw(o, q) and dn(o, q); //de(o, q), ds(o, q),

dw(o, q) and dn(o, q) are the maximum distances that

q can move in the east, south, west or north direc-

tions, respecively, before o may change q’s answer.

(b) De = min(De, de(o, q));

Ds = min(Ds, ds(o, q));

Dw = min(Dw , dw(o, q));

Dn = min(Dn, dn(o, q));

4. q’s No-Action region is formed by the rectangle (qc.x - Dw ,

qc.y - Ds, qc.x + De, qc.x + Dn), where qc is the centroid of

q. //Assume q is represented by (q.xlow, q.ylow, q.xhigh,

q.yhigh).

End.

Figure 4. Pseudo code for computing the No-Action
region of a query

perform other algorithms, e.g., the Validity Region al-
gorithm [21] and the Safe Region algorithm [18] when
used in conjunction with HJP.

4.3.1 Calculating No-Action Regions for

Queries

A No-Action region is to be used inside HJP for identi-
fying hot or cold entities. In this section, we propose an
algorithm for computing the No-Action region of each
query in the context of moving queries on stationary
objects.

Assume that entities can move only along axis di-
rections. Movement in any other direction can be pro-
jected to movements in both x- and y-axis directions.
Our algorithm determines the maximum distances a
query q can move in every axis direction with the guar-
antee that no object will enter or leave q’s query re-
gion. Let De, Ds, Dw and Dn denote the maximum
distances in the east, south, west or north directions,
respectively. For simplicity, let Di be any one of the
above four distances. Then q’s No-Action region is con-
structed as a rectangle surrounding the centroid of q

with extents being Di distances in the corresponding
axis directions. It remains to show how to compute the

141210 168642

12

10

8

6

4

2

0

12

10

0

6

4

2

04

161412108642

12

10

8

6

4

2

8

6

4

2

0 16141210862

8

S

E

SW

NW

W

N NE

e
DD

s

w

D

y

x

l

l l

C

D
s

n

ew

D

DD

D n

E

NENW N

C

S

W

SESW

Centroid of Q

Y

Y Y

SE

Q Q

Q

a

Q

161412108642

10

12

Y

(b)

(d)(c)

(a)

b e

f

cd

b

f

c

e
a

d

X X

X X

Figure 5. Example for computing the No-Action re-
gion of a query

four Di values.

Figure 4 gives the pseudo code for computing the
No-Action region for a query q. The whole space is
divided into nine non-overlapped regions by q’s bound-
aries and boundary extensions (Step 1 in Figure 4).
These regions are marked as E, S, W , N , C, SE, SW ,
NW and NE.2 Figure 5(a) gives an example with one
moving query Q and six stationary objects a − −f .
Figure 5(b) illustrates how Q’s boundaries and their
extensions divide the data space. Let de(o, q), ds(o, q),
dw(o, q), dn(o, q) be the maximum distance that query
q could move towards the east, south, west, north di-
rections, respectively, before q encounters the object o

that may change q’s answer. We use di(o, q) to refer the
above four values. Then De (Ds, Dw, Dn) of q is the
minimal value of de(o, q) (ds(o, q), dw(o, q), dn(o, q))
among all objects, respectively.

Depending on the region, de(o, q), ds(o, q), dw(o, q)
and dn(o, q) values are computed in different ways.
For an object o, if o lies in region C, de(o, q)(ds(o, q),
dw(o, q), dn(o, q)) is the shortest distance between o

and q’s east (south, west, north) boundary. If o lies
in region W , dw(o, q) is the shortest distance between
o and q’s west boundary, and de(o, q), ds(o, q) and
dn(o, q) are assigned to infinity since o could not be hit
by boundaries of q if q moves towards the east, south or
north directions. Similarly, if o lies in the regions E, S

or N , then de(o, q), ds(o, q) or dn(o, q), respectively, is
the shortest distance between o and q’s east, south or

2The letters E, S, W , N and C indicate the regions in the
east, south, west, north or Central directions, respectively.

5

north boundary, and all other three values are assigned
to infinity. In the case o is in any ”corner” region, i.e.,
in SE, SW , NW or NE, our algorithm computes the
four d(o, q) distances as follows. Assume that there is a
vector l pointing from the vertex of q that is nearest to
o. Then l is the shortest path from q to o. Projecting l

to the x- and y-axes, we get the two projected vectors
lx and ly. If |lx|>|ly|, depending on the direction of
lx, de(o, q) or dw(o, q) value is set to |lx|. If |lx|=|ly|,
depending on the direction of lx and ly, two of the four
di(o, q) values are set to |lx|. All the other unassigned
di(o, q) values are set to infinity. For example, consider
the object d in Figure 5(b). In Figure 5(b), l is the
shortest path from Q to o. Since |lx|>|ly| (3>1) and
the direction for lx is to the west, dw(d, Q) is set to 3
and de(d, Q), ds(d, Q), dn(d, Q) are set to infinity. Ob-
serve that before q’s boundary hits o, q needs to move
at least |lx| along lx’s direction or |ly| along ly’s direc-
tion. By considering only the projected distances only,
the above technique avoids complex computations.

Initially, all the four D values are assigned to in-
finity. (Step 2 in Figure 4). These values are then
updated by the four d(o, q) values of every object(Step
3 in Figure 4). Figure 5(c) illustrates the values of
d(o, q) (in dotted lines) and the final D values (in solid
lines). Then, the No-Action region of q is constructed
as a rectangle surrounding the centroid of q with D dis-
tances as extents in the corresponding axis directions
(Step 4 in Figure 4). In Figure 5(d), the shaded area
represents the No-Action region of Q.

Practically, objects that are far from q have little
effect on q’s No-Action region. Only the objects near
query q need to be processed. An expanded query q′

from q serves as a pre-filter before computing the No-
Action region. Hence, only the objects inside q′ are
considered. In that case the initial D values are set
as the distances between q′ and q in the corresponding
axis directions.

4.3.2 Calculating No-Action Region for Ob-

jects

In the case of stationary queries on moving objects, a
No-Action region is computed for each object. Here
we adapt the algorithm in Section 4.3.1 to compute
No-Action region for object in contrast to queries. We
redefine de(o, q), ds(o, q), dw(o, q) and dn(o, q) to be the
maximum distance that object o can move towards the
east, south, west, and north directions, respectively,
before o needs a check for answer changes with any
continuous query.

Each stationary query q divides the data space into
nine regions. Then, the four di(o, q) values are deter-

o o

20 2 4 6 108 12 14 16

2

4

6

8

10

X

Y

e

s
D

nD
D

Dw D wD D

n
D

e

s

X

12

4 6 8 10 12 14 160

2

4

6

8

10

12

(a) (b)

Y

2

4

Q1
Q

1Q

2Q

Q4
3Q

Q
Q3

Figure 6. Computing the No-Action region of an
object

mined similarly as in Section 4.3.1. The only difference
is that the present dw(o, q) is equivalent to the former
de(o, q) in computing a querys No-Action region be-
cause now o is moving to q, and not the reverse. Sim-
ilarly, the present de(o, q), dn(o, q), ds(o, q) are equiv-
alent to the former dw(o, q), ds(o, q), dn(o, q) values,
respectively. Let De, Ds, Dw, Dn be the minimal
de(o, q), ds(o, q), dw(o, q), dn(o, q) values among the
queries. Then Di values are determined by checking o

against nearby stationary queries. After determining
the D values, the object No-Action region is formed as
a rectangle whose lower-left and upper-right vertexes
are (o.x−Dw, o.y−Ds) and (o.x+De, o.y +Dn). Fig-
ure 6 gives an example that computes the No-Action
region for an object o with four stationary queries Q1

to Q4 surrounding o. The computed four D values
are showed in Figure 6(a) and the No-Action region is
formed as the shaded region in Figure 6(b).

4.3.3 Calculating Adaptive No-Action Re-

gions

A No-Action region is static and is not applicable in
the case of moving queries on moving objects. In this
section, we extend the notion of No-Action region to
Adaptive No-Action Region that can be used in HJP
to identify hot or cold entities where both objects and
queries are moving. Adaptive No-Action regions are
calculated for both objects and queries. For space lim-
itations, we only discuss adaptive query No-Action re-
gions.

An adaptive query No-Action region is the same as
a regular query No-Action region except that the adap-
tive one may change its shape over time. We make an
assumption that the maximum velocity Vmax among
all objects is known. Assume that at time t0, the No-
Action region for a query q is computed using the pro-
cedure NoActionRegionCalc(q, Oset) in Figure 4. Af-
ter some time t0 + ∆t, the No-Action region is invalid
because objects may have moved towards q even when

6

Procedure AdaptiveNARegionCalc(q, Oset, tcurrent)
Begin
//Input: the query q, the object set Oset and current time
tcurrent;
//Output: the updated adaptive No-Action region of q.

//De,s,w,n are defined as in Procedure NoActionRegionCalc(q,

Oset); trecent is the timestamp when the No-Action region of q

was recently computed or updated. trecent equal to 0 means q’s

No-Action region was never computed.

1. If (trecent is 0) then {compute q’s No-Action region as

in Procedure NoActionRegionCalc(q, Oset); store De, Ds,

Dw , Dn; store coordinates of q’s current centroid C; store

trecent = tcurrent; return;}

2. ∆Dmax = Vmax×(tcurrent - trecent).

3. De = De - ∆Dmax; Ds = Ds - ∆Dmax;

Dw = Dw - ∆Dmax; Dn = Dn - ∆Dmax;

4. if any of De, Ds, Dw, Dn ≤ 0, then { q’s No-Action region

is set to null; trecent = 0; return;}

5. q’s No-Action region is updated as the rectangle (C.x - Dw ,

C.y - Ds, C.x + De, C.y + Dn); store De, Ds, Dw , Dn;

store trecent = tcurrent; return;

End.

Figure 7. Pseudo code for computing adaptive query
No-Action region

q did not move.

By changing the size of a No-Action region,
the query No-Action region can be revalidated at
time t+∆t. During the time interval ∆t, the dis-
tance an object moves does not exceed the distance
∆Dmax=Vmax×∆t. This suggests that if the for-
mer No-Action region shrinks at all axis directions by
∆Dmax, we get a conservative No-Action region. Then,
if the centroid of q remains in the updated No-Action
region, q is considered a cold query with respect to the
time t+∆t. q is considered a hot query if q’s centroid
lies out of the updated No-Action region.

The algorithm for computing adaptive query No-
Action regions is listed in Figure 7. Figure 8 gives
an example for computing adaptive No-Action region
for query Q. In Figure 8(a), the query rectangle of Q is
drawn as a solid line and the initial No-Action region
of Q with respect to four moving objects a to d at time
step 0 is drawn as a shaded area. Assume that Vmax is
one axis unit per one time step. Figure 8(b) and Fig-
ure 8(c) show the updated No-Action region at time
steps 1 and 2, respectively. The centroid of Q remains
in the updated No-Action region at time step 1 and 2,
so Q is cold and avoids checking for answer changes.
Figure 8(d) shows that at time step 3, the centroid of
Q has moved out of the updated No-Action region, so

2

4

6

8

10

12

122 4 6 8 10 14

4

0

2

6

8

10

12

2 4 6 10 12 1480

a

d

a

b

d

c c
b

a

d

d

a

b
c

Centroid of Q

Centroid of Q

c
b

Q

QQ

Q

Centroid of Q

Centroid of Q

(b) Snapshot at T = 1(a) Snapshot at T = 0

(c) Snapshot at T = 2 (d) Snapshot at T = 3

X

X

X

X

Y

YY

Y

0

6

0

12

10

8

4

2

12 141086421412108642

12

10

8

6

4

2

Figure 8. Adaptive query No-Action region example

Q becomes hot. In this case, Q must check for answer
updates and recomputes a new No-Action region based
on Qs current position.

5 Performance Evaluation

In this section, we evaluate the performance of poli-
cies and algorithms dealing with continuous queries.
Section 5.1 describes the experimental settings. In Sec-
tion 5.2, we study and compare the performance of HJP
when No-Action region algorithms, validity region [21]
and safe region [18] are utilized. In Section 5.3, we
investigate the performance when the server employs
different join policies.

5.1 Experimental Settings

All experiments are performed on Intel Pentium IV
CPU 1.4GHz with 256MB RAM running Linux 2.4.4.
If not stated otherwise, the data set consists of 100,000
objects and 10,000 continuous range queries uniformly
distributed in the unit square. The maximum velocity
of entities is set to 0.00007 as in [11] and [18]. Query
sizes are assumed to be square regions of side 0.01.
One time step (or cycle) is taken to be 50 seconds as
in [18]. At each time step, a pre-set percentage of ob-
jects and/or queries is randomly chosen to move with
pre-assigned velocities. R-trees are implemented and
built on both objects and queries. For all our exper-
iments, the page size is 2KB and the first two levels
of R-trees are assumed to reside in main memory. We
focus only on the joining performance and ignore the

7

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

R
e
d
u
c
t
i
o
n

r
a
t
e

Cycle

Validity Region
No-Action Region

(a) Reduction Rate

0

0.4

0.8

1.2

1.6

0 2 4 6 8 10 12 14 16 18 20

E
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
)

Cycle

Validity Region
No-Action Region

(b) Execution Time

Figure 9. No-Action region vs Validity region

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

R
e
d
u
c
t
i
o
n

r
a
t
e

Cycle

Safe Region
No-Action Region

(a) Reduction Rate

0

1

2

3

4

0 2 4 6 8 10 12 14 16 18 20

E
x
e
c
u
t
i
o
n

t
i
m
e

(
s
e
c
)

Cycle

Safe Region
No-Action Region

(b) Execution Time

Figure 10. No-Action region vs Safe region

updating costs of R-trees.

5.2 Performance of HJP

First we study the performance when the server is
running HJP policy. Figure 9 compares the perfor-
mance when the query No-Action region algorithm and
the validity region algorithm [21] are respectively used
to identify hot/cold entities. All objects are stationary
while all queries are moving at every cycle. Figure 9(a)
plots the reduction rate comparison up to 20 cycles.
The reduction rate is the fraction of moved entities
that are within their validity region/safe region/No-
Action region. Once a query moves out of No-Action
region/validity region/safe region, it remains outside
of that region from then on. In Figure 9(a), there are
more queries staying in their validity region than in
their No-Action region at every cycle, which is because
the validity region is more ”precise” than No-Action
region. However the difference in reduction rate be-
tween the validity region and No-Action region is lower
than 15% within 20 cycles. Figure 9(b) shows the cu-
mulative execution time when using validity region or
No-Action region for HJP. The execution time con-
sists of the time of joining hot queries with objects and

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

R
e
d
u
c
t
i
o
n

r
a
t
e

Cycle

10K Qs
1K Qs

0.1K Qs

(a) Reduction Rate

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

R
e
d
u
c
t
i
o
n

r
a
t
e

Cycle

V<=0.00007
V<=0.00005
V<=0.00003

(b) Reduction Rate

Figure 11. Adaptive No-Action region for objects

the time of recomputing validity regions/No-Action re-
gions. The cumulative time to compute the validity
region is about six times higher than the time to com-
pute the No-Action region. This is mainly because at
each cycle, queries that have moved out of their valid-
ity region/No-Action region need to recompute a new
validity region/No-Action region, and the computation
cost of a validity region is much higher than that of a
No-Action region.

Figure 10 compares the performance when the server
runs HJP when the object No-Action region algorithm
and the safe region algorithm [18] are used, respec-
tively. Only rectangular safe regions are compared.
All queries are stationary and all objects are moving at
every cycle. Figure 10(a) gives a comparison of the re-
duction rate while the Figure 9(b) gives the cumulative
execution times of HJP. Similar to the comparison with
validity regions, the No-Action region exhibits a reduc-
tion rate near that of safe region and outperforms the
safe region in terms of the total execution time when
used in HJP.

Figure 9 and Figure 10 demonstrate that the No-
Action region is more efficient than validity region and
safe region when used in HJP due to the much smaller
computation cost. So we use No-Action regions with
HJP in later experiments.

Next, we exploit some properties of the adaptive No-
Action region. Figure 11(a) gives the reduction rate of
adaptive No-Action regions for objects when the num-
ber of queries changes from 0.1K to 10K. We observe
that when the number of queries becomes smaller, more
objects are moving inside their adaptive No-Action re-
gions. This is because when less queries exist in the
space, the density of queries becomes lower. Thus, the
initial object No-Action region as well as the updated
No-Action regions are generally larger. An object is
more likely to remain in the No-Action region. Fig-
ure 11(b) studies the relationship between the reduc-
tion rate of adaptive No-Action regions for objects and

8

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

I
/
O

(
*
1
0
0
0
)

Moving percentage of queries(%)

CJP
IJP
HJP

(a) I/O

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

C
P
U

t
i
m
e

(
m
s
)

Moving percentage of queries(%)

IJP
HJP

(b) CPU Time

Figure 12. Moving queries on stationary objects

the maximum velocity Vmax of queries. The number of
queries is set to 1K and Vmax varies between 0.00003 to
0.00007. In Figure 11(b), the adaptive No-Action re-
gion shows better performance when Vmax is smaller.
This is because at each cycle, the No-Action region
shrinks in all directions by ∆Dmax=Vmax×∆t. Given
that ∆t is fixed, a smaller Vmax results in a smaller
∆Dmax and thus a larger No-Action region, so the ob-
ject is more likely to stay in the adaptive No-Action re-
gion longer. The performance of Adaptive No-Action
regions for queries exhibits similar properties and is
omitted here for brevity.

5.3 Performance of Join Policies

We compare the performance when the server runs
the three join policies discussed in this paper. Fig-
ure 12 presents the query evaluation costs in one eval-
uation cycle when the server runs CJP, IJP, or HJP.
The percentage of moving queries at every cycle varies
from 1% to 10% while objects are always static. Both
I/O cost and CPU costs are compared. The I/O cost is
measured as the number of disk I/Os without assuming
any buffering effects, and the CPU time is measured as
the time consumed in the memory. For CJP, an R-tree
based spatial join algorithm is implemented [3]. For
IJP and HJP, each moving (or moving hot) query ex-
ploits the object R-tree once. Figure 12(a) shows the
I/O performance of the three policies. The naive CJP
policy has constant number of I/O regardless the per-
centage of moving queries, where every time the whole
query table is joined with the whole object table. As
the percentage of moving queries increases, the number
of I/Os increases for both IJP and HJP policies. How-
ever, the relative enhancement in performance of HJP
over IJP increases. This is because when more queries
are moving, there are more queries remaining in the
No-Action region and do not need to search the object
R-tree. Figure 12(b) shows the CPU costs for IJP and

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

I
/
O

(
*
1
0
0
0
)

Moving percentage of queries(%)

CJP
IJP
HJP

(a) I/O

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

C
P
U

t
i
m
e

(
m
s
)

Moving percentage of queries(%)

IJP
HJP

(b) CPU Time

Figure 13. Moving queries on moving objects

HJP (CJP is omitted because its CPU cost is about
two orders of magnitude higher than the other two). In
Figure 12(b), even when considering the CPU cost of
recomputing the No-Action region, HJP still has much
lower CPU cost than IJP policy by avoiding many join
operations. The case for stationary queries on moving
objects exhibits the same performance trends and is
omitted for brevity.

Figure 13 presents the performance comparison of
the three policies in the case of moving queries on mov-
ing objects. In Figure 13, the percentage of moving
objects is fixed to 1% and the percentage of moving
queries varies from 1% to 10% at every cycle. For IJP
and HJP, moving (or moving hot) objects (queries) are
used to probe the query (object) R-tree. Figure 13(a)
and Figure 13(b) present the I/O and CPU perfor-
mance, respectively. Again, CPU cost for CJP is omit-
ted. In both Figure 13(a) and (b), HJP has the low-
est I/O and CPU costs because most of moving enti-
ties still remained in their No-Action region and avoid
joining costs. The cost saving between IJP and HJP
results from the effect of adaptive No-Action region.
Experiments using various combinations of percentages
of moving objects and queries are conducted, and their
results are similar to Figure 13. We conclude from the
experiments that IJP outperforms CJP for all com-
binations of moving and stationary queries, and HJP
outperforms both IJP and CJP.

6 Related Work

Most of the research on continuous query process-
ing in spatio-temporal databases focus on efficiently
evaluating one outstanding continuous query (e.g.,
see [13, 19, 20, 22]). Concurrent execution of a set
of outstanding spatio-temporal queries is recently ad-
dressed for centralized [18] and distributed environ-
ments [4, 8]. However, for the centralized environ-

9

ments [18], the focus is only on processing monitor-
ing queries, e.g., stationary queries on moving objects.
Distributed environments [4, 8] assume that the mov-
ing clients have the capability to share the processing
with location-aware servers.

The concept of No-Action region generalizes the con-
cepts of Validity region [21] and Safe region [18]. The
Validity region concept is introduced in [21] as the re-
gion that a moving query can move freely inside with-
out affecting its results. The validity region concept
works only for the case of stationary objects. The Safe
region concept is introduced in [18] as the region that a
moving object can move freely inside without affecting
the result of any outstanding continuous query. The
Safe region concept works only with stationary queries.
A similar concept is recently introduced as the Safe
period [8]. The Safe period is computed for each mov-
ing object with respect to every stationary or moving
query. Our proposed No-Action region concept gener-
alizes the other concepts where it works in the case of
both objects and queries are moving and is scalable to
large numbers of moving objects and queries.

7 Conclusion

Location-aware servers are characterized by large
numbers of moving and stationary objects, and by large
numbers of spatio-temporal queries. In this paper, we
use shared execution to process similar spatio-temporal
continuous queries. By utilizing shared execution, the
problem of processing concurrent continuous spatio-
temporal queries is abstracted as a spatial join prob-
lem. Three query join policies (the Clock-triggered
Join Policy, the Incremental Join Policy and the Hot
Join Policy) are proposed under the shared execution
paradigm. CJP joins all objects with all queries at ev-
ery evaluation time. IJP only checks answer changes
for moved entities and avoid joining between unmoved
objects and unmoved queries. HJP enhances over IJP
by ignoring moved entities that do not affect query an-
swers. The No-Action region is introduced to identify
hot and cold entities in HJP. Efficient algorithms are
proposed to compute No-Action region for both objects
and queries. Experiment evaluation demonstrates No-
Action region is more efficient than validity region [21]
or safe region [18] when used in hot join policy. Ex-
periments comparing different policies show that HJP
outperforms both the CJP and IJP join policies in both
I/O and CPU costs.

References

[1] W. G. Aref, S. E. Hambrusch, and S. Prabhakar. Per-
vasive Location Aware Computing Environments (PLACE).
http://www.cs.purdue.edu/place/.

[2] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter.
Scalable Sweeping-Based Spatial Join. In VLDB, 1998.

[3] T. Brinkhoff, H.-P. Kriegel, and B. Seeger. Efficient Processing
of Spatial Joins Using R-Trees. In P. Buneman and S. Jajodia,
editors, SIGMOD, 1993.

[4] Y. Cai, K. A. Hua, and G. Cao. Processing Range-Monitoring
Queries on Heterogeneous Mobile Objects. In Mobile Data

Management, MDM, 2004.

[5] S. Chandrasekaran and M. J. Franklin. Streaming Queries over
Streaming Data. In VLDB, 2002.

[6] J. Chen, D. J. DeWitt, and J. F. Naughton. Design and Evalu-
ation of Alternative Selection Placement Strategies in Optimiz-
ing Continuous Queries. In ICDE, 2002.

[7] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A
Scalable Continuous Query System for Internet Databases. In
SIGMOD, 2000.

[8] B. Gedik and L. Liu. MobiEyes: Distributed Processing of Con-
tinuously Moving Queries on Moving Objects in a Mobile Sys-
tem. In EDBT, 2004.

[9] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial
Searching. In SIGMOD, 1984.

[10] M. A. Hammad, M. J. Franklin, W. G. Aref, and A. K. Elma-
garmid. Scheduling for shared window joins over data streams.
In VLDB, 2003.

[11] G. Kollios, D. Gunopulos, and V. J. Tsotras. On Indexing Mo-
bile Objects. In PODS, 1999.

[12] D. Kwon, S. Lee, and S. Lee. Indexing the Current Positions
of Moving Objects Using the Lazy Update R-tree. In Mobile

Data Management, MDM, 2002.

[13] I. Lazaridis, K. Porkaew, and S. Mehrotra. Dynamic Queries
over Mobile Objects. In EDBT, 2002.

[14] M.-L. Lee, W. Hsu, C. S. Jensen, and K. L. Teo. Support-
ing Frequent Updates in R-Trees: A Bottom-Up Approach. In
VLDB, 2003.

[15] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Contin-
uously adaptive continuous queries over streams. In SIGMOD,
2002.

[16] M. F. Mokbel, W. G. Aref, S. E. Hambrusch, and S. Prabhakar.
Towards Scalable Location-aware Services: Requirements and
Research Issues. GIS, November 2003.

[17] J. M. Patel and D. J. DeWitt. Partition Based Spatial-Merge
Join. In SIGMOD, 1996.

[18] S. Prabhakar, Y. Xia, D. V. Kalashnikov, W. G. Aref, and S. E.
Hambrusch. Query Indexing and Velocity Constrained Index-
ing: Scalable Techniques for Continuous Queries on Moving Ob-
jects. IEEE Trans. on Computers, 51(10), 2002.

[19] Z. Song and N. Roussopoulos. K-Nearest Neighbor Search for
Moving Query Point. In SSTD, 2001.

[20] Y. Tao, D. Papadias, and Q. Shen. Continuous Nearest Neigh-
bor Search. In VLDB, 2002.

[21] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee.
Location-based Spatial Queries. In SIGMOD, 2003.

[22] B. Zheng and D. L. Lee. Semantic Caching in Location-
Dependent Query Processing. In SSTD, 2001.

10

