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Abstract: Traditional spatial indexes like R-tree usually assume the database is not updated
frequently. In applications like location-based services and sensor networks, this assumption
is no longer true since data updates can be numerous and frequent. As a result these indexes
can suffer from a high update overhead, leading to poor performance. In this paper we propose
a novel index structure, the Mean Variance Tree (MVTree), which is built based on the mean
and variance of the data instead of the actual data values that can change continuously. Since
the mean and variance are relatively stable features compared to the actual values, theMVTree
significantly reduces the index update cost. The mean and the variance of the data item can be
dynamically adjusted tomatch the observed fluctuation of the data. Our experiments show that
the MVTree substantially improves index update performance while maintaining satisfactory
query performance.
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1 Introduction

The recent advancement of wireless communication
technologies such as cellular network systems, Global
Positioning System (GPS), sensor networks and RF-ID
enable a wide class of emerging applications. Examples of
these applications include location-based services, digital
battlefields, telematics and weather monitoring, where
data are continuously collected from various sources for
querying, analysis and monitoring purposes. A typical
feature of these applications is that a large amount of
data has to be handled, and the rate of update arrival
can be very high. This presents novel problems such as
database querying, storage, indexing and mining support
where the assumption of low data arrival rate is no longer
correct.

In particular, the issue of data indexing needs to be
revisited in such an ‘unstable’ environment. Indexing is
a technique where by limiting the amount of data that
needs to be examined, query performance is improved.
Typically, dynamic indexes (such as R-tree and B-tree)
are widely used in traditional database applications
since they work well in environments where updates
are infrequent in comparison to queries. However, these
indexes are not optimised for data streaming applications
that are characterised by numerous and frequent updates,
which can incur high update overhead. In an R-tree,
for example, a data update can trigger expensive node
splitting operations. If updates are frequent, the update
overhead can present a huge performance bottleneck.
A new technique is thus needed in order to prevent a data
structure from being changed too much due to frequent
updates.

Our solution to the above problem is based on the
observation that although the current value of the data
might change all the time, itsmean and variance are usually
relatively stable.We thus propose theMean Variance Tree
(MVTree)which exploits the fact thatwithhighprobability
the value of the constantly changing data stays within an
interval represented by its mean and variance if the mean
and variance are properly identified. An index that is built
using these more stable mean and variance values instead
of the rapidly changing exact values is likely to have a lower
update cost. If the item remains within the indexed range,
then fewer updates to the index will be required.

The rest of the paper is organised as follows. Section 2
discusses related work. Section 3 explains the index in
detail, including index construction, update and query

processing. Section 4 presents experimental evaluation of
the proposed approach and Section 5 concludes the paper.

2 Related work

Developing an efficient index structure for constantly
evolving data is an important database research topic.
Most work in this area so far focuses on moving object
environments. As a simple approach, multi-dimensional
spatial index structures can be used for indexing the
positions ofmoving objects, however, they are not efficient
because of frequent update operations.

Many approaches describe a moving object’s location
by a linear function in order to reduce the number
of updates, and only when the parameters of the
function change, for example, when the moving object
changes its speed or direction, the database is updated.
Saltenis et al. (2000) proposed the Time-Parameterised
R-tree (TPR-tree). In this scheme, the position of a
moving point is represented by a reference position
and a corresponding velocity vector. When splitting
nodes, the TPR-tree considers both the positions of the
moving points and their velocities. Later, Tao et al.
(2003) presented the TPR∗-tree, which extends the idea
of TPR-trees by employing a different set of insertion
and deletion algorithms in order to minimise the query
cost. Tayeb et al. (1998) introduced the issue of indexing
moving objects to query the present and future positions
and proposed PMR-Quadtree for indexing moving
objects.Kollios et al. (1999) employed dual transformation
techniques that represent the position of an object moving
in a d-dimensional space as a point in a 2d-dimensional
space and proposed an efficient indexing scheme using
partition trees. Agarwal et al. (2000) proposed various
schemes based on the duality and developed an efficient
indexing scheme toanswerapproximatenearest-neighbour
queries.

The problem with all the above techniques is that
the movement of objects is rarely captured accurately by
a simple function. In many applications, the movement
of objects is complicated and non-linear. Our work
differentiates itself by exploiting the nature and pattern
of change in values while not imposing any restrictions
on the change. In our previous work Cheng et al. (2005),
we introduced the notion of Change Tolerant Indexing
for the high update environments. A new index structure
and algorithms are proposed for optimising both query
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and update performance. In our work, no assumptions are
made about the amount or rate of change in the data value
and it is not necessary for data to change according to
well-behaved patterns.

3 The MVTree index

In this section, we first discuss the motivation of
the MVTree, then present the details of the MVTree
construction, update and query processing.

3.1 Motivation

Traditional index structures for continuously changing
data are affected by the huge update overhead that
results in unacceptable performance. In this work, we
aim to build indexes that are more stable and tolerant
to data changes. We observe that for continuously
changing data, although the data values change all the
time, they usually fluctuate within certain intervals for
a long period of time. For example, sensor data such
as temperature is very likely to vary continuously, but
not significantly, within a small interval for a relatively
long time. Similarly, the positions of a large numbers of
moving objects also tend to change within a small area
such as within buildings over a long period. We propose
to use a mean and variance to represent each data
item and build an R-tree index for the continuously
changing data based on these variance intervals or ranges.
The data items are represented by points corresponding to
their (mean, variance) coordinates, as shown in Figure 1.
As long as the new data value remains within its current
interval, no index update is needed. Only when the new
value moves out of its current interval, its interval needs be
updated, by adjusting the variance, for example. Otherwise
weonlyneed toupdate the correspondingpoint in the index
structure. If the intervals are chosen well, index updates
will not occur very often. Therefore, the MVTree is less
susceptible to index change and reduces update overhead
considerably. The structure of the MVTree is shown in
Figures 2 and 3. It is a regular R-tree with a secondary

AQ1
Figure 1 Map constantly changing data into 2-D

means/variances points

index. Each entry in the indexmaps a data item to the page
number in theR-tree that contains its value.An entry in the
leaf nodes of the R-tree contains the current value of the
data as well as its mean µ and variance δ. The data value
is within the corresponding interval [µ − δ, µ + δ]. If data
changes and the new value moves out of that interval,
its µ and δ should be adjusted. However, the new value
moving out of the current interval is not the only reason
that triggers the adjustment of µ and δ, as we will discuss
later.µand δ canbedynamically adjusted to reflect changes
in the pattern of the data change. Please note that although
theMVTree is built based on the data intervals, it contains
the current value of eachdata itemand is an accurate index.
The data intervals are only for the purpose of maximising
change tolerance and reducing index update cost.

Figure 2 MVTree and secondary index structure

Figure 3 MVTree nodes

3.2 Index creation

The process of building an MVTree consists of two steps:

1 Converting each data item, X, to a point (µx, δx).
When the MVTree is first created, the current value
of each data is mapped to a point (mean, variance)
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using which an R-tree index is created. The point
(mean, variance) can be computed the historical
values of the item. In case history data is unavailable,
we can use the current value as the mean µ and
an estimated variance δinitial. The initial mean and
variance are very likely to be inaccurate, but that
is fine since we will dynamically adjust them later.
Consequently, the index will be better tuned and
give better performance as time goes on, while the
performance of most existing indexes deteriorate as
the data changes and need refreshing or rebuilding
from time to time.

2 Build an R-tree over all data points (µ, δ). After all
data are converted into points, an R-tree is built over
them. This process is almost identical to the regular
R-tree operations. The leaf node entry contains the
current values of the item, and its correspondingmean
and variance. For the purposes of the R-tree index
minimum bounding rectangles, the item is treated as
having an extent equal to [µ − δ, µ + δ]. As each item
is inserted into the R-tree, an entry is also be inserted
into the secondary index which contains the data ID
and the R-tree page that the data is inserted into.

3.3 Mean and variance of the data

Since theMVTree is built based on the (mean, variance) of
the changingdata, it is important that these twoparameters
are properly identified and adjusted as the data change.
Next, we show how to determine and adjust the mean and
variance for each data item.

3.3.1 Variance tradeoff

Although representing data by an interval can reduce
index update cost to a large extent, it affects the query
performance negatively. Index structures improve
query performance by limiting the amount of data that
needs to be examined. For example, an R-tree index
structure recursively clusters neighbouring data nodes
into Minimum Bounding Rectangles (MBRs) . For a
range query, if it does not overlap with the MBR of an
internal node in the R-tree, then the subtree under that
internal node is pruned since all the data in that subtree
is within the MBR of that node, therefore, they cannot
overlap with the range query. Since the MVTree is built
based on data intervals, its MBRs are larger than one
built based on actual data values therefore it might not be
able to perform as much pruning resulting in worse query
performance.

In general, an index based on the current value might
result in an index structure update every time a data
value changes, but it can more efficiently support query
processing and has the best query performance. Indexes
based on data intervals can reduce index updates since
chances are that the data will remain within its interval.
The larger the intervals are, the less likely the data values
will move out of the intervals and the fewer updates need
to be performed on the index structure (the data value in

the leaf node still needs be updated). However, the query
performancewill beworse due to the looseness of the index,
which leads to less pruning. If we find, for each data, an
interval that is so large that it can always guarantee that
the data value changes within it and build an index with
these large intervals for each data, then the index structure
never needs updating since it gives each data the largest
change ranges or intervals they need. No matter how the
data changes, they will not move out of the intervals that
represent them, thus, the intervals do not need updating
and neither does the index structure. However, the query
performance of this index is likely to be the worst.

Therefore, there are two extremes in terms of updating
the index for continuously changing data: always update
it or never update it. Indexes based on the current values
which always need updating are one extreme. This extreme
has the best query performance and the largest update
overhead. Indexes that use large intervals or ranges to
represent each data are the other extreme, with the
least update overhead, but the worst query performance.
Usually, neither extreme is the best solution. We hope
to find a point somewhere in the middle that has the
best overall performance for both index updating and
query processing. Different applications have different
data update rates, query rates, and data change intervals
and consequently, different optimal points. For example,
applications with a high data update rate and a low query
rate should use intervals that are relatively larger than
applications with a low update rate and a high query rate.
This optimal point should be determined with all these
factors taken into consideration.

3.3.2 Determining the mean and variance

Assume that a constantly changing data item X has
a set of historical values X1, X2, . . . , XN . Its mean is
given by µx = 1

N

∑N
k=1 Xk. The sample variance may be

computed as sN
2 = 1

N

∑N
k=1(Xk − µx)2. Note that this

sample variance is not an unbiased estimator for µ2.
In order to obtain an unbiased estimator for µ2, it is
necessary to define a bias-corrected sample variance
sN−1

2 = 1
N−1

∑N
k=1(Xk − µx)2. The square root of the

bias-corrected variance is the standard deviation.
Before building the index, if a period of history is

available, we may compute the mean µx and standard
deviation σx for each data item x. Let δ = mσx, we convert
eachdata item to the corresponding point (µx, δ) and index
these points. m is an adjustable parameter which can be
tuned to achieve the best overall performance. We call m
the variance extension factor. Different data items can
havedifferent values ofm.m is adjustedwhendata changes
to ensure that the new data value is always within the
range (µx − mδ, µ + mδ) . If the history is unavailable, as
mentioned earlier, wewill use the current value as themean
µx and a σinitial or σdefault as σx, and convert each data
item to point (µx, mdefault σx) to build the index.

After the index is built, as data continuously changes,
new values for each data item are received. It is infeasible
to store all the history values for all data. Therefore, we
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only maintain a sliding window history for each data item.
For example, the L most recent values X1, X2, . . . , XL

for X . We store the history window for each data
as a queue. When the new value XL+1 arrives, it is
inserted at the head of the queue and the oldest value
X1 is deleted. If XL is different from X1 , we will
recompute the new mean µnew and standard deviation
σnew based on these L most recent values again. To avoid
excessive updates, we do not update the old mean and
variance (µold, mσold) that are used in the index with
the new ones (µnew, mσnew) all the time . Only when
(µnew, mσnew) is different from the (µold, mσold)by certain
thresholds (Tmean andTdeviation respectively), doweupdate
(µold, mσold) with (µnew, mσnew). By doing this, we avoid
unnecessary frequent updates to the index and ensure that
the mean and variance in the index contain the latest
patterns of the data.

Since the more recent data values indicate the latest
data changes, it is reasonable to assign higher weights
to the more recent values. Suppose we assign a weight
Wi(i = 1, . . ., L) to each historical value Xi, then

µx =
1
L

L∑
i=1

Wi · Xi

and

sL−1 =

√√√√ 1
L − 1

L∑
i=1

Wi · (Xi − µx)2.

Here
∑L

i=1 Wi = L. For example, if we assign each weight
to be P times as much as the previous one, then Wi should
be

Wi =
P i−1(P − 1)L

PL − 1
, i = 1, . . . , L.

The mean and standard deviation should be:

µx =
1
L

L∑
i=1

P i−1(P − 1)LXi

PL − 1

sL−1 =

√√√√ 1
L − 1

L∑
i=1

P i−1(P − 1)L(Xi − µx)2

PL − 1
.

3.3.3 Dynamically adjusting the mean and
variance

As the data change, whenever a new data value falls
outside the interval represented by its mean and variance,
we enlarge its variance to contain the new value.
Consequently, the variance δ for each data item used in the
index can become large, and the pruning effect of the index
degrade. As mentioned earlier, there are two conflicting
criteria for the variance: on the one hand, we should use as
large a variance as possible to avoid updates to the index
structure; on the other hand, the variance should be as
small as possible so that they represent datamore precisely
and the index can better prune during query processing.

In order tomaintain good query performance of the index,
the δ for each data item should be reduced from time to
time.

When shrinking the variance, different data item can
be treated differently. For example, consider two items
A and B that both have a high variance. Item A has
a high variance because it actually changes significantly,
while B has a high variance from one outlier value,
which happened a long time ago. Obviously, δB should
be reduced much more than δA. This can be achieved
by using the approach of dynamically determining the
mean and variance according to the recent historywindow.
The reason is that for A which changes significantly, the
variance computed based on the history window is large
too, while for B with one extreme value a long time ago,
either the extreme value has shifted out of the history
window, thus will not affect the variance anymore; or even
if it is still within the window, it has a very low weight since
it is old and will not affect the variance much. As a result,
δB will drop significantly.

The frequency of adjusting the mean and variance
is an important issue. They should not be adjusted too
frequently, which results in extra update overhead to the
index. However, they should not be adjusted too rarely,
either. Both the mean and variance should be adjusted
in a timely manner so that they represent the current
status and pattern of change of the data. If the mean
is out-dated and drifts far from the real mean value,
the variance has to be unnecessarily large to contain
the data changes, and an unnecessarily large variance
degrades query performance. In our scheme, the frequency
of adjustment essentially depends on two threshold values:
Tmean and Tdeviation. The larger the threshold values, the
less frequent the adjustment. Consequently, we need to
determine appropriate thresholds based on the data and
queries. Please note that the adjustment to the mean
and variance need not to be done separately. They are
performed ‘on-the-fly’ when updating the corresponding
data values.

In summary, the mean and variance in the index for
each data item are adjusted in two cases:

• when the new data value is out of the interval
[µ − δ, µ + δ]

• when the newly computed mean or variance differ
from the old ones by more than the respective
threshold.

The first case is for the correctness of the index while the
second is for the accuracy and efficiency of the index.

3.4 Data update

When the data changes and a new value is received, first, its
corresponding page is found via the secondary index and
its current value in that page is changed to the new value.
The newmean and deviation for the data will be computed
taking the latest value into account. Assume the old mean
and deviation are µold and σold and the new mean and



6 Xia et al.

deviation are µnew and σnew. µnew and σnew are compared
with µold and σold and processed as follows:

1 If µnew and σnew are not different from µold and σold
bymore than the thresholds, then the latest data value
is checked to see if it still falls in the interval [µold, δold].
If it does, no update needs to be done on the index
structure at all. The current value is updated in the leaf
by following the pointers from the secondary index
structure. As discussed earlier, most data changes fall
in this category, therefore, the index structure update
cost is greatly reduced. In case the new value lies
outside the interval [µold, δold], since δold = mσold, m
should be increased till the interval contains the latest
value. Assume that m is increased to mnew. The point
[µold, δold] in the index should be updatedwith the new
point [µold, δnew], in which δnew = mnewσold. Again,
the index will be updated in a lazy fashion.

2 If µnew is different from µold by more than Tmean, or
σnew is different from σold by more than Tdeviation,
then update the point (µold, δold) with the new point
(µnew, δnew). Set δnew to be mσnew, m is set to the
default value mdefault, or if the new value does not fall
in the interval [µnew, mdefaultσnew],m is increased just
enough to contain the new value. The index structure
will be updated in a lazy manner (Kwon et al., 2002),
that is, if thepoint (µnew, δnew) is stillwithin the current
MBR of (µold, δold), then just update (µold, δold) to
(µnew, δnew) and no further update needs to be done.
Only in the case that the new point (µnew, δnew) is out
of the current MBR, the old point (µold, δold) should
be deleted and the new point (µnew, δnew) inserted into
the index.

3.5 Query processing

Range queries are one of the most common queries
in databases. We now explain how the MVTree index
supports range queries. A range query (a, b) searches for
all data items whose values fall within the interval (a, b).
To process a range query, we first check the query (a, b)
against the MBRs of the nodes in this tree. A node N is
pruned when it is guaranteed that no item in the subtree
rooted at N can satisfy (a, b). Let µ1, µ2 be the lowest and
highest values of mean over all objects in the subtree of N
and let δ1, δ2 be the lowest and highest values of variance
over all the objects in the subtree. Note that the MBR for
N is [(µ1, δ1): (µ2, δ2)]. Let L = µ1 − δ2 and R = µ2 + δ2.
If the query (a, b) does not overlap with (L, R) we can say
the no data items in the subtree of N overlap with query
(a, b) and the subtree of N can be pruned. The reason for
the pruning is that for every data item d in the subtree of
N , its mean µd ≥ µ1 and its variance δd ≤ δ2, therefore, its
lowest possible value Ld = (µd − δd) ≥ (µ1 − δ2), which
is L. That means Ld ≥ L. Similarly, the mean of the every
data item µd ≤ µ2 and its variance δd ≤ δ2, therefore,
its highest possible value is Hd = (µd + δ2) ≤ (µ2 + δ2),
which is H . This indicates Hd ≤ H . Since Ld ≥ L and
Hd ≤ H , (Ld, Hd) is contained in (L, R); if (L, R) does

not overlap with (a, b), (Ld, Hd) can not overlap with
(a, b). As a result, no data items in the subtree of N
can fall in (a, b) and satisfy the range query condition
(Cheng et al., 2004).

The same pruning approach can be used for other
queries such as point queries. For nodes that can not be
pruned, if it is a leaf node, all data items contained in
the node are compared with the query; if it is an internal
node, its child nodes will be read one by one and this query
process will run recursively.

4 Experimental results

Weperform a set of experiments on the performance of the
MVTree. We compare the performance of MVTree with
two variants of the R-tree. Studies of the sensitivity of the
MVTree to various parameters are also conducted. Below,
we discuss the simulation model and the experimental
results.

4.1 Simulation model

Our experimental data are based upon continuously
changing position data generated by the City Simulator
2.0 developed at IBM (Kaufman et al., 2002). The City
Simulator simulates the realistic motion of up to 1 million
(Nobj) people moving in a city. The simulator records the
locationupdatesof eachobject in a tracefilewhich contains
the timestamp of the update and the spatial coordinates of
the object at that time. For our experiment, we used only
one dimension of the spatial coordinates.

We build the MVTree based on the first position data
of each object. Once the MVTree is built, the remaining
Nupdate samples are modelled as dynamic updates to the
MVTree, as well as other R-tree variants. Since these
are disk-based index structures, the number of page I/Os
is the natural metric for measuring the performance of
the indexes. We measure the number of page I/Os for
reads and writes of both dynamic updates and queries
during the simulation. As is common practice, we assume
that the first two levels of the indexes reside in the main
memory. Each page has a size of Spage, with a fan-out of
Nentry. The secondary index of the Lazy R-tree and the
MVTree is also assumed to be in themainmemory. Table 1
summarises the parameters.

Table 1 Parameters and baseline values

Param Default Meaning

Simulation parameters
Nobj 100, 000 # of moving objects
Nupdate 20 # of online updates (per obj.)
Nq 1000 # of queries

MVTree parameters
Nentry 20 # of entries (per page)
mdefault 3 Default variance extension
TMean 1.0 Threshold for mean
TDeviation 1.0 Threshold for deviation
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4.2 Index performance

Herewepresent the index performance results. Three index
structures are evaluated in our experiments:

• the traditional R-tree (Hadjieleftheriou, 2003)

• the traditional R-tree augmented with lazy updating
using the secondary index structure. We call this the
lazy-R-tree

• the MVTree. Since there are no constraints on the
nature of changes to the data, the data does not
change in any well-behaved pattern, consequently,
the TPR-/TPR*- trees are inapplicable in these
scenarios.

4.2.1 Update overhead

We begin by studying the relative index update
performance of the various index structures. Figure 4
shows the number of page I/Os performed for update for
the R-tree, the lazy R-tree, and the MVTree. Both the
traditional R-tree and the lazy R-tree are built based on
the actual data values. During each cycle, one tenth of the
total 100K objects change in value.

Figure 4 Update performance

As Figure 4 shows, the traditional R-tree always has the
highest update I/O cost. The lazy-R-tree reduces the cost
by almost one third. This is because the traditional R-tree
handles data changes by deleting the data with the old
value and inserting one with the new value. While the
lazy-R-tree uses a secondary index on the data ID, which
can help locate the data in the index with only one I/O.
Furthermore, when the new data value remains within
its current MBR, only the data entry value needs to be
changed and no further update needs to be done to the
index. Only when the new value is out of the range of
its current MBR, the old value is deleted and the new
value is inserted. The use of the secondary structure in
the lazy-R-tree gives it a minor edge over the traditional
R-tree since it saves the cost of accessing the R-tree when
an updated object remains inside the same leaf node.
Therefore, the lazy-R-tree helps reduce update I/Os to

some extent. The MVTree almost always has the lowest
update cost except during the first few cycles. The reason
is that in our experiment, we did not make the assumption
that any history data is available. When first building the
index, we used the default variances, which are usually
small. Consequently, during the first several cycles, the
true variances are larger than the default variances, which
results in many updates to the index. After a few cycles,
variances are enlarged and most data are more likely to
change within their variances. Thus the number of updates
to the index drops dramatically. The update cost is only
1/8 that of the lazyR-tree and 1/12 that of the traditional
R-tree.

4.2.2 Query and overall performance

Although theMVTree contains the current data value and
is an accurate index, its internal nodes are built based
on data intervals and have larger MBRs than the one
based only on actual data values. Therefore, the query
region potentially has more overlap with the MBRs of
the MVTree. This results in less pruning and worse query
performance. In this experiment, we examine how the
traditional R-tree and the lazy R-tree performwith respect
to the MVTree. During each query evaluation cycle,
1000 queries are evaluated. Figure 5 shows the query I/Os
for each cycle. The lazyR-tree and traditional R-tree have
almost identical query performance, while the MVTree
requires more I/Os.

Figure 5 Query performance

Although theMVTreedoesnot performaswell as theother
two indexes in termsof query cost, we can see fromFigure 6
that it is the winner in terms of overall performance,
which is the total number of I/Os for both update and
query.TheMVTree is designed for databaseswith frequent
updates. Its loss in query performance is compensated by
a significant gain in update performance, resulting in more
than a two-fold improvement over the lazy R-tree and
traditional R-tree. As we will discuss later, the higher the
update frequency, the more significant the advantage of
the MVTree.
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Figure 6 Overall performance

4.3 Update frequency

We study the relative performance of the various index
structures as the relative numbers of queries and updates
is varied. Figure 7 shows the total number of page I/Os
performed for query and update for the R-tree, the lazy
R-tree, and the MVTree. The performance is measured
under the same query generation rate but different update
arrival rates. It should be noted that this graph uses a
Log-scale on both axes. As the ratio of update rate to the
query rate (abbreviated as update/query ratio) is increased
from 10−2 to 103, all three indexes show an increase in
the number of I/Os. This is because increasing the update
rate implies more demands on the index, and consequently
more I/Os are needed.When the update/query ratio is low,
the MVTree takes about 30% more I/Os than the other
R-tree variants. The reason is that the R-tree and the lazy
R-tree uses actual data values, while the MVTree employs
data intervals and results in worse query performance.

Figure 7 Disk I/O vs. update/query ratio

Towards the right end of the graph, when the update
workload dominates the query workload, the MVTree
registers a significant improvement over other R-tree
variants. In fact, the number of I/Os needed by all three
R-trees increases sharply, whereas the MVTree gracefully

handles the high update burden. When updates are much
more frequent than queries, which is a typical scenario in
sensor and moving object environments, the R-tree suffers
fromexpensiveupdates.Thedistinctionbetween theR-tree
and the lazy-R-tree begins to show in this high update
setting as the secondary index yields significant gains from
cheaper updates. The MVTree clearly outperforms the
other indexes in this high update environment since its
structure is inherently designed to maximise tolerance
to changes in object values. The advantage of better
update performance more than compensates for the
slightly poorer query performance. The gains come from
identifying data intervals represented by [µ − δ, µ + δ].
The other index structures fail to capitalise on these regions
and build indexes based upon current object values with
no regard to expected updates. Thus for these indexes
objects moving within the intervals constantly switch from
one MBR to another, resulting in expensive updates and
possibly costly splits.

As the update/query ratio increases, the improvement
over R-trees is more obvious. In particular, when the
update/query ratio is 1000, the number of I/Os required
by theMVTree is only 1/4 that of the lazyR-tree, and 1/5
that of the R-tree.

4.4 Effect of the variance extension

As discussed earlier, the variance extension is a tradeoff
factor for the index. In this set of experiments, we study
how the extension of the variance affects the index update
and query performance. We examined the performance
of the MVTree with the default variance extension varied
from 1 to 5, which means the default variance for each
data varies from its standard deviation σ to 5σ. Please note
that m is only a default variance extension. When the data
changes out of the range of the (µ − mσ, µ + mσ), m will
be discarded and the variance will be enlarged to so that
the new value is still within its interval. Experiments were
conducted with different data update frequencies.

Figure 8 shows the index update cost, query cost and
total cost for different default variance extensionswhen the
Update/Query ratio is 10. The figures shows that when the
default variance extension is small, the query performance
is good, while the index update overhead is high. As the
default variance extension grows, the index updating cost
decreases while the query cost increases. The reason is that
with a larger default variance extension m, the default
interval for each data item, [µ − mσ, µ + mσ] is larger,
therefore, the value is less likely to move out of the current
interval which reduces updates to the index.However, with
a large interval representing each data, the MBRs in the
index are also larger, which results in greater overlaps with
the query and less pruning. The upper curve in Figure 8
shows the overall I/Os for different default variance
extensions by adding up the index update and query cost.
It has a minimum point corresponding to m = 2, which
represents a default variance of 2σ.

The experiment was repeated with update/query ratio
set to 100. The results are shown in Figure 9. Here we see
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similar curves which again shows that a large default
variance reduces index update overhead but degrades
query performance, while a small default variance is good
forquery, butproduces a large indexupdate cost.However,
since the update frequency in this experiment is higher than
the previous one, the update cost is dominant. The upper
curve in the figure is the overall cost. When m = 1, the
total number of I/Os is more than 200K. Asm gets larger,
the total I/Os keep dropping and reach the lowest point
of 94,720 when m is around 4. After that, the cost starts
growing slowly, and when m is 5, the number of the total
I/Os is 96572.

Figure 8 Query I/O vs. query size

Figure 9 Disk I/Os vs. variance extension (update/query
ratio = 10)

In general, both curves show that the index performance
is sensitive to the default variance extension m. Either too
large or too small a default variance extension results in
poor performance.Whenm is properly selected, the overall
I/Os of the MVTree can reach the optimal lowest point.
However, m largely depends on the update/query ratio.
When the update/query ratio is low, m should be small
since the query performance is dominant in this situation
and a small variance extension is efficient for querying.
For traditional databases where the update/query is very

low, the variance extension should be small. That explains
why the traditional R-tree with zero variance extension
works well in that scenario. However, as the update/query
ratio increases, the update cost becomes more influential,
m should also grow since a large variance extension helps
reduce index update overhead.

4.5 Effect of query size

In this experiment, we study how query size affects
the query performance of the MVTree and traditional
R-tree. Note that since the lazy R-tree and the traditional
R-tree have almost identical query performance, here,
we compare the query cost of MVTree with only the
traditional R-tree.

Figure 10 shows the query cost for the MVTree and
traditional R-tree over different query sizes. The query size
is varied from 0.01–10% of the domain. We observe that
the MVTree always requires more query I/Os than the
traditional R-tree. However, as the query size increases,
the performance of MVTree starts to converge to that
of the R-tree. The reason is that with a large query area,
the probability that a given region will be covered by
a query increases. Thus the advantage of having a smaller
areaMBR reduces. To see this, consider a very large query
that covers 95% of the space – it is highly likely that most
MBRs will overlap with this query and therefore need to
be searched. Thus the advantage of having a small MBR
is diminished with larger queries.

Figure 10 Disk I/Os vs. variance extension (update/query
ratio = 100)

When the query size is 0.01%of the domain, the traditional
R-tree takes only 50% of the query I/Os of the MVTree.
This difference between them keeps dropping as queries
get larger. When the query size reaches 10% of the space,
the query I/Os for traditional R-tree is more than 95% of
that for the MVTree.

5 Conclusions

For sensor or moving object applications where data
is constantly evolving, traditional index structures give
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poor performance since they are optimised for query
performance in the presence of less frequent updates.
We introduced the MVTree for this high update
environment. Since the mean and variance are more stable
compared to the data values, the MVTree significantly
reduces the indexupdate cost.Wedevelopedalgorithms for
the creation andmaintenance of theMVTree, anddynamic
adjustment of mean and the variance for the index.
Experimental results showed the superior performance
of the proposed index structure. The MVTree trades
slightly worse query performance for much better overall
performance. We observe that the variance extension that
should be chosen in order to achieve optimal overall
performance is largely dependent on the update/query
ratio. In future work, we will develop a mathematical
model to determine the optimal variance extension and
optimise the query processing for MVTree.
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