
Evaluating Probabilistic Queries over Imprecise Data ∗

Reynold Cheng Dmitri V. Kalashnikov Sunil Prabhakar
Department of Computer Science, Purdue University

Email: {ckcheng,dvk,sunil}@cs.purdue.edu

http://www.cs.purdue.edu/place/

ABSTRACT
Many applications employ sensors for monitoring entities
such as temperature and wind speed. A centralized database
tracks these entities to enable query processing. Due to con-
tinuous changes in these values and limited resources (e.g.,
network bandwidth and battery power), it is often infeasi-
ble to store the exact values at all times. A similar situation
exists for moving object environments that track the con-
stantly changing locations of objects. In this environment,
it is possible for database queries to produce incorrect or
invalid results based upon old data. However, if the degree
of error (or uncertainty) between the actual value and the
database value is controlled, one can place more confidence
in the answers to queries. More generally, query answers
can be augmented with probabilistic estimates of the va-
lidity of the answers. In this paper we study probabilistic
query evaluation based upon uncertain data. A classifica-
tion of queries is made based upon the nature of the result
set. For each class, we develop algorithms for computing
probabilistic answers. We address the important issue of
measuring the quality of the answers to these queries, and
provide algorithms for efficiently pulling data from relevant
sensors or moving objects in order to improve the quality of
the executing queries. Extensive experiments are performed
to examine the effectiveness of several data update policies.

1. INTRODUCTION
In many applications, sensors are used to continuously

track or monitor the status of an environment. Readings
from the sensors are sent back to the application, and deci-
sions are made based on these readings. For example, tem-
perature sensors installed in a building are used by a central
air-conditioning system to decide whether the temperature
of any room needs to be adjusted or to detect other prob-
lems. Sensors distributed in the environment can be used to

∗ Portions of this work were supported by NSF CAREER
grant IIS-9985019, NSF grant 0010044-CCR, NSF grant
9988339-CCR and Intel PhD Fellowship

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2003, June 9-12, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

detect if hazardous materials are present and how they are
spreading. In a moving object database, objects are con-
stantly monitored and a central database may collect their
updated locations.

The framework for many of these applications includes
a database or server to which the readings obtained by the
sensors or the locations of the moving objects are sent. Users
query this database in order to find information of interest.
Due to several factors such as limited network bandwidth
to the server and limited battery power of the mobile de-
vice, it is often infeasible for the database to contain the
exact status of an entity being monitored at every moment
in time. An inherent property of these applications is that
readings from sensors are sent to the central server periodi-
cally. In particular, at any given point in time, the recorded
sensor reading is likely to be different from the actual value.
The correct value of a sensor’s reading is known only when
an update is received. Under these conditions, the data in
the database is only an estimate of the actual state of the
environment at most points in time.

Bound for Current TemperatureRecorded Temperature

Possible Current Temperature

(c)(a) (b)

 x x y x y

x0

 y

y0y0

x0

y0

y1

x0

x1

Figure 1: Example of sensor data and uncertainty.

This inherent uncertainty of data affects the accuracy of
answers to queries. Figure 1(a) illustrates a query that de-
termines the sensor (either x or y) that reports the lower
temperature reading. Based upon the data available in the
database (x0 and y0), the query returns “x” as the result.
In reality, the temperature readings could have changed to
values x1 and y1, in which case “y” is the correct answer.
This example demonstrates that the database does not al-
ways truly capture the state of the external world, and the
value of the sensor readings can change without being rec-

ognized by the database. Sistla et. al [12] identify this type
of data as a dynamic attribute, whose value changes over
time even if it is not explicitly updated in the database. In
this example, because the exact values of the data items are
not known to the database between successive updates, the
database incorrectly assumes that the recorded value is the
actual value and produces incorrect results.

Given the uncertainty of the data, providing meaningful
answers seems to be a futile exercise. However, one can ar-
gue that in many applications, the values of objects cannot
change drastically in a short period of time; instead, the de-
gree and/or rate of change of an object may be constrained.
For example, the temperature recorded by a sensor may not
change by more than a degree in 5 minutes. Such informa-
tion can help solve the problem. Consider the above example
again. Suppose we can provide a guarantee that at the time
the query is evaluated, the actual values monitored by x and
y could be no more than some deviations, dx and dy, from
x0 and y0, respectively, as shown in Figure 1(b). With this
information, we can state with confidence that x yields the
minimum value.

In general, the uncertainty of the objects may not allow us
to identify a single object that has the minimum value. For
example, in Figure 1(c), both x and y have the possibility of
recording the minimum value since the reading of x may not
be lower than that of y. A similar situation exists for other
types of queries such as those that request a numerical value
(e.g., “What is the lowest temperature reading?”). For these
queries too, providing a single value may be infeasible due to
the uncertainty in each object’s value. Instead of providing
a definite answer, the database can associate different levels
of confidence with each answer (e.g., as a probability) based
upon the uncertainty of the queried objects.

The notion of probabilistic answers to queries over uncer-
tain data has not been well studied. Wolfson et. al briefly
touched upon this idea [14] for the case of range queries
in the context of a moving object database. The objects
are assumed to move in straight lines with a known aver-
age speed. The answers to the queries consist of objects’
identities and the probability that each object is located in
the specified range. Cheng et. al [3] considered the problem
of answering probabilistic nearest neighbor queries under a
moving-object database model. In this paper we extend
the notion of probabilistic queries to cover a much broader
class of queries. The class of queries considered includes
aggregate queries that compute answers over a number of
objects. We also discuss the importance of the nature of
answer requested by a query (identity of object versus the
value). For example, we show that there is a significant dif-
ference between the following two queries: “Which object
has the minimum temperature?” versus “What is the min-
imum temperature?”. Furthermore, we relax the model of
uncertainty so that any reasonable model can be used by the
application. Our techniques are applicable to the common
models of uncertainty that have been proposed elsewhere.

The probabilities in the answer allow the user to place
appropriate confidence in the answer as opposed to having
an incorrect answer or no answer at all. Depending upon
the application, one may choose to report only the object
with the highest probability as having the minimum value,
or only those objects whose probability exceeds a minimum
probability threshold. Our proposed work will be able to
work with any of these models.

Answering aggregate queries (such as minimum or aver-
age) is much more challenging than range queries, especially
in the presence of uncertainty. The answer to a probabilistic
range query consists of a set of objects along with a non-zero
probability that the object lies in the query range. Each ob-
ject’s probability is determined by the uncertainty of the
object’s value and the query range. However, for aggregate
queries, the interplay between multiple objects is critical.
The resulting probabilities are greatly influenced by the un-
certainty of attribute values of other objects. For example,
in Figure 1(c) the probability that x has the minimum value
is affected by the relative value and bounds for y.

A probabilistic answer also reflects a certain level of uncer-
tainty that results from the uncertainty of the queries’ ob-
ject values. If the uncertainty of all (or some) of the objects
was reduced (or eliminated completely), the uncertainty of
the result improves. For example, without any knowledge
about the value of an object, one could arguably state that
it falls within a query range with 50% probability. On the
other hand, if the value is known perfectly, one can state
with 100% confidence that the object either falls within or
outside the query range. Thus the quality of the result is
measured by degree of ambiguity in the answer. We there-
fore need metrics to evaluate the quality of a probabilistic
answer. We propose metrics for evaluating the quality of
the probabilistic answers. As we shall see, it turns out that
different metrics are suitable for different classes of queries.

It is possible that the quality of a query result may not be
acceptable for certain applications – a more definite result
may be desirable. Since the poor quality is directly related
to the uncertainty in the object values, one possibility for
improving the results is to delay the query until the quality
improves. However this is an unreasonable solution due to
the increased query response time. Instead, the database
could request updates from all objects (e.g., sensors) – this
solution incurs a heavy load on the resources. In this paper,
we propose to request updates only from objects that are be-
ing queried, and furthermore those that are likely to improve
the quality of the query result. We present several heuristics
and an experimental evaluation. These policies attempt to
optimize the use of the constrained resource (e.g., network
bandwidth to the server) to improve average query quality.

It should be noted that the imprecision in the query an-
swers is inherent in this problem (due to uncertainty in the
actual values of the dynamic attribute), in contrast to the
problem of providing approximate answers for improved per-
formance wherein accuracy is traded for efficiency.

To sum up, the contributions of this paper are:

• A broad classification of probabilistic queries over un-
certain data, based upon a flexible model of uncer-
tainty;

• Techniques for evaluating probabilistic queries, includ-
ing optimizations;

• Metrics for quantifying the quality of answers to prob-
abilistic queries;

• Policies for improving the quality of answers to prob-
abilistic queries under resource constraints.

The rest of this paper is organized as follows. In Sec-
tion 2 we describe a general model of uncertainty, and the
concept of probabilistic queries. Sections 3 and 4 discuss

the algorithms for evaluating different kinds of probabilistic
queries. Section 5 discusses quality metrics that are appro-
priate to these queries. Section 6 proposes update policies
that improve the query answer quality. We present an ex-
perimental evaluation of the effectiveness of these update
policies in Section 7. Section 8 discusses related work and
Section 9 concludes the paper.

2. PROBABILISTIC QUERIES
In this section, we describe the model of uncertainty con-

sidered in this paper. This is a generic model, as it can ac-
commodate a large number of application paradigms. Based
on this model, we introduce a number of probabilistic queries.

2.1 Uncertainty Model
One popular model for uncertainty for a dynamic attribute

is that at any point in time, the actual value is within a cer-
tain bound, d of its last reported value. If the actual value
changes further than d, then the sensor reports its new value
to the database and possibly changes d. For example, [14]
describes a moving-object model where the location of an
object is a dynamic attribute, and an object reports its lo-
cation to the server if its deviation from the last reported
location exceeds a threshold. Another model assumes that
the attribute value changes with known speed, but the speed
may change each time the value is reported. Other models
include those that have no uncertainty. For example, in [4],
the exact speed and direction of movement of each object are
known. This model requires updates at the server whenever
an object’s speed or direction changes.

For the purpose of our discussion, the exact model of un-
certainty is unimportant. All that is required is that at the
time of query execution the range of possible values of the
attribute of interest are known. We are interested in queries
over some dynamic attribute, a, of a set of database objects,
T . Also, we assume that a is a real-valued attribute, al-
though our models and algorithms can be extended to other
domains e.g., integer and coordinates easily. We denote the
ith object of T by Ti and the value of attribute a of Ti by Ti.a
(where i = 1, . . . , |T |). Throughout this paper, we treat Ti.a
as a continuous random variable. The uncertainty of Ti.a
can be characterized by the following two definitions (we use
pdf to abbreviate the term “probability density function”):
Definition 1: An uncertainty interval of Ti.a at time
instant t, denoted by Ui(t), is an interval [li(t), ui(t)] such
that li(t) and ui(t) are real-valued functions of t, and that
the conditions ui(t) ≥ li(t) and Ti.a ∈ [li(t), ui(t)] hold.
Definition 2: An uncertainty pdf of Ti.a at time t, de-
noted by fi(x, t), is a pdf of random variable Ti.a, such that
fi(x, t)=0 if x /∈ Ui(t).

Notice that since fi(x, t) is a pdf, it has the property that� ui(t)

li(t)
fi(x, t)dx = 1. The above definition specifies the un-

certainty of Ti.a at time instant t in terms of a closed in-
terval and the probability distribution of Ti.a. Notice that
this definition does not specify how the uncertainty interval
evolves over time, and what the nature of the pdf fi(x, t)
is inside the uncertainty interval. The only requirement for
fi(x, t) is that its value is 0 outside the uncertainty inter-
val. Usually, the scope of uncertainty is determined by the
last recorded value, the time elapsed since its last update,
and some application-specific assumptions. For example,
one may decide that UA(t) contains all the values within a

distance of (t−tupdate)×v from its last reported value, where
tupdate is the time that the last update was obtained, and v
is the maximum rate of change of the value. One may also
specify that Ti.a is uniformly distributed inside the interval,
i.e., fi(x, t) = 1/[ui(t) − li(t)] for x ∈ Ui(t), assuming that
ui(t) > li(t). It should be noted that a uniform distribution
represents the worst-case uncertainty (highest entropy) over
a given interval.

2.2 Classification of Probabilistic Queries
We now present a classification of probabilistic queries

and examples of common representative queries for each
class. We identify two important dimensions for classifying
database queries. First, queries can be classified according
to the nature of the answers. An entity-based query returns
a set of objects that satisfy the condition of the query. A
value-based query returns a single value, examples of which
include querying the value of a particular sensor, and com-
puting the average value of a subset of sensor readings. The
second property for classifying queries is whether aggrega-
tion is involved. We use the term aggregation loosely to
refer to queries where interplay between objects determines
the result. In the following definitions, we use the following
naming convention: the first letter is either E (for entity-
based queries) or V (for value-based queries).

1. Value-based Non-Aggregate Class
This is the simplest type of query in our discussions. It re-

turns an attribute value of an object as the only answer, and
involves no aggregate operators. One example of a proba-
bilistic query for this class is the VSingleQ:
Definition 3: Probabilistic Single Value Query
(VSingleQ) Given an object Tk, a VSingleQ returns l, u,
{p(x) | x ∈ [l, u]} where l, u ∈ � with l ≤ u, and p(x) is the
pdf of Tk.a such that p(x) = 0 when x < l or x > u.

An example of VSingleQ is “What is the wind speed recorded
by sensor s22?” Observe how this definition expresses the an-
swer in terms of a bounded probabilistic value, instead of a
single value. Also notice that

� u

l
p(x)dx = 1.

2. Entity-based Non-Aggregate Class
This type of query returns a set of objects, each of which

satisfies the condition(s) of the query, independent of other
objects. A typical example of this class is the ERQ:
Definition 4: Probabilistic Range Query (ERQ) Given
a closed interval [l, u], where l, u ∈ � and l ≤ u, an ERQ
returns a set of tuples (Ti, pi), where pi is the non-zero prob-
ability that Ti.a ∈ [l, u].

An ERQ returns a set of objects, augmented with proba-
bilities, that satisfy the query interval.

3. Entity-based Aggregate Class
The third class of query returns a set of objects which

satisfy an aggregate condition. We present the definitions
of three typical queries for this class. The first two return
objects with the minimum or maximum value of Ti.a:
Definition 5: Probabilistic Minimum (Maximum) Query
(EMinQ (EMaxQ)) An EMinQ (EMaxQ) returns a set
R of tuples (Ti, pi), where pi is the non-zero probability that
Ti.a is the minimum (maximum) value of a among all ob-
jects in T .

A one-dimensional nearest neighbor query, which returns
object(s) having a minimum absolute difference of Ti.a and

Query Class Entity-based Value-based

Aggregate ENNQ, EMinQ, EMaxQ VAvgQ, VSumQ, VMinQ, VMaxQ
Non-Aggregate ERQ VSingleQ
Answer (Probabilistic) {(Ti, pi) | 1 ≤ i ≤ |T | ∧ pi > 0} l, u, {p(x) | x ∈ [l, u]}
Answer (Non-probabilistic) {Ti | 1 ≤ i ≤ |T |} x | x ∈ �

Table 1: Classification of Probabilistic Queries.

a given value q, is also defined:
Definition 6: Probabilistic Nearest Neighbor Query
(ENNQ) Given a value q ∈ �, an ENNQ returns a set R
of tuples (Ti, pi), where pi is the non-zero probability that
|Ti.a− q| is the minimum among all objects in T .

Note that for all the queries we defined in this class the
condition

�
Ti∈R pi = 1 holds.

4. Value-based Aggregate Class
The final class involves aggregate operators that return a

single value. Example queries for this class include:
Definition 7: Probabilistic Average (Sum) Query
(VAvgQ (VSumQ)) A VAvgQ (VSumQ) returns l, u,
{p(x) | x ∈ [l, u]}, where l, u ∈ � with l ≤ u, X is a random
variable for the average (sum) of the values of a for all ob-
jects in T , and p(x) is a pdf of X satisfying p(x) = 0 if x < l
or x > u.
Definition 8: Probabilistic Minimum (Maximum) Value
Query (VMinQ (VMaxQ)) A VMinQ (VMaxQ) returns
l, u, {p(x) | x ∈ [l, u]} where l, u ∈ � with l ≤ u, X is a
random variable for minimum (maximum) value of a among
all objects in T , and p(x) is a pdf of X satisfying p(x) = 0
if x < u or x > l.

All these aggregate queries return answers in the form of a
probabilistic distribution p(x) in a closed interval [l, u], such
that

� u

l
p(x)dx = 1.

Table 1 summarizes the basic properties of the probabilis-
tic queries discussed above. For illustrating the difference
between probabilistic and non-probabilistic queries, the last
row of the table lists the forms of answers expected if prob-
ability information is not augmented to the result of the
queries e.g., the non-probabilistic version of EMaxQ is a
query that returns object(s) with maximum values based
only on the recorded values of Ti.a. It can be seen that
the probabilistic queries provide more information on the
answers than their non-probabilistic counterparts.

Recorded Value

Bound for

Current Value

q

l

u
s2

s1

s4

s3

Figure 2: Illustrating the probabilistic queries.

Example. We illustrate the properties of the probabilis-
tic queries with a simple example. In Figure 2, readings of
four sensors s1, s2, s3 and s4, each with a different uncer-
tainty interval, are being queried at time t0. Suppose we
have a set T of four database objects to record the infor-
mation of these sensors, and each object has an attribute
a to store the sensor reading. Further, assume that for
each reading, its actual value has an even chance of be-
ing located at every point in its uncertainty interval, and
the actual value has no chance of lying outside the inter-
val i.e., fs1(x, t0), fs2(x, t0), fs3(x, t0), fs4(x, t0) are bounded
uniform distribution functions. Also let the uncertainty in-
tervals from the readings of s1, s2, s3 and s4 at time t0
be [ls1 , us1], [ls2 , us2], [ls3 , us3] and [ls4 , us4] respectively. A
VSingleQ applied on s4 at time t0 will give us the result:
ls4 , us4 , 1/(us4 − ls4). When an ERQ (represented by the
interval [l, u]) is invoked at time t0 to find out how likely
each reading is inside [l, u], we see that the reading of s1

is always inside the interval. It therefore has a probabil-
ity of 1 for satisfying the ERQ. The reading of s4 is al-
ways outside the rectangle, thus it has a probability of 0 of
being located inside [l, u]. Since Us2(t0) and Us3(t0) par-
tially overlap [l, u], s2 and s3 have some chance of satisfy-
ing the query. In this example, the result of the ERQ is:
{(s1, 1), (s2, 0.7), (s3, 0.4)}.

In the same figure, an EMinQ is issued at time t0. We ob-
serve that s1 has a high probability of having the minimum
value, because a large portion of the Us1(t0) has a smaller
value than others. The reading of s1 has a high chance of
being located in this portion because fs1(x, t) is a uniform
distribution. The reading of s4 does not have any chance of
yielding the minimum value, since none of the values inside
Us4(t0) is smaller than others. The result of the EMinQ
for this example is: {(s1, 0.7), (s2, 0.2), (s3, 0.1)}. On the
other hand, an EMaxQ will return {(s4, 1)} as the only re-
sult, since every value in Us4(t0) is higher than any readings
from any other sensors, and we are assured that s4 yields
the maximum value. An ENNQ with a query value q is also
shown, where the results are: {(s1, 0.2), (s2, 0.5), (s3, 0.3)}.

When a value-based aggregate query is applied to the sce-
nario in Figure 2, a bounded pdf p(x) is returned. If a
VSumQ is issued, the result is a distribution in [ls1 + ls2 +
ls3 + ls4 , us1 + us2 + us3 + us4]; each x in this interval is the
sum of the readings from the four sensors. The result of a
VAvgQ is a pdf in [(ls1 + ls2 + ls3 + ls4)/4, (us1 +us2 +us3 +
us4)/4]. The results of VMinQ and VMaxQ are probabil-
ity distributions in [ls1 , us1] and [ls4 , us4] respectively, since
only the values in these ranges have a non-zero probability
value of satisfying the queries.

3. EVALUATING ENTITY- QUERIES
In this section we examine how the probabilistic entity-

based queries introduced in the last section can be answered.
We start with the discussion of an ERQ, followed by a more

complex algorithm for answering an ENNQ. We also show
how the algorithm for answering an ENNQ can be easily
changed for EMinQ and EMaxQ.

3.1 Evaluation of ERQ
Recall that ERQ returns a set of tuples (Ti, pi) where pi is

the non-zero probability that Ti.a is within a given interval
[l, u]. Let R be the set of tuples returned by the ERQ.
The algorithm for evaluating the ERQ at time instant t is
described in Figure 3.

1. R← ∅
2. for i← 1 to |T | do

(a) OI ← Ui(t) ∩ [l, u]
(b) if (width of OI 	= 0) then

i. pi ←
�

OI
fi(x, t)dx

ii. if pi 	= 0 then R← R ∪ (Ti, pi)
3. return R

Figure 3: ERQ Algorithm.

In this algorithm, each object in T is checked once. To
evaluate pi for Ti, we first compute the amount overlapping
interval OI of the two intervals: Ui(t) and [l, u] (Step 2a). If
OI has zero width, we are assured that Ti.a does not lie in
[l, u], and by the definition of ERQ, Ti will not be included in
the result. Otherwise, we calculate the probability that Ti.a
is inside [l, u] by integrating fi(x, t) over OI , and putting the
result into R if pi 	= 0 (Step 2b). The set of tuples (Ti, pi),
stored in R, are returned in Step 3.

3.2 Evaluation of ENNQ

U4 U4

n4n3

U3

U1

n1

U4

−10T3.a
T4.a −15

T5.a

f

f

f

f

f

T1.a 20

(a) (b)

q

(c) (d)

U1

n1

n3

U3

n4
q

q
n4n3

T5.a

q 10

60

T4.a
T3.a

U3

n5

n1
T1.a

U1
T2.a

n2

U2

U5

T2.a 25

n2

U2

n2

U2

Figure 4: Phases of the ENNQ algorithm.

Processing an ENNQ involves evaluating the probability
of the attribute a of each object Ti being the closest to
(nearest-neighbor of) a value q. In general, this query can

be applied to multiple attributes, such as coordinates. In
particular, it could be a nearest-neighbor query for moving
objects. Unlike the case of ERQ, we can no longer determine
the probability for an object independent of the other ob-
jects. Recall that an ENNQ returns a set of tuples (Ti, pi)
where pi denotes the non-zero probability that Ti has the
minimum value of |Ti.a − q|. Let S be the set of objects
to be considered by the ENNQ, and let R be the set of tu-
ples returned by the query. The algorithm presented here
consists of 4 phases: projection, pruning, bounding and eval-
uation. The first three phases filter out objects in T whose
values of a have no chance of being the closest to q. The
final phase, evaluation, is the core of our solution: for every
object i that remains after the first three phases, the prob-
ability that Ti.a is the nearest to q is computed.

1. Projection Phase.
In this phase, the uncertainty interval of each Ti.a is com-

puted based on the application’s uncertainty model. Fig-
ure 4(a) shows the last recorded values of Ti.a in S at time
t0, and the uncertainty intervals are shown in Figure 4(b).

1. for i← 1 to |S| do
(a) if (q ∈ Ui(t)) then Ni ← q
(b) else

i. if (|q − li(t)| < |q − ui(t)|) then Ni ← li(t)
ii. else Ni ← ui(t)

(c) if (|q − li(t)| < |q − ui(t)|) then Fi ← ui(t)
(d) else Fi ← li(t)

2. Let f = mini=1,...,|S||Fi − q| and m = |S|
3. for i← 1 to m do

if (|Ni − q| > f) then S ← S − Ti

4. return S

Figure 5: Algorithm for the Pruning Phase.

2. Pruning Phase.
Consider two uncertainty intervals U1(t) and U2(t). If the

smallest difference between U1(t) and q is longer than the
largest difference between U2(t) and q, we can immediately
conclude that T1 is not a part of the answer to the ENNQ:
even if the actual value of T2.a is as far as possible from q,
T1.a still has no chance to be closer to q than T2.a. Based
on this observation, we can eliminate objects from T by the
algorithm shown in Figure 5. In this algorithm, Ni and Fi

record the closest and farthest possible values of Ti.a to q,
respectively. Steps 1(a) to 1(d) assign proper values to Ni

and Fi. If q is inside interval Ui(t), then Ni is taken as point
q itself. Otherwise, Ni is either li(t) or ui(t), depending on
which value is closer to q. Fi is assigned in a similar manner.
After this phase, S contains the minimal set of objects which
must be considered by the query; any of them can have a
value of Ti.a closest to q. Figure 4(b) illustrates how this
phase removes T5, which is irrelevant to the ENNQ, from S.

3. Bounding Phase.
For each object in S, we only need to look at its portion of

uncertainty interval located no farther than f from q. We do
this conceptually by drawing a bounding interval B of length
2f , centered at q. Any portion of the uncertainty interval
outside B can be ignored. Figure 4(c) shows a bounding

interval with length 2f , and Figure 4(d) illustrates the result
of this phase.

The phases we have just described attempt to reduce the
number of objects to be evaluated, and derive tight bounds
on the range of values to be considered.

4. Evaluation Phase.
Based on S and the bounding interval B, our aim is to

calculate, for each object in S, the probability that it is
the nearest neighbor of q. In the pruning phase, we have
already found Ni, the point in Ui(t) nearest to q. Let us call
|Ni − q| the near distance of Ti, or ni. Denote the interval
with length 2r, centered at q by Iq(r). Also, let Pi(r) be
the probability that Ti is located inside Iq(r), and pri(r) be
the pdf of Ri, where Ri = |Ti.a − q|. Figure 6 presents the
algorithm for this phase.

Note that if Ti.a has no uncertainty i.e., Ui(t) is exactly
equal to Ti.a, the evaluation phase algorithm needs to be
modified. Our technical report [2] discusses how this algo-
rithm can be changed to adapt to such situations. In the
rest of this section, we will explain how the evaluation phase
works, assuming non-zero uncertainty.

1. R← ∅
2. Sort the elements in S in ascending order of ni, and

rename the sorted elements in S as T1, T2, . . . , T|S|
3. n|S|+1 ← f
4. for i← 1 to |S| do

(a) pi ← 0
(b) for j ← i to |S| do

i. p← � nj+1
nj

pri(r) ·�j
k=1∧k �=i(1− Pk(r)) dr

ii. pi ← pi + p
(c) R← R ∪ (Ti, pi)

5. return R

Figure 6: Algorithm for the Evaluation Phase.

Evaluation of Pi(r) and pri(r) To understand how the
evaluation phase works, it is crucial to know how to obtain
Pi(r). As introduced before, Pi(r) is the probability that
Ti.a is located inside Iq(r). We illustrate the evaluation of
Pi(r) in Figure 7.

1. if r ≤ ni return 0
2. if r ≥ |q − Fi|, return 1
3. Oi ← Ui(t) ∩ Iq(r)
4. return

�
Oi

fi(x, t)dx

Figure 7: Computation of Pi(r).

We also need to compute pri(r) – a pdf denoting Ti.a
equals either the upper or lower bound of Iq(r). If Pi(r) is a
differentiable function of r, pri(r) is the derivative of Pi(r).
Evaluation of pi. We can now explain how pi, the proba-
bility that Ti.a is closest to q, is computed. Let Prob(r) be
the probability that (1) |Ti.a − q| = r and (2) |Ti.a − q| =
mink=1,...,|S||Tk.a− q|. Then Equation 1 outlines the struc-

ture of our solution:

pi =

� f

ni

Prob(r) dr (1)

The correctness of Equation 1 depends on whether it can
correctly consider the probability that Ti.a is the nearest
neighbor for every possible value in the interval Ui(t), and
then sum up all those probability values. Recall that ni

represents the shortest distance from Ui(t) to q, while [q −
f, q + f] is the bounding interval B, beyond which we do
not need to consider. Equation 1 expands the width of the
interval Iq(r) from 2ni to 2f . Each value in Ui(t) must
therefore lie on either the upper bound or the lower bound
of some Iq(r), where r ∈ [ni, f]. In other words, by gradually
increasing the width of Iq(r), we visit every value x in Ui(t)
and evaluates the probability that if Ti.a = x, then Ti.a is
the nearest-neighbor of q. We can rewrite the above formula
by using pri(r) and Pk(r) (where k 	= i), as follows:

pi =

� f

ni

Prob(|Ti.a− q| = r) · Prob(|Tk.a− q| > r)dr (2)

=

� f

ni

pi(r) ·
|S|�

k=1∧k �=i

(1− Pk(r)) dr (3)

Observe that each 1 − Pk(r) term registers the probability
that Tk.a is farther from q than Ti.a.
Efficient Computation of pi The computation time for
pi can be improved. Note that Pk(r) has a value of 0 if
r ≤ nk. This means when r ≤ nk, 1−Pk(r) is always 1, and
Tk has no effect on the computation of pi. Instead of always
considering |S| − 1 objects in the

�
term of Equation 3

throughout [ni, f], we may actually consider fewer objects
in some ranges, resulting in a better computation speed.

This can be achieved by first sorting the objects according
to their near distance from q. Next, the integration interval
[ni, f] is broken down into a number of intervals, with end
points defined by the near distance of the objects. The prob-
ability of an object having a value of a closest to q is then
evaluated for each interval in a way similar to Equation 3,
except that we only consider Tk.a with non-zero Pk(r). Then
pi is equal to the sum of the probability values for all these
intervals. The final formula for pi becomes:

pi =

|S|�
j=i

� nj+1

nj

pri(r) ·
j�

k=1∧k �=i

(1− Pk(r)) dr (4)

Here we let n|S|+1 be f for notational convenience. In-
stead of considering |S| − 1 objects in the

�
term, Equa-

tion 4 only handles j−1 objects in interval [nj , nj +1]. This
optimization is shown in Figure 6.
Example Let us use our previous example to illustrate
how the evaluation phase works. After 4 objects T1, . . . , T4

were captured (Figure 4(d)), Figure 8 shows the result after
these objects have been sorted in ascending order of their
near distance, with the r-axis being the absolute difference
of Ti.a from q, and n5 equals f . The probability pi of each
Ti.a being the nearest neighbor of q is equal to the integral
of the probability that Ti.a is the nearest neighbor over the
interval [ni, n5].

Let us see how we evaluate uncertainty intervals when
computing p2. Equation 4 tells us that p2 is evaluated by
integrating over [n2, n5]. Since objects are sorted according

U4

U3

U2

U1

n2n1 n n3 40 5n = f
r

Figure 8: Illustrating the evaluation phase.

to ni, we do not need to consider all 5 of them through-
out [n2, n5]. Instead, we split [n2, n5] into 3 sub-intervals,
namely [n2, n3], [n3, n4] and [n4, n5], and consider possibly
fewer uncertainty intervals in each sub-interval. For exam-
ple, in [n2, n3], only U1 and U2 need to be considered.

3.3 Evaluation of EMinQ and EMaxQ
We can treat EMinQ and EMaxQ as special cases of ENNQ.

In fact, answering an EMinQ is equivalent to answering an
ENNQ with q equal to the minimum lower bound of all
Ui(t) in T . We can therefore modify the ENNQ algorithm
to solve an EMinQ as follows: after the projection phase, we
evaluate the minimum value of li(t) among all uncertainty
intervals. Then we set q to that value. We then obtain the
results to the EMinQ after we execute the rest of the ENNQ
algorithm. Solving an EMaxQ is symmetric to solving an
EMinQ in which we set q to the maximum of ui(t) after the
projection phase of ENNQ.

4. EVALUATING VALUE- QUERIES
In this section, we discuss how to answer the probabilistic

value-based queries defined in Section 2.2.

4.1 Evaluation of VSingleQ
Evaluating a VSingleQ is simple, since by the definition

of VSingleQ, only one object, Tk, needs to be considered.
Suppose VSingleQ is executed at time t. Then the answer
returned is the uncertainty information of Tk.a at time t,
i.e., lk(t), uk(t) and {fk(x, t)|x ∈ [lk(t), uk(t)]}.
4.2 Evaluation of VSumQ and VAvgQ

Let us first consider the case where we want to find the
sum of two uncertainty intervals [l1(t), u1(t)] and [l2(t), u2(t)]
for objects T1 and T2. Notice that the values in the an-
swer that have non-zero probability values lie in the range
[l1(t) + l2(t), u1(t) + u2(t)]. For any x inside this interval,
p(x) (the pdf of random variable X = T1.a + T2.a) is:

� min{u1(t),x−l2(t)}

max{l1(t),x−u2(t)}
f1(y, t)f2(x− y, t)dy (5)

The lower (upper) bound of the integration interval are eval-
uated according to the possible minimum (maximum) value
of T1.a.

We can generalize this result for summing the uncertainty
intervals of |T | objects by picking two intervals, summing
them up using the above formula, and using the resulting
interval to add to another interval. The process is repeated

until we finish adding all the intervals. The resulting interval
should have the following form:

[

|T |�
i=1

li(t),

|T |�
i=1

ui(t)]

VAvgQ is essentially the same as VSumQ except for a
division by the number of objects over which the aggregation
is applied.

4.3 Evaluation of VMinQ and VMaxQ
To answer a VMinQ, we need to find a lower bound l, an

upper bound u, and a pdf p(x) where p(x) is the pdf of the
minimum value of a. Recall that (Section 3.3) to answer an
EMinQ, we set q to be the minimum of the lower bound of
the uncertainty intervals, and then obtain a bounding in-
terval B in the bounding phase, within which we explore
the uncertainty intervals to find the item with the minimum
value. Interval B is exactly the interval [l, u], since B deter-
mines the region where the possible minimum values are. In
order to answer a VMinQ, we can use the first three phases
of EMinQ (projection, pruning, bounding) to find B as the
interval [l, u]. The evaluation phase is replaced by the algo-
rithm shown in Figure 9.

1. R← ∅
2. Sort the elements in S in ascending order of ni, and

rename the sorted elements in S as T1, T2, . . . , T|S|
3. n|S|+1 ← f
4. for j ← 1 to |S| do

(a) for r ∈ [nj , nj+1] do
i. p← 0
ii. for i← 1 to j do

p← p + pri(r) ·�j
k=1∧k �=i(1− Pk(r))

iii. R← R ∪ (r, p)
5. return {n1, f, R}

Figure 9: Evaluation Phase of VMinQ.

Again, Steps 2 and 3 sort the objects in ascending or-
der of ni. After these steps, B = [n1, f] represents the
range of possible values. Step 4 evaluates p(r) for each value
r ∈ [n1, f]. Since we have sorted the uncertainty intervals in
ascending order of ni, we need not consider all |T | objects
throughout [n1, f]. Specifically, for any value r in the inter-
val [nj , nj+1], we only need to consider objects T1, . . . , Tj in
evaluating p(r). Hence for r ∈ [nj , nj+1], p(r) is given by
the following formula:

p(r) =

j�
i=1

(pri(r) ·
j�

k=1∧k �=i

(1− Pk(r))) (6)

The pair (r, p) represents r, p(r). It is inserted into the set
R in Step 4(a)iii. Finally, Step 5 returns the lower bound
(n1), upper bound (f) of the minimum value, and the dis-
tribution of the minimum values in [n1, f] (R). VMaxQ is
handled in an analogous fashion.

5. QUALITY OF PROBABILISTIC RESULTS
In this section, we discuss several metrics for measuring

the quality of the results returned by probabilistic queries.
While other metrics (e.g., standard deviation) exist, the
metrics described below measures the quality reasonably
well. It is interesting to see that different metrics are suit-
able for different query classes.

5.1 Entity-Based Non-Aggregate Queries
For queries that belong to the entity-based non-aggregate

query class, it suffices to define the quality metric for each
(Ti, pi) individually, independent of other tuples in the re-
sult. This is because whether an object satisfies the query
or not is independent of the presence of other objects. We
illustrate this point by explaining how the metric of ERQ is
defined.

For an ERQ with query range [l, u], the result is the best
if we are sure either Ti.a is completely inside or outside [l, u].
Uncertainty arises when we are less than 100% sure whether
the value of Ti.a is inside [l, u]. We are confident that Ti.a
is inside [l, u] if a large part of Ui(t) overlaps [l, u] i.e., pi

is large. Likewise, we are also confident that Ti.a is outside
[l, u] if only a very small portion of Ui(t) overlaps [l, u] i.e.,
pi is small. The worst case happens when pi is 0.5, where
we cannot tell if Ti.a satisfies the range query or not. Hence
a reasonable metric for the quality of pi is:

|pi − 0.5|
0.5

(7)

In Equation 7, we measure the difference between pi and
0.5. Its highest value, which equals 1, is obtained when pi

equals 0 or 1, and its lowest value, which equals 0, occurs
when pi equals 0.5. Hence the value of Equation 7 varies
between 0 to 1, and a large value represents good quality.
Let us now define the score of an ERQ:

Score of an ERQ =
1

|R|
�
i∈R

|pi − 0.5|
0.5

(8)

where R is the set of tuples (Ti.a, pi) returned by an ERQ.
Essentially, Equation 8 evaluates the average over all tuples
in R.

Notice that in defining the metric of ERQ, Equation 7 is
defined for each Ti, disregarding other objects. In general,
to define quality metrics for the entity-based non-aggregate
query class, we can define the quality of each object individ-
ually. The overall score can then be obtained by averaging
the quality value for each object.

5.2 Entity-Based Aggregate Queries
Contrary to an entity-based non-aggregate query, we ob-

serve that for an entity-based aggregate query, whether an
object appears in the result depends on the existence of
other objects. For example, consider the following two sets
of answers to an EMinQ: {(T1.a, 0.6), (T2.a, 0.4)} and {(T1.a, 0.6),
(T2.a, 0.3), (T3.a, 0.1)}. How can we tell which answer is bet-
ter? We identify two important components of quality for
this class: entropy and interval width.
Entropy. Let X1, . . . , Xn be all possible messages, with re-
spective probabilities p(X1), . . . , p(Xn) such that

�n
i=1 p(Xi) =

1. The entropy of a message X ∈ {X1, . . . , Xn} is:

H(X) =
n�

i=1

p(Xi) log2

1

p(Xi)
(9)

The entropy, H(X), measures the average number of bits
required to encode X, or the amount of information carried
in X [11]. If H(X) equals 0, there exists some i such that
p(Xi) = 1, and we are certain that Xi is the message, and
there is no uncertainty associated with X. On the other
hand, H(X) attains the maximum value when all the mes-
sages are equally likely, in which case H(X) equals log2 n.

Recall that the result to the queries we defined in this
class is returned in a set R consisting of tuples (Ti, pi). We
can view R as a set of messages, each of which has a prob-
ability pi. Moreover, the property that

�n
i=1 pi = 1 holds.

Then H(R) measures the uncertainty of the answer to these
queries; the lower the value of H(R), the more certain is the
answer.
Bounding Interval. Uncertainty of an answer also de-
pends on another important factor: the bounding interval B.
Recall that before evaluating one of these aggregate queries,
we need to find B that indicates all possible values we have
to consider. Then we consider all the portions of uncertainty
intervals that lie within B. Note that the decision of which
object satisfies the query is only made within this interval.
Also notice that the width of B is determined by the width
of the uncertainty intervals associated with objects; a large
width of B is the result of large uncertainty intervals. There-
fore, if B is small, it indicates that the uncertainty intervals
of objects that participate in the final result of the query are
also small. In the extreme case, when the uncertainty inter-
vals of participant objects have zero width, then the width
of B is zero too. The width of B therefore gives us a good
indicator of how uncertain a query answer is.

(a) (b)

U2 U2

(c) (d)

U1

U2U2U1

U1

U1

Figure 10: Illustrating how the entropy and the width

of B affect the quality of answers for entity-based ag-

gregate queries. The four figures show the uncertainty

intervals (U1(t0) and U2(t0)) inside B after the bounding

phase. Within the same bounding interval, (b) has a

lower entropy than (a), and (d) has a lower entropy than

(c). However, both (c) and (d) have less uncertainty

than (a) and (b) because of smaller bounding intervals.

An example at this point will make our discussions clear.
Figure 10 shows four different scenarios of two uncertainty
intervals, U1(t0) and U2(t0), after the bounding phase for an
EMinQ. We can see that in (a), U1(t0) is the same as U2(t0).
If we assume uniform distribution for both uncertainty in-
tervals, both T1 and T2 will have equal probability of having
the minimum value of a. In (b), it is obvious that T2 has a
much greater chance than T1 to have the minimum value of
a. Using Equation 9, we can observe that the answer in (b)
enjoys a lower degree of uncertainty than (a). In (c) and (d),
all the uncertainty intervals are halved of those in (a) and

(b) respectively. Hence (d) still has a lower entropy value
than (c). However, since the uncertainty intervals in (c) and
(d) are reduced, their answers should be more certain than
those of (a) and (b). Notice that the widths of B for (c) and
(d) are all less than (a) and (b).

The quality of entity-based aggregate queries is thus de-
cided by two factors: (1) entropy H(R) of the result set, and
(2) width of B. Their score is defined as follows:

Score of Entity, Aggr Query = −H(R) · width of B (10)

Notice that the query answer gets a high score if either H(R)
is low, or the width of B is low. In particular, if either H(R)
or the width of B is zero, then H(R) = 0 is the maximum
score.

5.3 Value-Based Queries
Recall that the results returned by value-based queries

are all in the form l, u, {p(x) | x ∈ [l, u]}, i.e., a probability
distribution of values in interval [l, u]. To measure the qual-
ity of such queries, we can use the concept of differential
entropy, defined as follows:

Ĥ(X) = −
� u

l

p(x) log2 p(x)dx (11)

where Ĥ(X) is the differential entropy of a continuous ran-
dom variable X with probability density function p(x) de-
fined in the interval [l, u] [11]. Similar to the notion of

entropy, Ĥ(X) measures the uncertainty associated with
the value of X. Moreover, X attains the maximum value,
log2(u− l) when X is uniformly distributed in [l, u]. When

u − l = 1, Ĥ(X) = 0. Therefore, if a random variable has
more uncertainty than the uniform distribution in [0, 1], it
will have a positive entropy value; otherwise, it will have a
negative entropy value.

We use the notion of differential entropy to measure the
quality of value-based queries. Specifically, we apply Equa-
tion 11 to p(x) as a measure of how much uncertainty is in-
herent to the answer of a value-based query. The lower the
differential entropy value, the more certain is the answer,
and hence the better quality is the answer. In particular, if
there is a value y in [l, u] such that the value of p(y) is high,
then the entropy will be low. We now define the score of a
probabilistic value-based query:

Score of a Value-Based Query = −Ĥ(X) (12)

The quality of a value-based query can thus be measured
by the uncertainty associated with its result: the lower the
uncertainty, the higher score can be obtained as indicated
by Equation 12.

6. IMPROVING ANSWER QUALITY
In this section, we discuss several update policies that

can be used to improve the quality of probabilistic queries,
defined in the last section. We assume that the sensors co-
operate with the central server i.e., a sensor can respond to
update requests from the sensor by sending the newest value
to the server, as in the system model described in [9].

Suppose after the execution of a probabilistic query, some
slack time is available for the query. The server can improve
the quality of the answers to that query by requesting up-
dates from sensors, so that the uncertainty intervals of some

sensor data are reduced, potentially resulting in an improve-
ment of the answer quality. Ideally, a system can demand
updates from all sensors involved in the query; however, this
is not practical in a limited-bandwidth environment. The is-
sue is, therefore, to improve the quality with as few updates
as possible. Depending on the types of queries, we propose
a number of update policies.
Improving the Quality of ERQ The policy for choosing
objects to update for an ERQ is very simple: choose the
object with the minimum value computed in Formula 7, with
an attempt to improve the score of ERQ.
Improving the Quality of Other Queries Several up-
date policies are proposed for queries other than ERQ:

1. Glb RR. This policy updates the database in a round-
robin fashion using the available bandwidth i.e., it up-
dates the data items one by one, making sure that each
item gets a fair chance of being refreshed.

2. Loc RR. This policy is similar to Glb RR, except
that the round-robin policy is applied only to the data
items that are related to the query, e.g., the set of ob-
jects with uncertainty intervals overlapping the bound-
ing interval of an EMinQ.

3. MinMin. An object with its lower bound of the
uncertainty interval equal to the lower bound of B is
chosen for update. This attempts to reduce the width
of B and improve the score.

4. MaxUnc. This heuristic simply chooses the uncer-
tainty interval with the maximum width to update,
with an attempt to reduce the overlapping of the un-
certainty intervals.

5. MinExpEntropy. Another heuristic is to check, for
each Ti.a that overlaps B, the effect to the entropy if
we choose to update the value of Ti.a. Suppose once
Ti.a is updated, its uncertainty interval will shrink to
a single value. The new uncertainty is then a point in
the uncertainty interval before the update. For each
value in the uncertainty interval before the update, we
evaluate the entropy, assuming that Ui(t) shrinks to
that value after the update. The mean of these entropy
values is then computed. The object that yields the
minimum expected entropy is updated.

7. EXPERIMENTAL RESULTS
In this section, we experimentally study the relative be-

haviors of the various update policies described above, with
respect to improving the quality of the query results. We
will discuss the simulation model followed by the results.

7.1 Simulation Model
The evaluation is conducted using a discrete event simu-

lation representing a server with a fixed network bandwidth
(B messages per second) and 1000 sensors. Each update
from a sensor updates the value and the uncertainty inter-
val for the sensor stored at the server. Our uncertainty
model is as follows: An update from sensor Ti at time tupdate

specifies the current value of the sensor, Ti.asrv, and the
rate, Ti.rsrv at which the uncertainty region (centered at
Ti.asrv) grows. Thus at any time instant, t, following the
update, the uncertainty interval (Ui(t)) of sensor Ti is given

by Ti.asrv ± Ti.rsrv × (t − Ti.tupdate). The distribution of
values within this interval is assumed to be uniform.

The actual values of the sensors are modeled as random
walks within the normalized domain as in [9]. The maximum
rate of change of individual sensors are uniformly distributed
between 0 and Rmax. At any time instant, the value of a
sensor lies within its current uncertainty interval specified
by the last update sent to the server. An update from the
sensor is necessitated when a sensor is close to the edge of its
current uncertainty region. Additionally, in order to avoid
excessively large levels of uncertainty, an update is sent if
either the total size of the uncertainty region or the time
since the last update exceed threshold values.

The representative experiments presented considered ei-
ther EMinQ or VMinQ queries only. In each experiment
the queries arrive at the server following a Poisson distri-
bution with arrival rate λq. Each query is executed over
a subset of the sensors. The subsets are selected randomly
following the 80-20 hot-cold distribution (20% of the sensors
are selected 80% of the time). The cardinality of each set
was fixed at Nsub =100. The maximum number of concur-
rent queries was limited to Nq = 10. Each query is allowed
to request at most Nmsg updates from sensors in order to
improve the quality of its result.

In order to study different aspects of the policies, query
termination can be specified either as (i) a fixed time inter-
val (Tactive) after which the query is completed even if its
requested updates have not arrived (due to network conges-
tion) or (ii) when a target quality (G) is achieved. Depend-
ing upon the policy, we study either the average achieved
quality (score), the average size of the uncertainty region,
or the average response time needed to achieve the desired
quality. All measurements were made after a suitable warm-
up period had elapsed. For fairness of comparison, in each
experiment, the arrival of queries as well as the changes to
the sensor values were identical.

Table 2 summarizes the major parameters and their de-
fault values. The simulation parameters were chosen such
that average cardinality of the result sets achieved by the
best update policies was between 3 and 10.

Param Default Meaning

D [0, 1] Domain of attribute a
Rmax 0.1 Maximum rate of change of a (sec−1)
Nq 10 Maximum # of concurrent queries
λq 20 Query arrival rate (query/sec)

Nsub 100 Cardinality of query subset
Tactive 5 Query active time (sec)
B 350 Network bandwidth (msg/sec)

Nmsg 5 Maximum # of updates per query
Nconc 1 The # of concurrent updates per query

Table 2: Simulation parameters and default values.

7.2 Results
Due to limited space, we only show the most important

experimental results. Interested readers are referred to our
technical report [2] for more detailed discussions of our ex-
periments. All figures in this section show averages.
Bandwidth. Figure 11 shows scores for EMinQ achieved
by various update policies for different values of bandwidth.

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

200 250 300 350 400 450 500
Bandwidth

S
co

re

Glb_RR
Loc_RR
MinMin
MaxUnc
MinExpEntr

Figure 11: EMinQ score as function of B

The quality metric in this case is negated entropy times the
size of the uncertainty region of the result set. Figure 12
is analogous to Figure 11 but shows scores for VMinQ in-
stead of EMinQ. The score for VMinQ queries is negated
continuous entropy.

In Figures 11 and 12, the scores increase as bandwidth
increases for all policies, approaching the perfect score of
zero for EMinQ. This is explained by the fact that with
higher bandwidth the updates requested by the queries are
received faster. Thus for higher bandwidth the uncertainty
regions for freshly updated sensors tend to be smaller than
those using lower bandwidth. Smaller uncertainty regions
translate into smaller uncertainty of the result set, and con-
sequently higher score. The reduction in uncertainty regions
with increasing bandwidth can be observed from Figure 13.

All schemes that favor updates for sensors being queried
significantly outperform the only scheme that ignores this
information: Glb RR. The best performance is achieved by
the MinMin policy, which updates a sensor with the lower
bound of the uncertainty region li(t) equal to the minimum
lower bound among all sensors considered by the query. The
MinExpEntropy policy showed worse results than the Min-
Min and MaxUnc policies in Figures 11 and 13 and worse
results than those of the MinMin policy for VMinQ queries,
Figure 12. When comparing the MinMin and MaxUnc poli-
cies, the better score of the MinMin policy is explained by
the fact that the sensor picked for an update by the Min-
Min policy tends to have large uncertainty too – in fact, the
uncertainty interval is at least as large as the width of the
bounding interval. In addition the value of its attribute a
tends to have higher probability of being minimum.
Response Time. Figure 14 shows response time as a
function of available bandwidth for EMinQ. Unlike the other
experiments, in this experiment a query execution is stopped
as soon as the goal score G (-0.06) is reached. Once again
the MinMin strategy showed the best results, reaching the
goal score faster than the other policies. The difference in
response time is especially noticeable for smaller values of
bandwidth, where it is almost twice as good as the other
strategies. Predictably, the response time decreases when
more bandwidth becomes available.
Arrival Rate. Figures 15 and 16 show the scores achieved
by EMinQ and VMinQ queries for various update policies as
a function of query arrival rate λq . As λq increases from 5 to
25, more queries request updates and reduce the uncertainty

0

2

4

6

8

10

12

200 250 300 350 400 450 500
Bandwidth

S
co

re

Glb_RR
Loc_RR
MinMin
MaxUnc
MinExpEntr

Figure 12: VMinQ score as function of B

0

0.2

0.4

0.6

0.8

1

1.2

1.4

200 250 300 350 400 450 500
Bandwidth

U
n

ce
rt

ai
n

ty

Glb_RR
Loc_RR
MinMin
MaxUnc
MinExpEntr

Figure 13: Uncertainty as function of B

regions. As a result, the uncertainty decreases, which leads
to better scores (Figure 17). When λq reaches 25 the entire
network bandwidth is utilized. As λq continue to increase
queries are able to send fewer requests for updates and re-
ceive fewer updates in time, leading to poor result quality
and larger uncertainty.

We can observe from Figures 15, 16, and 17 that the rel-
ative performance of the various policies remains the same
over a wide range of arrival rates (λq ∈ [5, 45]).

The experiments show that all policies that favor query-
based updates achieve much higher levels of quality. For
the queries considered, the MinMin policy gives the best
performance. We plan to evaluate policies for all types of
queries as part of future work.

8. RELATED WORK
Many researchers have studied approximate answers to

queries based on a subset of data. In [13], Vrbsky et. al
studied approximate answers for set-valued queries (where
a query answer contains a set of objects) and single-valued
queries (where a query answer contains a single value). An
exact answer E can be approximated by two sets: a certain
set C which is the subset of E, and a possible set P such that
C ∪ P is a superset of E. Other techniques like sampling
[5] and synopses [1] are used to produce statistical results.
While these efforts investigate approximate answers based
upon a subset of the (exact) values of the data, our work

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

250 300 350 400 450 500
Bandwidth

T
im

e
(s

ec
)

Glb_RR
Loc_RR
MinMin
MaxUnc

Figure 14: Response time as function of B

-5

-4

-3

-2

-1

0

5 10 15 20 25 30 35 40 45
Arrival rate (query/sec)

S
co

re

Glb_RR
Loc_RR
MinMin
MaxUnc

Figure 15: EMinQ score as function of λq

addresses probabilistic answers based upon all the (impre-
cise) values of the data.

The problem of balancing the tradeoff between precision
and performance for querying replicated data was studied by
Olston et. al [8, 7, 9]. In their model, the cache in the server
cannot keep track of the exact values of sensor sources due
to limited network bandwidth. Instead of storing the actual
value in the server’s cache, an interval for each item is stored,
within which the current value must be located. A query
is then answered by using these intervals, together with the
actual values fetched from the sources. In [8], the problem of
minimizing the update cost within an error bound specified
by aggregate queries is studied. In [7], algorithms for tuning
the intervals of the data items stored in the cache for best
performance are proposed. In [9], the problem of minimizing
the divergence between the server and the sources given a
limited amount of bandwidth is discussed.

Khanna et. al [6] extend Olston’s work by proposing an
online algorithm that identifies a set of elements with min-
imum update cost so that a query can be answered within
an error bound. Three models of precision are discussed.
In the absolute (relative) precision model, an answer a is
called α-precise if the actual value v deviates from a by
not more than an additive (multiplicative) factor of α. The
rank precision model is used to deal with selection problems
which identifies an element of rank r: an answer a is called
α-precise if the rank of a lies in the interval [r − α, r + α].

0

5

10

15

20

5 10 15 20 25 30 35 40 45
Arrival rate (query/sec)

S
co

re
Glb_RR
Loc_RR
MinMin
MaxUnc

Figure 16: VMinQ score as function of λq

0

0.25

0.5

0.75

1

1.25

1.5

5 10 15 20 25 30 35 40 45
Arrival rate (query/sec)

U
n

ce
rt

ai
n

ty Glb_RR
Loc_RR
MinMin
MaxUnc

Figure 17: Uncertainty as function of λq

In all the works that we have discussed, the use of proba-
bility distribution of values inside the uncertainty interval as
a tool for quantifying uncertainty has not been considered.
Discussions of queries on uncertainty data were often limited
to the scope of aggregate functions. In contrast, our work
adopts the notion of probability and provides a paradigm
for answering general queries involving uncertainty. We also
define the quality of probabilistic query results which, to the
best of our knowledge, has not been addressed.

Except [14] and [3], we are unaware of any other work
that discusses the evaluation of a query answer in proba-
bilistic form. These two studies only consider probabilis-
tic range queries and nearest-neighbor queries in a moving-
object database model. Velocity-constrained indexing was
proposed in [10] for efficient indexing of moving objects.

9. CONCLUSIONS
In this paper we studied the problem of augmenting prob-

ability information to queries over uncertain data. We pro-
pose a flexible model of uncertainty, which is defined by (1)
an lower and upper bound, and (2) a pdf of the values in-
side the bounds. We then explain, from the viewpoint of
a probabilistic query, we can classify queries in two dimen-
sions, based on whether they are aggregate/non-aggregate
queries, and whether they are entity-based/value-based. Al-
gorithms for computing typical queries in each query class
are demonstrated. We present novel metrics for measuring

quality of answers to these queries, and also discuss several
update heuristics for improving the quality of results. The
benefit of query-based updates was shown experimentally.

10. REFERENCES
[1] S. Acharya, P. B. Gibbons, V. Poosala, and

S. Ramaswamy. Join synopses for approximate query
answering. In Proc. of the ACM SIGMOD 1999 Intl.
Conf. on Management of Data, pages 275–286, 1999.

[2] R. Cheng, D. V. Kalashnikov, and S. Prabhakar.
Evaluating probabilistic queries over imprecise data.
Technical Report TR 02-020, Department of
Computer Science, Purdue University, October 2002.

[3] R. Cheng, S. Prabhakar, and D. V. Kalashnikov.
Querying imprecise data in moving object
environments. In Proc. of the 19th IEEE Intl. Conf.
on Data Engineering, India, 2003.

[4] D.Pfoser and C.S.Jensen. Querying the trajectories of
on-line mobile objects. In ACM International
Workshop on Data Engineering for Wireless and
Mobile Access (MobiDE) 2001, pages 66–73, 2001.

[5] P. B. Gibbons and Y. Matias. New sampling-based
summary statistics for improving approximate query
answers. In Proc. of the ACM SIGMOD 1998 Intl.
Conf. on Management of Data, 1998.

[6] S. Khanna and W.C. Tan. On computing functions
with uncertainty. In 20th ACM Symposium on
Principles of Database Systems, 2001.

[7] C. Olston, Boon Thau Loo, and J. Widom. Adaptive
precision setting for cached approximate values. In
Proc. of the ACM SIGMOD 2001 Intl. Conf. on
Management of Data, 2001.

[8] C. Olston and J. Widom. Offering a
precision-performance tradeoff for aggregation queries
over replicated data. In Proc. of the 26th Intl. Conf.
on Very Large Data Bases, 2000.

[9] C. Olston and J. Widom. Best-effort cache
synchronization with source cooperation. In Proc. of
the ACM SIGMOD 2002 Intl. Conf. on Management
of Data, pages 73–84, 2002.

[10] S. Prabhakar, Y. Xia, D. Kalashnikov, W. Aref, and
S. Hambrusch. Query indexing and velocity
constrained indexing: Scalable techniques for
continuous queries on moving objects. IEEE
Transactions on Computers, Special section on data
management and mobile computing, 51(10), 2002.

[11] C. E. Shannon. The Mathematical Theory of
Communication. University of Illinois Press, 1949.

[12] P. A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao.
Querying the uncertain position of moving objects. In
Temporal Databases: Research and Practice. 1998.

[13] S. V. Vrbsky and J. W. S. Liu. Producing
approximate answers to set- and single-valued queries.
The Journal of Systems and Software, 27(3), 1994.

[14] O. Wolfson, P. Sistla, S. Chamberlain, and Y. Yesha.
Updating and querying databases that track mobile
units. Distributed and Parallel Databases, 7(3), 1999.

