Querying Imprecise Data in M oving Object Environments *

Reynold Cheng

Sunil Prabhakar

Dmitri V. Kaashnikov

Department of Computer Science, Purdue University.
Email: {ckcheng,sunil,dvk} @cs.purdue.edu

Abstract

In moving object environments it is infeasible for the
database tracking the movement of objects to store the ex-
act locations of objects at all times. Typically the location
of an object is known with certainty only at the time of the
update. The uncertainty in its location increases until the
next update. In this environment, it is possible for queries
to produce incorrect results based upon old data. However,
if the degree of uncertainty is controlled, then the error of
the answers to certain queries can be reduced. More gen-
erally, query answers can be augmented with probabilistic
estimates of the validity of the answer. In this paper we
study the execution of such probabilistic nearest-neighbor
queries. The imprecision in answers to the queries is an
inherent property of these applications due to uncertainty
in the data, unlike the techniques for approximate nearest-
neighbor processing that trade accuracy for performance.

1 Introduction

Systems for continuous monitoring of moving objects re-
ceive updated locations of objects as they move in space.
Due to limitations of bandwidth and the battery power of
the mobile devices, it is infeasible for the database to con-
tain the exact position of each object at each point in time.
For example, if there is a time delay between the capture of
the location and its receipt at the database, the location val-
ues received by the object may be different from the actual
location values. An inherent property of these applications
is that object locations are updated periodically. Following
an update, the position of the object is unknown until the
next update is received. Under these conditions, the data
in the database is only an estimate of the actual location at
most points in time. This uncertainty affects the accuracy
of the answers to queries.

Due to the inherent uncertainty in the data, it seems im-
possible to provide meaningful answers. However, one can

*Portions of this work were supported by NSF CAREER grant 11S-
9985019, NSF grant 0010044-CCR and NSF grant 9972883

argue that for most moving objects, the locations of objects
cannot change drastically in a short period of time. In fact,
the degree and rate of movement of an object is constrained
in practice. Such information can help solve the problem.
For example, given a point g, we would like to know which
of the two objects, x and y, is the nearest neighbor of g. Sup-
pose we can provide a guarantee that at the time the query is
evaluated, x and y could be no further than some distances
dx and dy from their locations stored in the database. We
can then state with confidence that x is the nearest neighbor
of q if the longest possible distance of x from q is shorter
than the shortest distance of y from g. In general, the uncer-
tainty of the objects may not allow us to determine a single
object as the nearest neighbor. Instead, each object has a
probability of being the nearest neighbor.

The notion of probabilistic answers to queries over un-
certain data was introduced in [3] for range queries, where
the answer consists of objects and the probability that each
object is in the specified range. We extend this idea to an-
swer nearest-neighbor queries — the answer consists of not a
single object that is closest to the object, but a set of objects
each of which could be the nearest neighbor. The probabil-
ity of each object being the nearest-neighbor is evaluated.
The probabilities allow the user to place appropriate confi-
dence in the answer as opposed to having an incorrect an-
swer or no answer at all. Note that, depending upon the
application, one may choose to report only the object with
the highest probability as the nearest neighbor, or only those
objects whose probability exceeds a minimum threshold.

Providing probabilistic answers to nearest-neighbor
queries is much more difficult than range queries. For
range queries, the probability for each object can be deter-
mined independent of the other objects — it depends only
upon the query and the uncertainty of the object in ques-
tion. However, for nearest-neighbor queries, the interplay
between objects is critical, and the probability that an ob-
ject is the closest to the query is greatly influenced by the
position and uncertainty of the other objects. In this pa-
per, we present a novel technique for providing probabilistic
guarantees to answers of nearest-neighbor queries. Our al-
gorithm is generic, in the sense that the geometric shape of

the region where each object is possibly located is not im-
portant. The algorithm can thus be applied to any practical
object movement model.

2 Uncertainty Model and Probabilistic
Queries

One popular model for uncertainty is that at any point in
time, the location of the object is within a certain distance,
d, of its last reported position. If the object moves further
than this distance, it reports its new location and possibly al-
ters the distance d to a new value (known to both the object
and the server) [3]. Another model is one that has no uncer-
tainty [2] where the exact speed and direction of movement
are known. This model requires updates at the server when-
ever the objects speed or direction change.

For the purpose of our discussion, the exact model of
movement is unimportant. All that is required is that at the
time of query execution, the location (with uncertainty) of
each object be known. The uncertainty of an object can be
characterized as follows:

Definition 1: An uncertainty region of an object O; at time
t, denoted by U;(t), is a closed region such that O; can be
found only inside this region.

Definition 2: An uncertainty probability density function
of an object O;, denoted by fj(x,y,t), is a probability density
function of O;’s location (x,y) at time t, that has a value of
0 outside U;i(t).

Notice that since fj(x,y,t) is a probability distribution
function, it has the property that f, o fi (x,y,t)dxdy = 1.
Based on the definitions of U;(t) and fi(x,y,t), we can now
define the probabilistic nearest-neighbor query as follows:
Definition 3: Probabilistic Nearest-Neighbor Query
(PNNQ) For a set of n objects O1,02,...,0, with un-
certainty regions and probability density functions given at
time tp, a PNNQ for a point q is a query that returns a set of
tuples of the form (O;, pi), where p; is the non-zero proba-
bility that O; is the nearest-neighbor of q at time to.

3 Evaluation of PNNQ

In this section we present an algorithm for answering a
PNNQ. Let S = {04,0p,...,0/g} be the set of objects to
be considered by q in evaluating the query, and let R be the
set of tuples returned by the query. The solution presented
here consists of 4 steps: the projection, pruning, bounding
and evaluation phases.

1. Projection Phase. In this phase, for each object O; in S,
we evaluate U;(to) based on the uncertainty model used by
the application.

2. Pruning Phase. Consider two uncertainty regions U1 (to)
and Ux(tp). If the shortest distance of U1 (to) to q is longer

than the longest distance of Ux(tp) to g, we can immediately
conclude that O1 is not an answer to the PNNQ: Even if O,
moves to the point farthest from g, O still has no chance
to be closer than O,. Based on this observation, we can
eliminate objects from S by the algorithm shown below:

1. Fori=1,...,|S| do

(a) Let n; be the shortest distance of Uj(tp) from g
(b) Let f; be the longest distance of U;(tg) from q

2. Letf =mini_y_ gfi
3. Fori=1,...,|S|do

(@) Ifnj> f,then S+ S—O;
4. Return S

After this phase, S contains the (possibly fewer) objects

which must be considered by g. This is the minimal set of
objects which must be considered by the query since any of
them could be the nearest-neighbor of q. Note that with the
use of indexing techniques [1], pruning can be done faster.
3. Bounding Phase. For each elementin S, there is no need
to examine all portions in the uncertainty region. We only
have to look at the regions that are located no farther than
f from g. We do this conceptually by drawing a bound-
ing circle C of radius f, centered at g. Any portion of the
uncertainty region outside C can be ignored.
4. Evaluation Phase. Let Cy(r) denote a circle with center
g and radius r. Let P;(r) be the probability that O; is located
inside Cq(r), and pri(r) be the probability density function
of r such that O; is located at the boundary of Cy(r). The
following is the algorithm for this phase.

1. R«0

2. Sort the elements in S in ascending order of n;, and
rename the sorted elements in S as 01,0z, ...,0/g

3. n|3+1<—f
4. Fori«+ 1to|S|do

(@) pi+0

(b) For j«ito|S|do
i p = i pri(0dr - My ppes (1= P()
i pi<pit+p

(¢) R<RU(Oi,pi)

5. ReturnR

Note that if zero uncertainty is involved i.e., Ui(to) is
the recorded location of O;, the evaluation phase algorithm
needs to be modified. Readers are referred to our techni-
cal report [1] for details on how the above algorithm can
be changed to handle zero uncertainty. In the rest of this
section, we will explain how the evaluation phase works,
assuming non-zero uncertainty.

Evaluation of Pi(r) and pri(r). The computation of P;(r)
is illustrated below:

1. fr<njreturn0

2. Ifr> fi,return 1

3. A+ Overlapping area of Uj(to) and Cq(r)
4. Return [, fi(X,y,to)dxdy

Ifr <n;j, we are assured that Cq(r) cannot cover any part
of Ui(to), so O; cannot lie inside Cqy(r) and Pi(r) equals 0
(Step 1). On the other hand, if r > f;, we can be certain that
Cqy(r) covers all parts of Uj(to) i.e., Oj must be inside Cq(r),
and Pi(r) equals 1 (Step 2). Steps 3 and 4 return a non-zero
Pi(r) value.

The evaluation phase needs another parameter called

pri(r), a probability density function of r where O; lies on
an infinitesimally narrow ring of radius r centered at q. If
Pi(r) is a continuous function, then pr;(r) is the derivative
of pi(r).
Evaluation of p; We can now explain how p; is computed.
Let Prob(r) denote the probability density function that O;
lies on the boundary of Cq(r) and is the nearest-neighbor of
g. Then Formula 1 illustrates the structure of our solution:

f Prob(r) dr Q)

n;

P =

Recall that n; represents the closest possible distance of
Ui(to) from g, while f is the radius of the bounding circle,
beyond which we do not need to consider. Formula 1 ex-
pands Cq(r) with radius nj to f. Therefore, each point in
Ui(to) must lie on some circular ring of width dr, center q
and radius r, where r € [n;, f]. For each ring, the formula
evaluates the probability that (1) O; lies on the ring, and (2)
O; is the nearest-neighbor of q. Essentially, we consider all
the points in Uj(to) that are equidistant from g, and evaluate
the chance that they are nearest to g. Using pr;(r) and Pk(r)
(where k # i), we can change Formula 1 to:

IS
pi = nif pi(r)dr-k:uqéi(l— Pk(r)))

Observe that each 1 — Py(r) term registers the probability
that object Oy (where k # i) lies at a distance greater than r.

Efficient Computation of p; We can improve the com-
putation time of Formula 2. Note that Py(r) has a value of
0 if r < ng. This means when r < ng, 1 —Py(r) is always
1, and Ok has no effect on the computation of p;. Instead
of always considering |S| — 1 objects in the [] term of For-
mula 2 throughout [n;, f], we may actually consider fewer
objects in some ranges of values. First, we sort the objects
according to their shortest distances (n;) from g. Next, the
integration interval [n;, f] is broken down into a number of
intervals with end points defined by the near distances of
the objects. The probability of an object being the closest
neighbor of q is then evaluated for each interval in a way
similar to Formula 2, except that we only consider the ob-
jects with non-zero Py(r). The sum of the probabilities for
these intervals is p;. The final formula for p; is:

s (M onmar [A-R®) O
i = ri(r)ar- — r
P z/h P k=u<;éi “

=

Here we let nig1 be f for notational convenience. Instead
of considering |S| — 1 objects in the [] term, Formula 3 only
handles j — 1 objects in interval [nj,nj + 1]. Formula 3 is
implemented in our evaluation phase algorithm. Step 2 sorts
the objects in S in ascending order of the near distances.
Step 3 assigns the value of f to njg1. Step 4 executes For-
mula 2 once for every object O; in S, and puts the tuples
(Oi, pi) into R.

4 Conclusions

In this paper we studied the execution of probabilis-
tic nearest-neighbor queries over uncertain data for mov-
ing objects. We define a generic model of uncertainty, and
then present algorithms for computing these queries for this
model. To the best of our knowledge, with the exception of
[3] which addresses probabilistic range queries for objects
moving in a straight lines with fixed speed, there is no work
on probabilistic queries over uncertain data. We address the
problem of the more complicated nearest-neighbor queries
under a more relaxed model. A detailed version of this pa-
per including specifics for two common uncertainty models
and implementation details is available [1].

References

[1] R. Cheng, S. Prabhakar, and D. V. Kalashnikov. Querying
imprecise datain moving object environments. In TR 02-020,
Purdue University, Oct. 2002.

[2] D.Pfoser and C.S.Jensen. Querying the trajectories of on-line
mobile objects. In MobiDE 2001, pages 66—73, 2001.

[3] O.Wolfson, P. A. Sistla, S. Chamberlain, and Y. Yesha. Up-
dating and querying databases that track mobile units. Dis-
tributed and Parallel Databases, 7(3):257-387, 1999.

