IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 10, OCTOBER 2002

Query Indexing and Velocity Constrained
Indexing: Scalable Techniques for
Continuous Queries on Moving Objects

Sunil Prabhakar, Member, IEEE, Yuni Xia, Dmitri V. Kalashnikov,
Walid G. Aref, Member, IEEE, and Susanne E. Hambrusch, Member, |IEEE

Abstract—Moving object environments are characterized by large numbers of moving objects and numerous concurrent continuous
queries over these objects. Efficient evaluation of these queries in response to the movement of the objects is critical for supporting
acceptable response times. In such environments, the traditional approach of building an index on the objects (data) suffers from the
need for frequent updates and thereby results in poor performance. In fact, a brute force, no-index strategy yields better performance
in many cases. Neither the traditional approach nor the brute force strategy achieve reasonable query processing times. This paper
develops novel techniques for the efficient and scalable evaluation of multiple continuous queries on moving objects. Our solution
leverages two complimentary techniques: Query Indexing and Velocity Constrained Indexing (VCI). Query Indexing relies on

1) incremental evaluation, 2) reversing the role of queries and data, and 3) exploiting the relative locations of objects and queries. VCI
takes advantage of the maximum possible speed of objects in order to delay the expensive operation of updating an index to reflect the
movement of objects. In contrast to an earlier technique [29] that requires exact knowledge about the movement of the objects, VCI
does not rely on such information. While Query Indexing outperforms VCI, it does not efficiently handle the arrival of new queries.
Velocity constrained indexing, on the other hand, is unaffected by changes in queries. We demonstrate that a combination of Query
Indexing and Velocity Constrained Indexing enables the scalable execution of insertion and deletion of queries in addition to
processing ongoing queries. We also develop several optimizations and present a detailed experimental evaluation of our techniques.
The experimental results show that the proposed schemes outperform the traditional approaches by almost two orders of magnitude.

Index Terms—Moving objects, spatio-temporal indexing, continuous queries, query indexing.

<+

INTRODUCTION

HE combination of personal locator technologies [19],

[34], global positioning systems [23], [33], and wireless
[11] and cellular telephone technologies enables new
location-aware services, including location and mobile
commerce (L- and M-commerce). Current location-aware
services allow proximity-based queries, including map
viewing and navigation, driving directions, searches for
hotels and restaurants, and weather and traffic information.
They include GPS-based systems like Vindigo and
SnapTrack and cell-phone based systems like TruePosition
and Cell-Loc.

These technologies are the foundation for pervasive
location-aware environments and services. Such services
have the potential to improve the quality of life by adding
location-awareness to virtually all objects of interest, such as
humans, cars, laptops, eyeglasses, canes, desktops, pets,
wild animals, bicycles, and buildings. Applications can
range from proximity-based queries on nonmobile objects,
locating lost or stolen objects, tracing small children,
helping the visually challenged to navigate, locate, and

o The authors are with the Department of Computer Sciences, Purdue
University, West Lafayette, IN 47907 .
E-mail: {sunil, xia, dvk, aref, seh}@cs.purdue.edu.

Manuscript received 15 July 2001; revised 15 May 2002; accepted 20 May
2002.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 116594.

identify objects around them, and to automatically annotat-
ing objects online in a video or a camera shot. Examples of
such services are emerging for locating people [19] and
managing emergency vehicles [21]. These services corre-
spond to queries that are executed over an extended period
of time (i.e., from the time they are initiated to the time at
which the services are terminated). During this time period,
the queries are repeatedly evaluated in order to provide the
correct answers as the locations of objects change. We term
these queries Continuous Queries. A fundamental type of
continuous query required to support many of the services
mentioned above is the range query.

Our work assumes that objects report their current
location to stationary servers. By communicating with these
servers, objects can share data with each other and discover
information (including location) about specified and sur-
rounding objects. Throughout the paper, the term “object”
refers to an object that 1) knows its own location and 2) can
determine the locations of other objects in the environment
through the servers.

This paper develops novel techniques for the efficient
and scalable evaluation of multiple continuous range
queries on moving objects. Our solution leverages two
complimentary techniques: Query Indexing and Velocity
Constrained Indexing. Query Indexing gives almost two
orders of magnitude improvement over traditional techni-
ques. It relies on 1) incremental evaluation, 2) reversing the
role of queries and data, and 3) exploiting the relative

0018-9340/02/$17.00 © 2002 IEEE

locations of objects and queries. Velocity constrained
indexing (VCI) enables efficient handling of changes to
queries. VCI allows an index to be useful even when it does
not accurately reflect the locations of objects that are
indexed. It relies upon the notion of maximum speeds of
objects. Our model of object movement makes no assump-
tions for query-indexing. For the case of VCI, we assume
only that each object has a maximum velocity that it will not
exceed. If necessary, this value can be changed over time.
We do not assume that objects need to report and maintain
a fixed speed and direction for any period of time, as in [29].
The velocity constrained index remains effective for large
periods of time without the need for any updates,
independent of the actual movement of objects. Naturally,
its effectiveness drops over time and infrequent updates are
necessary to counter this degradation. A combined
approach of these two techniques enables the scalable
execution of insertion and deletion of queries in addition to
processing ongoing queries. We also develop several
optimizations for: 1) reducing communication and evalua-
tion costs for Query Indexing—safeRegions, 2) efficient
postprocessing with VCI through Clustering, and 3) efficient
updates to VCI—Refresh and Rebuild. A detailed experi-
mental evaluation of our techniques is conducted. The
experimental results demonstrate the superior performance
of our indexing methods as well as their robustness to
variations in the model parameters.

Our work distinguishes itself from related work in that it
addresses the issues of scalable execution of concurrent
continuous queries (as the numbers of mobile objects and
queries grow). This paper argues that the traditional query
processing approaches, where objects are indexed and
queries are posed to these indexes, may not be the relevant
paradigm in moving object environments. Due to the large
number of objects that move, the maintenance of indexes
tends to be very expensive. In fact, as our experiments
demonstrate, these high costs make the indexes more
inefficient than simple scans over the entire data, even for
two-dimensional data.

The rest of this paper proceeds as follows: Related work
is discussed in Section 2. Section 3 describes the traditional
solution and our assumptions about the environment.
Section 4 presents the approach of Query Indexing and
related optimizations. The alternative scheme of Velocity
Constrained Indexing is discussed in Section 5. Experi-
mental evaluation of the proposed schemes is presented in
Section 6 and Section 7 concludes the paper.

2 RELATED WORK

The growing importance of moving object environments is
reflected in the recent body of work addressing issues such
as indexing, uncertainty management, broadcasting, and
models for spatio-temporal data. To the best of our
knowledge, no existing work addresses the timely execu-
tion of multiple concurrent queries on a collection of
moving objects as proposed in the following sections. We
do not make any assumption about the future positions of
objects. It is also not necessary for objects to move according
to well-behaved patterns, as in [29]. In particular, the only
constraint imposed on objects in our model is that, for

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 10, OCTOBER 2002

Velocity Constrained Indexing (discussed in Section 5), each
object has a maximum speed at which it can travel (in any
direction).

Indexing techniques for moving objects are being
proposed in the literature, e.g., [8], [20] index the histories,
or trajectories, of the positions of moving objects, while [29]
indexes the current and anticipated future positions of the
moving objects. In [18], trajectories are mapped to points in
a higher-dimensional space which are then indexed. In [29],
objects are indexed in their native environment with the
index structure being parameterized with velocity vectors
so that the index can be viewed at future times. This is
achieved by assuming that an object will remain at the same
speed and in the same direction until an update is received
from the object.

Uncertainty in the positions of the objects is dealt with by
controlling the update frequency [24], [37], where objects
report their positions and velocity vectors when their actual
positions deviate from what they have previously reported
by some threshold. Tayeb et al. [32] use quadtrees [30] to
index the trajectories of one-dimensional moving points.
Kollios et al. [18] map moving objects and their velocities
into points and store the points in a kD-tree. Pfoser et al.
[26], [25] index the past trajectories of moving objects that
are presented as connected line segments. The problem of
answering a range query for a collection of moving objects is
addressed in [3] through the use of indexing schemes using
external range trees. Wolfson et al. [36], [38] consider the
management of collections of moving points in the plane by
describing the current and expected positions of each pointin
the future. They address how often to update the locations of
the points to balance the costs of updates against imprecision
in the point positions. Spatio-temporal database models to
support moving objects, spatio-temporal types, and support-
ing operations have been developed in [12], [13].

Scalable communication in the mobile environment is an
important issue. This includes location updates from objects
to the server and relevant data from the server to the
objects. Communication is not the focus of this paper. We
propose the use of Safe Regions to minimize communication
for location updates from objects. We assume that the
process of dissemination of safe regions is carried out by a
separate process. In particular, this can be achieved by a
periodic broadcast of safe regions. Efficient broadcast
techniques are proposed in [1], [2], [14], [15], [16], [17],
[40]. In particular, the issue of efficient (in terms of battery-
time and latency) broadcast of indexed multidimensional
data (such as safe regions) is addressed in [14].

3 MovING OBJECT ENVIRONMENT

3.1 Pervasive Location-Aware Computing
Environments

Fig. 1 sketches a possible hierarchical architecture of a
location-aware computing environment. Location detection
devices (e.g., GPS devices) provide the objects with their
geographical locations. Objects connect directly to regional
servers. Regional servers can communicate with each other,
as well as with the repository servers. Data regarding past
locations of objects can be archived at the repository servers.
We assume that 1) the regional servers and objects have low

PRABHAKAR ET AL.: QUERY INDEXING AND VELOCITY CONSTRAINED INDEXING: SCALABLE TECHNIQUES FOR CONTINUOUS QUERIES... 3

Data
Broadcast

Satellite

@) Uplink

AN

Regional

AN

&

Repository (T
E E Server W

Server

Mobile Link

Mobile \ y
Object \ §©
Y
% \
Fig. 1. lllustrating a location-aware environment.

bandwidth and a high cost per connection and 2) repository
servers are interconnected by high bandwidth links. This
architecture is similar to that of current cellular phone
architectures [31], [35]. For information sent to the objects,
we consider point-to-point communication as well as
broadcasting. Broadcasting allows a server to send data to
a large number of “listening” objects [1], [2], [14], [15], [16],
[40]. Key factors in the design of the system are scalability
with respect to large numbers of objects and the efficient
execution of queries.

In traditional applications, GPS devices tend to be
passive, i.e., they do not exchange any information with
other devices or systems. More recently, GPS devices are
becoming active entities that transmit and receive informa-
tion that is used to affect processing. Examples of these new
applications include vehicle tracking [21], identification of
closest emergency vehicles in Chicago [21], and Personal
Locator Services [19]. Each of these examples represents
commercial developments that handle small scale applica-
tions. Another example of the importance of location
information is the emerging Enhanced 911 (E911) [39]
standard. The standard seeks to provide wireless users the
same level of emergency 911 support as wireline callers. It
relies on wireless service providers calculating the approx-
imate location of the cellular phone user. The availability of
location-awareness would further enhance the ability of
emergency services to respond to a call, e.g., using medical
history of the caller. Applications such as these, improve-
ments in GPS technology, and reducing cost augur the
advent of pervasive location-aware environments. The
PLACE (Pervasive Location-Aware Computing Environ-
ments) project at Purdue University is addressing the
underlying issues of query processing and data manage-
ment for the moving object environments [28]. Connectivity

(possibly bidirectional) e

Data %
Down-link

is achieved through wireless links as well as mobile
telephone services.

3.2 Continuous Query Processing

Location-aware environments are characterized by large
numbers of moving (and stationary) objects. These environ-
ments will be expected to provide several types of location
centric services to users. Examples of these services include:
navigational services that aid the user in understanding her
environment as she travels, subscription services wherein a
user identifies objects or regions of interest and is
continuously updated with information about them, and
group management services that enable the coordination
and tracking of collections of objects or users. To support
these services, it is necessary to efficiently execute several
types of queries, including range queries, nearest-neighbor
queries, density queries, etc. An important requirement in
location-aware environments is the continuous evaluation
of queries. Given the large numbers of queries and moving
objects in such enviroments, and the need for a timely
response for continuous queries, efficient and scalable
query execution is paramount.

In this paper, we focus on range queries. The solutions
need to be scalable in terms of the number of total objects,
degree of movement of objects, and the number of
concurrent queries. Range queries arise naturally and
frequently in spatial applications such as a query that
needs to keep track of, for example, the number of people
that have entered a building. Range queries can also be
useful as preprocessing tools for reducing the amount of
data that other queries, such as nearest-neighbor or density,
need to process.

4

3.3 Model

In our model, objects are represented as points and queries
are expressed as rectangular spatial regions. Therefore,
given a collection of moving objects and a set of queries, the
problem is to identify which objects lie within (i.e., are
relevant to) which queries. We assume that objects report
their new locations to the server periodically or when they
have moved by a significant distance. Updates from
different objects arrive continuously and asynchronously
at the server. The location of each object is saved in a file on
the server. Since all schemes incur the cost of updating this
file and the updating is done in between the evaluation
intervals, we do not consider the cost of updating this file as
objects move. Objects are required to report only their
location, not the velocity. There is no constraint on the
movement of objects except that the maximum possible
speed of each object is known and not exceeded (this is
required only for Velocity Constrained Indexing). We
expect that, at any given time, only a small fraction of the
objects will move.

Ideally, each query should be reevaluated as soon as an
object moves. However, this is impractical and may not
even be necessary from the user’s point of view. We
therefore assume that the continuous evaluation of queries
takes place in a periodic fashion whereby we determine the
set of objects that are relevant to each continuous query at
fixed time intervals. This interval, or time step, is expected
to be quite small (e.g., in [18], it is taken to be one minute)—
our experiments are conducted with a time interval of
50 seconds.

3.4 Limitations of Traditional Indexing

In this section, we discuss the traditional approaches to
answering queries for moving objects and their limitations.
Our approaches are presented in Sections 4 and 5.

A brute force method to determine the answer to each
query compares each query with each object. This approach
does not make use of the spatial location of the objects or
the queries. It is not likely to be a scalable solution, given
the large numbers of moving objects and queries.

Since we are testing for spatial relationships, a natural
alternative is to build a spatial index on the objects. To
determine which objects intersect each query, we execute
the queries on this index. All objects that intersect with a
query are relevant to the query. The use of the spatial index
should avoid many unnecessary comparisons of queries
against objects and we thereby expect this approach to
outperform the brute force approach. This is in agreement
with conventional wisdom on indexing. In order to evaluate
the answers correctly, it is necessary to keep the index
updated with the latest positions of objects as they move.
This represents a significant problem. Notice that, for the
purpose of evaluating continuous queries, we are not
interested in preserving the historical data but rather only
in maintaining the current snapshot. The historical record of
movement is maintained elsewhere, such as at a repository
server (see Fig. 1).

In Section 6, we evaluate three alternatives for keeping the
index updated. As we will see in Section 6, each of these gives
very poor performance. The poor performance of the
traditional approach of building an index on the data (i.e.,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 10, OCTOBER 2002

the objects) can be traced to the following two problems: 1)
Whenever any object moves, it becomes necessary to
reexecute all queries and 2) the cost of keeping the index
updated is very high. In the next two sections, we develop two
novel indexing schemes that overcome these limitations.

4 QUERY INDEXING: QUERIES AS DATA

The traditional approach of using an index on object
locations to efficiently process queries for moving objects
suffers from the need for constant updates to the index and
reevaluation of all queries whenever any object moves. We
propose an alternative that addresses these problems, based
upon two key ideas:

e treating queries as data and the data as queries, and

e incremental evaluation of continuous queries.

We also develop the notion of safe regions that exploit the
relative location of objects and queries to further improve
performance.

In treating the queries as data, we build a spatial index
such as an R-tree on the queries instead of the customary
index that is built on the objects (i.e., data). We call this the
Query-Index or Q-index. To evaluate the intersection of
objects and queries, we treat each object as a “query” on the
Q-index (i.e., we treat the moving objects as queries in the
traditional sense). Exchanging queries for data results in a
situation where we execute a larger number of queries (one
for each object) on a smaller index (the Q-index) as compared
to an index on the objects. This is not necessarily advanta-
geous by itself. However, since not all objects change their
location at each time step, we can avoid a large number of
“queries” on the Q-index by incrementally maintaining the
result of the intersection of objects and queries.

Incremental evaluation is achieved as follows: Upon
creation of the Q-index, all objects are processed on the Q-
index to determine the initial result. Following this, we
incrementally adjust the query results by considering the
movement of objects. At each evaluation time step, we
process only those objects that have moved since the last time
step and adjust their relevance to queries accordingly. If most
objects do not move during each time step, this can greatly
reduce the number of times the Q-index is accessed. For
objects that move, the Q-index improves the search perfor-
mance as compared to a comparison against all queries.

Under the traditional indexing approach, at each time
step, we would first need to update the index on the objects
(using one of the alternatives discussed above) and then
evaluate each query on the modified index. This is
independent of the movement of objects. With the “Queries
as Data” or the Q-index approach, only the objects that have
moved since the previous time step are evaluated against
the Q-index. Building an index on the queries avoids the
high cost of keeping an object index updated; incremental
evaluation exploits the smaller numbers of objects that
move in a single time step to avoid repeating unnecessary
comparisons. Upon the arrival of a new query, it is
necessary to compare the query with all the objects in order
to initiate the incremental processing. Deletion of queries is
easily handled by ignoring those queries.

PRABHAKAR ET AL.: QUERY INDEXING AND VELOCITY CONSTRAINED INDEXING: SCALABLE TECHNIQUES FOR CONTINUOUS QUERIES...

SafeSphere
(5] om
_________ Moving
-
| - I L ® Object
T — AR 2
l |
f X |
Q7 | @]
e T | o8
|
' |
' i
a6 | I
l SafeRect |
l_ _______ -l
S a5
ry
Y ' aa
rrrrr SafeRect

Fig. 2. Examples of Safe Regions.

Further improvements in performance can be achieved
by taking into account the relative locations of objects and
queries. Next, we present optimizations based upon this
approach.

4.1 Safe Regions: Exploiting Query and Object

Locations

Consider an object that is far away from any query. This
object has to move a large distance before its relevance to
any query changes. Let SafeDist be the shortest distance
between object O and a query boundary. Clearly, O has to
move a distance of at least SafeDist before its relevance
with respect to any query changes. Thus, we need not check
the Q-index with O’s new location as long as it has not
moved by SafeDist. Similarly, we can define two other
measures of “safe” movement for each object:

e SafeSphere—a safe sphere (circle for two dimensions)
around the current location. The radius of this
sphere is equal to the SafeDist discussed above.

e SafeRect—a safe maximal rectangle around the

current location. Maximality can be defined in terms
of rectangle area, perimeter, etc.

Fig. 2 shows examples of each type of Safe Region. Note
that it is not important whether an object lies within or
outside a query that contributes to its safe region. Points X
and Y are examples of each type of point: X is not contained
within any query, whereas Y is contained in query Q;. The
two circles centered at X and Y are the SafeSphere regions for
X and Y, respectively, and the radii of the two circles are
their corresponding SafeDist values. Two examples of
SafeRect are shown for X. The SafeRect for Y is within Q4.
Note that, for X, other possibilities for SafeRect are possible.
With each approach, only objects that move out of their safe
region need to be evaluated against the Q-index. These
measures identify ranges of movement for which an object’s
matching does not change and, thus, it need not be checked
against the Q-index. This significantly reduces the number
of accesses to Q-index. Note that, for the SafeDist technique,
we need to keep track of the total distance traveled since
SafeDist was computed. Once an object has traveled more
than SafeDist, it needs to be evaluated against the Q-index

until SafeDist is recomputed. On the other hand, for the
SafeSphere and SafeRect measures, an object could exit the
safe region, and then reenter it at a later time. While the
object is inside the safe region, it need not be evaluated
against Q-index. While it is outside the safe region, it must
be evaluated at each time step.

The safe region optimizations significantly reduce the
need to test data points for relevance to queries if they are
far from any query boundaries and move slowly. Recall that
each object reports its location periodically or when it has
moved by a significant distance since its last update. This
decision can be based upon safe region information sent to
each object. Thus, the object need not report its position
when it is within the safe region, thereby reducing
communication and the need for processing at the server.
The effectiveness of these techniques in reducing the
number of objects that need to report their movement is
studied in Section 6. Even though we do not perform any
recomputation of the safe regions in our experiments, we
find that the safe region optimizations are very effective. It
should be noted that multiple safe regions can be combined
to produce even larger safe regions. By definition, there are
no query boundaries in a safe region. Hence, there can be no
query boundary in the union of the two safe regions.

4.2 Computing the Safe Regions

The Q-index can be used to efficiently compute each of the
safe regions. SafeDist is closely related to a nearest-neighbor
query since it is the distance to the nearest query boundary.
A branch-and-bound algorithm similar to that proposed for
nearest neighbor queries in [27] is used. The algorithm in
[27] prunes the search based upon the distances to queries
and bounding boxes that have already been visited. Our
SafeDist algorithm is different in that the distance between
an object and a query is always the shortest distance from
the object to a boundary of the query, whereas, in [27], this
distance is zero if the object is contained within the query."
To amortize the cost of SafeDist computation, we combine it
with the evaluation of the object on the Q-index, i.e., we

1. Please note that, in [27], the role of objects and queries is not reversed
as it is here.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 10, OCTOBER 2002

‘ Vmax, K, MBR, MBR,, empty
— A]
| |
Vmax, Kk, | MBR, MBR,, empty Vmax, | k, | MBR, MBR,, | empty
/ """"""""""" e e !
A il A ..
‘Vmax3 ky | MBR, MBR,, | empty ‘Vmax5 ks | MBR, MBR ¢ empty
. e el @ e e —e—
« A « N v A
‘ Data file

Fig. 3. Example of Velocity Constrained Index (VCI).

execute a combined range and a modified nearest-neighbor
query. The modification is that the distance between an
object and a query is taken to be the shortest distance to any
boundary, even if the object is contained in the query
(normally, this distance is taken to be zero for nearest-
neighbor queries). The combined search executes both
queries in parallel, thereby avoiding repeated retrieval of
the same nodes. SafeSphere is simply a circle centered at the
current location of the object with a radius equal to SafeDist.

Given an object and a set of query rectangles, there exist
various methods for determining safe rectangles. The
related problem of finding a largest empty rectangle has
been studied extensively and solutions vary from O(n) to
O(nlog®n) time (where n is the number of query rectan-
gles), depending on restrictions on the regions [4], [5], [6],
[22]. For our application, finding the “best,” or maximal,
rectangle is not important for correctness (any empty
rectangle is useful), we use a simple O(n?) time implemen-
tation for computing a safe rectangle. The implementation
allows adaptations leading to approximations for the largest
empty rectangle. The algorithm for finding the SafeRect for
object O is as follows:

1. If object O is contained in a query, choose one such
query rectangle and determine the relevant inter-
secting or contained query rectangles. If object O is
not contained in a query rectangle, we consider all
query rectangles as relevant. Let £ be the set of
relevant query rectangles.

2. Take object O as the origin and determine which
relevant rectangles lie in which of the four induced
quadrants. For each quadrant, sort the corner
vertices of query rectangles that fall into this
quadrant. For each quadrant, determine the dom-
inating points [10].

3. The dominating points create a staircase for each
quadrant. Use the staircases to find the empty
rectangle with the maximum area (using the
property that a largest empty rectangle touches at
least one corner of the four staircases).

We investigated several variations of this algorithm for
safe rectangle generation. Variations include determining a
largest rectangle using only a subset of the query rectangles
to determine relevant rectangles and limiting the number of
combinations of corner points considered in the staircases.

In order to determine a good subset of query rectangles, we
use the available SafeDist-value in a dynamic way. The
experimental work for safe rectangle computations is based
on generating safe rectangles which consider only query
rectangles in a region that is 10 times the size of SafeDist.

5 VELOcCITY CONSTRAINED INDEXING

In this section, we present a second technique that avoids
the two problems of traditional object indexing (viz. the
high cost of keeping an object index updated as objects
move and the need to reevaluate all queries whenever an
object moves). The key idea is to avoid the need for
continuous updates to an index on moving objects by
relying on the notion of a maximum speed for each object.
Under this model, an object will never move faster than its
maximum speed. We term this approach, Velocity Con-
strained Indexing or VCI.

A VCl is a regular R-tree based index on moving objects
with an additional field in each node: v,,,,. This field stores
the maximum allowed speed over all objects covered by
that node in the index. The v;,4, entry for an internal node is
simply the maximum of the v,,q, entries of its children. The
Umae €ntry for a leaf node is the maximum allowed speed
among the objects pointed to by the node. Fig. 3 shows an
example of a VCL. The vy,,, entry in each node is maintained
in a manner similar to the MBRs of each entry in the node,
except that there is only one vy,, entry per node as
compared to an MBR per entry of the node. When a node is
split, the vy,,, for each of the new nodes is copied from the
original node.

Consider a VCI that is constructed at time t,. At this time,
it accurately reflects the locations of all objects. At a later
time ¢, the same index does not accurately capture the
correct locations of points since they may have moved
arbitrarily. Normally, the index needs to be updated to be
useful. However, the v,,,, fields enable us to use this old
index without updating it. We can safely assert that no
point will have moved by a distance larger than
R = vy (t — tp). If we expand each MBR by this amount
in all directions, the expanded MBRs will correctly enclose
all underlying objects. Therefore, in order to process a query
at time ¢, we can use the VCI created at time ¢, without
being updated by simply comparing the query with the

PRABHAKAR ET AL.: QUERY INDEXING AND VELOCITY CONSTRAINED INDEXING: SCALABLE TECHNIQUES FOR CONTINUOUS QUERIES... 7

id
|
R MBR, LR
Expanded .
MBRs ‘
o
_____________ Vo
R I G
o
«R MBR, R~
MBR,
o
............. N cceaanaaaaan
Query

(a)
Fig. 4. Query processing with Velocity Constrained Index (VCI).

expanded version of the MBRs saved in VCI. At the leaf
level, each point object is replaced by a square region of side
2R for comparison with the query rectangle.”

An example of the use of the VCI is shown in Fig. 4a,
which shows how each of the MBRs in the same index node
are expanded and compared with the query. The expanded
MBR captures the worst-case possibility that an object that
was at the boundary of the MBR at ¢, has moved out of the
MBR region by the largest possible distance. Since we are
storing a single v, value for all entries in the node, we
expand each MBR by the same distance, R = vyq,(t — to). If
the expanded MBR intersects with the query, the corre-
sponding child is searched. Thus, to process a node, we
need to expand all the MBRs stored in the node (except
those that intersect without expansion, e.g., M BRj3 in Fig. 4).
Alternatively, we could perform a single expansion of the
query by R and compare it with the unexpanded MBRs. An
MBR will intersect with the expanded query if and only if
the same MBR after expansion intersects with the original
query. Fig. 4b shows the earlier example with query
expansion. Expanding the query once per node saves some
unnecessary computation.

The set of objects found to be in the range of the query
based upon an old VCI is a superset, S, of the exact set of
objects that currently are in the query’s range. Clearly, there
can be no false dismissals in this approach. In order to
eliminate the false positives, it is necessary to determine the
current positions of all objects in S’. This can be achieved
through a postprocessing step. The current location of the
object is retrieved from disk and compared with the query
to determine the current matching. Note that it is not
always necessary to determine the current location of each
object that falls within the expanded query. From the
position recorded in the leaf entry for an object, it can move
by at most R. Thus, its current location may be anywhere
within a circle of radius R centered at the position recorded
in the leaf. If this circle is entirely contained within the
unexpanded query, there is no need to postprocess this

2. Note that it should actually be replaced by a circle, but the rectangle is
easier to handle.

MBR,
Expanded
Que
v Query
................... s e e e oA
byl
|
MBR,
MBR,
« R ‘ 59. R
. X

object for that query. Object X in Fig. 4b is an example of
such a point.

It should be noted that, although the expansion of MBRs
in VCI and the time-evolving MBRs proposed in [29] are
similar techniques, the two are quite different in terms of
indexing of moving objects. A key difference between the
two is the model of object movement. Saltenis et al. [29]
assume that objects report their movement in terms of
velocities (i.e., an object will move with fixed speed in a fixed
direction for a period of time). In our model, the only
assumption is that an object cannot travel faster than a
certain known velocity. In fact, for our model, the actual
movement of objects is unimportant (as long as the
maximum velocity is not exceeded). The time varying
MBRs [29] exactly enclose the points as they move, whereas
VCI pessimistically enlarges the MBRs to guarantee en-
closure of the underlying points. Thus, VCI requires no
updates to the index as objects move, but postprocessing is
necessary to take into account actual object movement. The
actual movement of objects has no impact on VCI or the cost
of postprocessing. Of course, as time passes, the amount of
expansion increases and more postprocessing is required.

5.1 Clustered VCI

To avoid performing an I/O operation for each object that
matches each expanded query, it is important to handle the
postprocessing carefully. We can begin by first preproces-
sing all the queries on the index to identify the set of objects
that need to be retrieved for any query. These objects are
then retrieved only once and checked against all queries.
This eliminates the need to retrieve the same object more
than once. We could still retrieve the same page containing
several objects multiple times. To avoid multiple retrievals
of a page, the objects to be retrieved can first be sorted on
page number. Alternatively, we can build a clustered index.
Clustering may reduce the total number of pages to be
retrieved. We use the clustering option, i.e., the order of
objects in the file storing their locations is organized
according to the order of entries in the leaves of the VCL
Clustering can be achieved efficiently following creation of
the index. A depth first traversal of the index is made and

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51, NO. 10, OCTOBER 2002

TABLE 1
Parameters Used in the Experiments

Parameter | Meaning Values

N Number of Objects 100,000

m Number of objects that move at each time step | 1000 — 10,000

q Number of queries 1 -10,000

Vinaz Overall maximum speed for any object 50mph, 125mph, 250mph, 500mph

each object is copied from the original location file to a new
file in the sequential order and the index pointer is
appropriately adjusted to point to the newly created file.
By default, the index is not clustered. As is seen in Section 6,
clustering the index improves the performance by roughly a
factor of 3.

5.2 Refresh and Rebuild

The amount of expansion needed during query evaluation
depends upon two factors: the maximum speed, v;,q,, Of the
node and the time that has elapsed since the index was
created, (t —ty). Thus, over time, the MBRs get larger,
encompassing more and more dead space, and may not be
minimal. Consequently, as the index gets older, its quality
gets poorer. Therefore, periodically, it is necessary to rebuild
the index. This essentially resets the creation time and
generates an index reflecting the changed positions of the
objects. Rebuilding is an expensive operation and cannot be
performed too often. A cheaper alternative to rebuilding the
index is to refresh it. Refreshing simply updates the locations
of objects to the current values and adjusts the MBRs so that
they are minimal. Following refresh, the index can be
treated as though it has been rebuilt.

Refreshing can be achieved efficiently by performing a
depth first traversal of the index. For each entry in a leaf
node, the latest location of the object is retrieved (sequential
1/0 if the index is clustered). The new location is recorded
in the leaf page entry. When all the entries in a leaf node are
updated, we compute the MBR for the node and record it in
the parent node. For directory nodes when all MBRs of its
children have been adjusted, we compute the overall MBR
for the node and record it in the parent. This is very efficient
with the depth first traversal. Although refresh is more
efficient than a rebuild, it suffers from not altering the
structure of the index—it retains the earlier structure. If
points have moved significantly, they may better fit under
other nodes in the index. Thus, there is a tradeoff between
the speed of refresh and the quality of the index. An
effective solution is to apply several refreshes, followed by a
less frequent rebuild. Experimentally, we found that
refreshing works very well.

6 EXPERIMENTAL EVALUATION

In this section, we present the performance of the new
indexing techniques and compare them to existing techni-
ques. The experiments reported are for two-dimensional
data; however, the techniques are not limited to two

dimensions. The various indexing techniques were imple-
mented as R*-trees [9] and tested on synthetic data. The
dataset used consists of 100,000 objects composed of a
collection of five normal distributions each with 20,000
objects. The mean values for the normal distribution are
uniformly distributed and the standard deviation is 0.05
(the points are all in the unit square). The centers of queries
are also assumed to follow the same distribution, but with a
standard deviation of 0.1 or 1.0. The total number of queries
is varied between 1 and 10,000 in our experimentation. Each
query is a square of side 0.01. Other experiments with
different query sizes were also conducted, but, since the
results are found to be insensitive to the query size, they are
not presented. More important than query size is the total
number of objects that are covered by the queries and the
number of queries.

The maximum velocities of objects follow a Zipf
distribution with an overall maximum value of V,,,,. For
most experiments, V.., was set to 0.00007—if we assume
that the data space represents a square of size 1,000 miles
(as in [18]), this corresponds to an overall maximum
velocity of 250 miles an hour. In each experiment, we fix
the fraction of objects, m, that move at each time step. This
parameter was varied between 1,000 and 10,000. The time
step is taken to be 50 seconds. At each time step, we
randomly select m objects and, for each object, we move it
with a velocity between 0 and the maximum velocity of the
object in a random direction. The page size was set to
2,048 bytes for each experiment. As is customary, we use
the number of I/O requests as a metric for performance.
The top two levels of each index were assumed to be in
memory and are not counted toward the I/O cost. The
various parameters used are summarized in Table 1.

6.1 Traditional Schemes

We begin with an evaluation of Brute Force and traditional
indexing. Updating the index to reflect the movement of
objects can be achieved using several techniques:

1. Insert/Delete: Each object that moves is first deleted
and then reinserted into the index with its new
location.

2. Reconstruct: The entire index structure can be
recomputed at each time step.

3. Modify: The positions of the objects that move during
each time step are updated in the index.

The modify approach is similar to the technique for

handling movement of points proposed by Saltenis et al.

PRABHAKAR ET AL.: QUERY INDEXING AND VELOCITY CONSTRAINED INDEXING: SCALABLE TECHNIQUES FOR CONTINUOUS QUERIES... 9

TABLE 2
Performance of Traditional Techniques

Parameters Number of I/O Operations

m q Reconstruct | Insert/Delete | Modify | Brute Force
1,000 | 1,000 211,817 5,865 3,806 1,010
1,000 | 10,000 228,308 22,356 20,298 5,100
10,000 | 1,000 211,817 43,413 22,581 1,010
10,000 | 10,000 228,308 59,904 39,072 5,100

[29] wherein the bounding boxes of the nodes are expanded
to accommodate the past, current, and possibly future
positions of objects. The modify approach differs from these
because it does not save past or future positions in the
index, which is acceptable since the purpose of this index is
primarily to answer continuous queries based upon the
current locations of the objects. The approach of [29]
assumes that objects move in a straight line with a fixed
speed most of the time. Whenever the object’s speed or
velocity changes, an update is sent. The index is built using
this speed information. Their experimental results are based
upon objects moving between cities which are assumed to
be connected by straight roads and the objects move with
very regular behavior—for the first sixth of a route, they
accelerate at a constant rate to one of three maximum
velocities, which they maintain until the last sixth of the
route at which point they decelerate. Our model for object
movement is more general and does not require that objects
maintain a given velocity for any point in time. Under this
model, the approach of [29] is not applicable.

Table 2 shows the relative performance of these schemes in
terms of the number of I/O operations performed. The
performance of these approaches does not vary over time,
hence we simply report a single value for each combination of
m and ¢. We assume that the top two levels of the index are
memory resident. For these experiments, that roughly
corresponds to about 21 pages in memory. The I/O numbers
for Brute Force are evaluated assuming efficient use of 21
buffers: 20 buffers are assumed to hold blocks of queries.

From the table, it is clear that the Brute Force approach
gives the best performance in all cases. This is largely due to
the fact that this approach does not need to maintain any
structures as objects move. We assume that there are
enough buffers to hold only the first two levels of the other
indexes when computing brute force. The Reconstruct
approach is clearly the poorest since it is too expensive to
build the index at each time step. The Insert/Delete scheme
incurs roughly double the I/O cost that Modify incurs to
update the index, while their query cost is the same.

We point out that, while the Brute Force approach has the
lowest I/O cost, it may not be the best choice. The reason is
that, unlike the other schemes which employ an index on
the objects to significantly reduce the number of compar-
isons needed, Brute Force must compare each object with
each query. Thus, it is typically going to incur almost three
orders of magnitude more comparisons than the others! An

earlier experiment to measure the total time required for
Modify and Brute Force showed that their performance is
very comparable, despite the low 1/O cost of Brute Force [7].
Except for this special case, the I/O cost is a good measure
of performance.

6.2 Safe Region Optimizations

We now study the performance of the safe region
optimizations among themselves. For each scheme, we plot
the Reduction Rate: the fraction of moved objects that are
within their safe region. These objects do not need to report
their location. We study the effectiveness of each measure
as time passes. Figs. 5 and 6 show the results for various
combinations of m and g¢. For example, Fig. 5b shows the
reduction rates for 10 percent objects moving at each time
step and 1,000 queries. Each of the safe regions is computed
at time 0. As long as the object is within its safe region, it
does not report its new location. As expected, the fraction of
objects that remain within their safe regions drops as time
passes (shown along the x-axis). For example, after 100 time
steps, 95 percent of the objects are still within their SafeRect
and need not report their positions, whereas 83 percent of
the objects are within their SafeDist. Thus, SafeRect is more
effective in reducing the need for objects reporting their
locations. An important point to note is that, even though
we do not recompute the safe regions in our experiments,
we find that the safe region optimizations remain very
effective for large durations. This is important since the cost
of computing these measures is high. The cost of computing
SafeDist and SafeSphere is on the order of 13 I/O operations
per object for the case of 10,000 queries. The cost of
computing SafeRect is significantly higher—around 52 I/Os
per object. These high costs do not adversely affect the gains
from these optimizations since the recomputations can be
done infrequently.

A common trend across all graphs is that the SafeRect
measure is most effective. SafeSphere is never worse in
performance than SafeDist. This is not surprising since
SafeSphere augments SafeDist with the center information to
provide a safe region as opposed to an absolute measure of
movement. Thus, under SafeSphere an object can reenter the
safe region, whereas an object that has moved by SafeDist
must always be tested against Q-index until SafeDist is
recomputed. To see why SafeRect outperforms SafeSphere,
consider that the SafeSphere pessimistically limits the region
of safety in all directions by the shortest distance from the

10
of objs: 100K, moving: 1K, query: 1K
1 T T T T T T T T T
T AT B gme By B3 Ty el g
I U P ———— S P
" o g
08 - B
i) 06 [SafeDist 4
& SafeSphere -+-
= SafeRect =
K<)
ks)
3
S
<
[04 F E
02 1
0 L L ! L L L I L L
0 100 200 300 400 500 600 700 800 900 1000
Time
(@)
Fig. 5.
of objs: 100K, moving: 1K, query: 10K
1 T T T T T T T T T
SafeDist
SafeSphere —-
SafeRect -©
08 | .. - Icl el 7
See R = W Bpeee @@ @ -
15 a 2] -
o 0.6 - b
©
i
<
L
k<)
3
S
<
- 04 E
N -
P . . %
“ B e R
02| N p
0 ! L I L I L I L I
0 100 200 300 400 500 600 700 800 9200 1000
Time
(@)

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

Reduction Rate

Reduction Rate

NO. 10, OCTOBER 2002

of objs: 100K, moving: 10K query: 1K
T T T T

1 T T T I
O o3 .z oA
[EREEE e IR R L = T C IR S L
e e E e ——. L A A
- e U IR —,
08 | e i
N47 .
S
0.6 -]
SafeDist «—
SafeSphere
SafeRect -+---
04]
02]
[L L I L L L L ! '
0 100 200 300 400 500 600 700 800 9200 1000
Time

Safe Region Optimizations with (a) 1 percent moving and 1 percent queries and (b) 10 percent moving and 1 percent queries.

of objs: 100K, moving: 10K, query: 10K
T T T T T

1 T T T
SafeDist
SafeSphere —-
SafeRect -0
08 o g
- =
-
B n
Fhoe
= a.
o g Beg
0.6 - T
04 E
L —
> R ST R i
0.2 S + -t by
Prmo— >
e e
0 I L I L I L I I I
0 100 200 300 400 500 600 700 800 9200 1000
Time

Fig. 6. Safe Region Optimizations with (a) 1 percent moving and 10 percent queries and (b) 10 percent moving and 10 percent queries.

object to a query boundary. On the other hand, SafeRect
selects four distances, one in each direction, to the nearest
query boundary. Thus, it is more likely to extend further
than the SafeSphere.® This is especially the case when the
number of queries gets very large, as is seen from Fig. 6a
and Fig. 6b, where SafeRect performs significantly better
than the other two optimizations as we go from 1,000 to
10,000 queries. The optimizations remain effective even
when the number of moving objects is increased 10-fold to
10,000, as is seen from the similarity between Fig. 5a and
Fig. 5b (also between Fig. 6a and Fig. 6b).

Incremental Evaluation and the Q-Index
Approach

We now compare the performance of the Q-index approach
with the traditional approaches. Let us first assume that
there is enough memory available to keep Q-index entirely
memory resident. Under this assumption, at each time step,

6.3

3. It should be noted that SafeRect can be more constraining than
SafeSphere in one or more directions.

we simply need to read in the positions of only those objects
that have moved since the previous evaluation. A separate
file containing only these points can be easily generated on
the server during the period between evaluations. Thus, the
I/0 cost of the Q-index approach is simply given by the
number of pages that make up this file. The safe region
optimizations further reduce the need for I/O by effectively
reducing the number of objects that report their updates.
Figs. 7 and 8 show the performance of the various schemes.
We do not present the traditional schemes due to the
performance being almost two orders of magnitude worse
(c.f. Table 2).

In Fig. 7a, the results with 1,000 queries and 10,000
objects moving at each time step are shown. The Q-index
approach requires 110 pages of I/O at each time step to
retrieve the new locations of the moved objects and process
them against the memory-resident Q-index. It should be
pointed out that this is actually sequential I/O. This is a
significant reduction from the I/O cost of the traditional
approaches as shown in Table 2 representing more than an

PRABHAKAR ET AL.:

of objs: 100K, moving: 10K, query: 1K
T T T T

120 . ‘ . .
100 SafeDist <+ B
SafeSphere -+
SafeRect -=--
Q-index -+
80 |
B
<1
< 60 |
1
40 - o
o “
P
SIPNDECS et i G - e S -
PSS -
20 . } |
L= I S BB B B T EF
0 I) ‘) .
0 100 200 300 400 500 600 700 800 900 1000
Time
(@)

QUERY INDEXING AND VELOCITY CONSTRAINED INDEXING: SCALABLE TECHNIQUES FOR CONTINUOUS QUERIES... 11

of objs: 100K, moving: 1K, query: 1K
T T

24 | Safedist =—
SafeSphere |
SafeRect -+i--
22 Q-index x|
20
18 E
k7] 16 b
o
[&]
g 14 | g
12 - S £
F e T e Torpmm == = S SRR
10| B e N L A= T e T g B B
s L 1
6 L 1
L L L L L L . L L
0 100 200 300 400 500 600 700 800 900 1000
Time

(b)

Fig. 7. Performance of the Q-index techniques with (a) 10 percent moving and 1 percent queries, (b) 1 percent moving and 1 percent queries.

of objs: 100K, moving: 1K query: 10K

112 T T T

I ‘ ‘ " SafeDist ——
SafeSphere -+
SafeRect ---=--
Q-Index
10 -
108 | N /) o
Tyt s SN . (R) e e o
@
Q
© 106 |
Q
104 - |
=
102 - R Rt T B S e Yo i
100 L L ! ! . ‘ ‘ . ‘
4] 100 200 300 400 500 600 700 800 900 1000

Time

Fig. 8. Performance of the Q-index techniques with 1 percent moving and 10 percent queries with memory-resident Q-index.

order of magnitude improvement. The optimizations
further reduce the I/O cost by almost another order of
magnitude. Of course, this reduction reduces over time, but
not significantly, even for as many as 1,000 time steps.

For smaller numbers of moving objects, the Q-index
needs to perform proportionately smaller numbers of I/0
operations. This can be seen from Fig. 7b, where only 20
I/Os are needed at each time step for Q-index. As the
number of objects that move at each time step in increased,
the Q-index approach needs to perform increased I/O until,
eventually, a sequential scan of the entire data file is
required when virtually every object moves in each time
step. Thus, the approach scales well with the movement of
objects, gracefully degrading to a sequential scan.

The above experiments were conducted with 1,000
concurrent queries. If the number of queries is smaller,
Q-index will fit in memory and the I/O costs will be largely
unchanged. However, for larger numbers of queries, it is
possible that the entire index does not fit in main memory,
possibly resulting in page I/O for each object that is queried.

If the number of objects that need to be queried against the
Q-index islarge, this may significantly increase the amount of
I/0. Fig. 9 shows the performance of 10,000 queries with
10,000 objects moving at each time step under the assumption
that only the top two levels of Q-index are in memory. In
comparison to Fig. 8, which represents the assumption that
theindexis memory-resident,index /O exacts a high price. It
should be pointed out, however, that, even with this very
large increase inI/0, the Q-index approach is still superior to
the traditional approaches. For example, the I/O cost of
Modify with the two settings of m = 1,000 and ¢ = 10,000 is
20,298 and that of Brute Force is 5,100.

If we consider only 1/O for Brute Force, an incremental
version can outperform the Q-index-based approach if the Q-
index does not fit in memory. Consider the above case with
10,000 queries and 1,000 objects moving at each time step.
This corresponds to 100 pages for queries and 10 pages for
objects that move at each time. If we assume that B + 1 buffers
are available, then brute force can evaluate all queries with
[0 (B + 10) I/O operations. With as few as 21 buffers, this

2000 T T

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

of objs: 100K, moving: 1K, query: 10K
T T T

NO. 10, OCTOBER 2002

T T T T
* x / X N >
x - s) RS
1800 | % g # o
1600 - b
Py =N N 5/\
1400 = ey o A = N - T |
1200 - SafeDist —— o
— SafeSphere -—-
4 SafeRect 4
© 1000 | Qindex 4
o) Incremental Brute Force —--
800 4
600 i
E = g8 = o
awo L &g [B e T - N] . =] i
200 bl
0 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Time

Fig. 9. Performance of Q-index techniques with 1 percent moving and 10 percent queries.

requires only 1501/Os as compared to over 1,800 for Q-index!
However, as pointed out earlier, the Brute Force approach
pays a high computation price that offsets the reduced I/0.
To validate this claim, we conducted an experiment where
we measured the total time taken (in seconds) by Brute Force
and the other proposed approaches. The results are shown
in Table 3 for two sets of values of m and ¢. We see that,
although Brute Force would have only a fraction of the I/O
operations required by the others, it is actually slower
overall. We again point out that this anomaly of I/O time
not translating to overall performing happens only for Brute
Force due to its inordinately large numbers of comparisons.

6.3.1 Impact of Velocity

From the above experiments, we find that the incremental
Q-index approach and optimizations scale well with varia-
tions in the number of moving objects and queries. To study
the impact of the degree of movement of the objects, we
conducted two experiments where we altered the speed
distributions. Fig. 10 shows the performance with the
maximum allowable speed for any object, V},,, reduced by
a factor of two. The results with a V},,,, corresponding to 500
miles per hour are very similar except that the optimizations
arealittleless effective. The relative performance of the newly
proposed schemes is unaffected by these changes in the
allowable speeds of objects. We see only a slight change in the
effectiveness of the optimizations.

TABLE 3
Impact of CPU Cost

m q Brute Force | Q-index | SafeSphere | SafeRect
1000 | 10,000 3.6s 1.7s 0.9s 0.5s
10,000 | 10,000 37s 3.1s 1.3s 1.1s

6.3.2 Denser Object Locations

We now investigate the effect of a much denser set of
objects and queries corresponding to a smaller region, such
as a city. In this experiment, the range of the space is
reduced from 1,000 miles by 1,000 miles to a 10 mile by
10 mile region. The number of objects is maintained at
100,000 with 1,000 moving at each time step. The number of
queries is 10,000. Since a city is likely to have a more
uniform distibution, we increased the standard deviation to
0.8. Also, the maximum speed is reduced from 250 miles
per hour to 50 miles per hour. The performance for these
settings is shown in Fig. 11. In comparison with the wider
area setting (c.f. Fig 8), we can see that the performance is
poorer by about a factor of 10. This reduction in
performance is not surprising since the safe region
optimizations are less effective. This is directly related to
the rate at which objects exit their safe regions. The
important point, however, is that the Q-Index approaches
are still an order of magnitude better than the traditional
approaches.

6.4 Velocity Constrained Indexing

Next, we discuss the performance of the Velocity Con-
strained Indexing (VCI) technique. There are two compo-
nents of the cost for VCI: 1) preprocessing to evaluate the
expanded queries on VCI and 2) postprocessing to
eliminate false positives. Since the VCI approach is
unaffected by the actual number of objects that move at
each time step (i.e., m), all objects were moved at each time
step. Fig. 12a shows the performance of VCI for 100,000
objects moving at each time instant and 100 queries. The
preprocessing cost increases with time since the queries get
larger due to greater expansion, resulting in more parallel
path searches on the VCIL Similarly, postprocessing cost
increases with time since more and more false positives are
likely to be found with increased query expansions. The
graph shows the postprocessing cost and the total cost as
time since creation of VCI. The cost of a sequential scan of
the entire object file is also shown.

PRABHAKAR ET AL.: QUERY INDEXING AND VELOCITY CONSTRAINED INDEXING: SCALABLE TECHNIQUES FOR CONTINUOUS QUERIES... 13

120 T T

of objs: 100K, moving: 10K,
T T T

query: 1K
T

100

80 -

60

1/0 Cost

40

SafeDist —— o
SafeSphere -+
SafeRect -&--
Q-index

e . il
20 | P e RN —+]
[i B SRR £ B = T N I L
0 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Time

Fig. 10. Q-index techniques with 10 percent moving and 1 percent queries and V},,, = 125mph.

of objs: 100K, moving: 1K query: 10K

I I I I SafeDistI ——

SafeSphere -+
. SafeRect ---&--
s Q-Index -
> ¥ > ke
! < * g N
- Hrgnas o
¥ b Q s
a c A
/ . i =
= BB

2000 T T T T
1900 .
B 2 *. -
x ¥
1800 |- o LR
@
1700 -
%
[e]
S 1600
g o O----g--
1500 | e
1400 -
1300
1200 L L L L
0 100 200 300 400

500 600 700 800 900 1000
Time

Fig. 11. Q-index techniques for Dense data with 1 percent moving and 10 percent queries.

The total cost approaches that of a sequential scan after
about 150 time steps, at which point the VCI is not effective
—it would be more efficient to scan the file instead of using
the index. Fig. 12b shows the improvement due to clustering.
There is a very significant improvement in postprocessing
cost, resulting in about 400 fewer I/O operations at each time
step. Thus, clustering extends the utility of the VCI from
about 150 time steps to over 400 time steps.

6.4.1 Refresh and Rebuild

Fig. 13 shows the impact of applying a refresh to the VCL
The refresh helps reduce both the pre and postprocessing
costs. The preprocessing cost is reduced since the MBRs
better fit the underlying data and the clock for query
expansion is reset. This improves the quality of the index
resulting in faster query processing. The postprocessing
cost is reduced since there will be fewer false positives as a
result of a “tighter” index. The overall cost is reduced by
almost 600 I/O operations immediately following the
refresh. Over time, it again degrades and another refresh
is applied, etc. The refresh period can be adjusted as

necessary. In this experiment, the refresh was performed to
keep the total cost below that of a sequential scan. The
application of a rebuild has a very similar effect to that of a
refresh. The difference would show up only for very large
time intervals when objects have moved so much that the
old VCI organization is inefficient. The effect of rebuilding
would be very similar to that of running the test again from
time step 0, hence we do not consider it here.

6.4.2 Sensitivity to Parameters

The VCI approach is not affected by the actual movement of
objects (other than through the maximum speeds). Thus, the
costs would not change even if all the objects were moving
at each time instant! On the other hand, the VCI approach is
very sensitive to the number of queries. The above graphs
are for only 100 queries. If the number of queries is
increased to 1,000, we find that the preprocessing cost
increases proportionately, as does the postprocessing cost.
Very soon after creation of the VCI, its performance
degrades to worse than a sequential scan, forcing frequent
refreshing. This impacts the performance and renders the

of objs: 100K, moving: 100K, 100 queries
1800 T T T T T T T

Sequential Scan
Postprocessing

1600 |- Total -----) g

1400 |- e]

1200

1000

Page 1/O

800 |- .
600 [T 1

400 | 1

200 | i

L ! L L L I L L
0 50 100 150 200 250 300 350 400 450 500
Time

(@)

Fig. 12. Performance of Velocity Constrained Indexing. (a) No clustering.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 10, OCTOBER 2002

of objs: 100K, moving: 100K, 100 queries
1800 T T T T T T T

Sequential Scan
Clustered,Postprocessing
Clustered, Total ----- 7

1600
1400 - 4

1200

1000

Page 1/O

800 |- .
600 |-) -
400 |- e 1

200 - I |

! L
250 300
Time

L I L I ! I
0 50 100 150 200 350 400 450 500

(b)

(b) With clustering.

4500 T

4000 - Sequential Scan
Refresh, Post
Refresh, Total

Postprocessing
Total

3500

3000

2500

1/0 Cost

2000

1500 -

1000 e

of objs: 100K, moving: 100K, 100 queries
T T T T

500 -

Fig. 13. Impact of refresh on Velocity Constrained Indexing.

scheme unusable. Thus, VCl is a reasonable approach when
the queries cover a small number of objects. With 10 queries,
we find that the graph scales down roughly linearly too,
e.g., for a single query the postprocessing and total costs are
6 and 17 I/Os, respectively. To study the impact of denser
distributions of queries, we repeated the above tests for the
VCI approach with a query set having one-tenth the
standard deviation of the other tests (viz. 0.1). The results
are shown in Fig. 14. The relative performance of the graphs
is very similar to that seen with a broader distribution
except that the degradation toward a sequential scan occurs
much faster. This is expected since each query now covers
more objects on the average.

The maximum speed of objects is clearly an important
parameter for the VCI approach. To study the impact of
Vinaz (the overall maximum speed of any object) on
performance, we conducted several experiments with
different values of V},,,. The results very closely resemble
those obtained earlier for VCI. The major impact of changes
in maximum speed is that the time scale gets stretched

800 1000 1200
Time

1400

(contracted) if V},,, is reduced (increased). The stretching is
linearly related to the changes in speed. Other than this
difference, the graphs are very similar. This is not
surprising because the important factor in determining the
performance of VCI is the amount of expansion that a query
experiences: R = Unqy(t — o) (Umas is the maximum velocity
field stored in the node being examined). With double the
speed, we need half the time difference to achieve the same
expansion. Therefore, if the max speed in increased by a
large factor, such as with the experiment on the 10 miles by
10 miles range (this is effectively increasing the speed of the
objects), VCI becomes quite ineffective. In fact, with
10 queries, a sequential scan would be better after only
45 seconds.

6.4.3 Comparison to Q-Index

Our experimental work indicates that the Q-index approach
outperforms the VCI approach. For even a hundred queries,
VCI incurs between 280 and 880 I/O operations (Fig. 12).
For larger numbers of queries, it will certainly not incur any

PRABHAKAR ET AL.: QUERY INDEXING AND VELOCITY CONSTRAINED INDEXING: SCALABLE TECHNIQUES FOR CONTINUOUS QUERIES... 15

2500 T T T T

of objs: 100K, moving: 100K, 100 queries
T

Refresh, Postprocessing
Refresh, Total
Postprocessing

2000 Total

1500

1/0 Cost

1000

500 H

0 1 1 1 1

Sequential Scan —

0 50 100 150 200

250 300 350 400 450 500
Time

Fig. 14. Performance of Velocity Constrained Indexing with query std = 0.1.

less since each extra query will add to the query processing
cost as well as potentially generating new objects that need
to be postprocessed. In contrast, for 1,000 queries, Q-index
needs 110 I/Os without safe region optimizations and only
about 20 I/Os with the SafeRect optimization. A positive
aspect of VCI is that it is insensitive to variations in the
number of moving objects, m. Even if all the objects move,
the Q-index approach™ will incur a sequential scan. Thus, it
is possible that, for very few queries and very large
numbers of objects moving at each time instant, VCI could
outperform Q-index; however, this is not very practical.

The key advantage of (and also the motivation for
developing) Velocity Constrained Indexing is its ability to
handle arbitrary changes to the set of continuous queries.
The Q-index approach is forced to make a sequential scan of
the entire set of objects for each newly arriving query
(although queries that arrive within a single time step can
be handled with a single scan).

6.5 Combined Indexing Scheme

The results show that query indexing and safe region
optimizations significantly outperform the traditional index-
ing approaches and also the VCI approach. These improve-
ments in performance are achieved by eliminating the need to
evaluate all objects at each time step through incremental
evaluation. Thus, they perform well when there is little
change in the queries being evaluated. The deletion of queries
can be easily handled simply by ignoring the deletion until
the query can be removed from the Q-index. The deleted
query may be unnecessarily reducing the safe region for some
objects, but this does not lead to incorrect processing and the
correct safe regions can be recomputed in a lazy manner
without a significant impact on the overall costs.

The arrival of new queries, however, is expensive under
the query indexing approach as each new query must
initially be compared to every object. Therefore, a sequential
scan of the entire object file is needed at each time step that
a new query is received. Furthermore, a new query

4. Assuming there is enough memory to hold the queries—which is also
assumed by the VCI approach since it only handles small numbers of
queries.

potentially invalidates the safe regions, rendering the
optimizations ineffective until the safe regions are recom-
puted. The VCI approach, on the other hand, is unaffected
by the arrival of new queries (only the total number of
queries being processed through VCI is important). There-
fore, to achieve scalability under the insertion and deletion
of queries, we propose a combined scheme. Under this
scheme, both a Q-Index and a Velocity Constrained Index
are maintained. Continuous queries are evaluated incre-
mentally using the Q-index and the SafeRect optimization.
The Velocity Constrained Index is periodically refreshed
and less periodically rebuilt (e.g., when the refresh is
ineffective in reducing the cost). New queries are processed
using the VCI. At an appropriate time (e.g., when the
number of queries being handled by VCI becomes large), all
the queries being processed through VCI are transferred to
the Query Index in a single step. As long as not too many
new queries arrive at a given time (e.g., less than 10 in each
time step), this solution offers scalable performance that is
orders of magnitude better than the traditional approaches.

We now present the performance of the combined
scheme. The experiment is conducted with 100,000 objects
with 1 percent moving. The experiment begins with 10,000
queries and new queries arrive at the rate of 10 queries
every three minutes (actually, one query every 18 seconds).
Newly arriving queries are handled by the VCI index, while
the ongoing queries are processed using the Q-Index. When
the number of queries handled by the VCI index reaches a
threshold (100 in this experiment), we ingest the 100 queries
into the Q-Index in a single step. This ingestion requires
changes to the index structure and also potentially changes
the safe regions for the objects. We consider two approaches
for correcting the safe regions: recomputing all the safe
regions and modifying the safe regions by comparing them
against the ingested queries. Fig. 15 shows the combined
cost of the two indexes over time as objects arrive. Only the
SafeRect region is considered. As can be seen from the
graph, the combined cost remains very small until the point
at which the queries are ingested. At this time, a large
penalty is paid for computing the new SafeRect regions. The
recompute approach is very expensive; however, the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 51,

NO. 10, OCTOBER 2002

of objs: 100K, moving: 1K query: 10K, 10 new queries every 3 mins

6000

5000 -

4000 -

1/O cost

3000

2000

1000

I ‘ Hecompulte Safe Rec‘t

Modify SafeRect

400 600 800

Fig. 15. Performance of VCI and Q-index with dynamic queries.

modify approach does not incur a very large overhead. The
effect of three refreshes on the VCI is clearly visible.

It should be noted that, since the newly arriving queries
are incorporated into the Q-Index periodically, it is not
neccessary that all incoming queries need to be immediately
handled by VCL In fact, only urgent queries need to be
handled by VCI, others can begin their evaluation only after
the next time that queries are ingested into Q-Index. From
the results, we observe that, with this combined approach,
the overall performance is still much better than the
traditional approaches.

7 CONCLUSION

Moving object environments are characterized by large
numbers of moving objects and concurrent active queries
over these objects. Efficient continuous evaluation of these
queries in response to the movement of the objects is critical
for supporting acceptable response times. We showed that
the traditional approach of building an index on the objects
(data) can result in poor performance. In fact, a brute force,
no index strategy gives better performance in many cases.
Neither the traditional approach nor the brute force strategy
achieve reasonable performance.

We presented two novel indexing techniques for scalable
execution: Query Indexing and Velocity Constrained Indexing
(VCI). Our experimental results demonstrated that query
indexing achieves very significant improvement over the
traditional approaches (as much as two orders of magni-
tude), but does not efficiently handle the arrival of new
queries. Although the VCI approach gives good perfor-
mance only for small numbers of queries, it is unaffected by
changes in queries and actual object movement. Thus, we
see that the two techniques complement each other,
enabling a combined solution that efficiently handles not
only ongoing queries but also dynamically inserted queries.
The experiments also demonstrated the robustness of the
new techniques to variations in the parameters. The
combined schemes therefore achieve superior performance
to existing solutions for the efficient and scalable evaluation
of continuous queries over moving objects.

Il Il
1000 1200 1600

Time

1400 1800

ACKNOWLEDGMENTS
Work Supported by US National Science Foundation (INSF)

CAREER Grant IIS-9985019, NSF Grants 9988339-CCR,
9972883, and 0010044-CCR, a gift from Microsoft Corp.

REFERENCES

[1] S. Acharya, M.J. Franklin, and S. Zdonik, “Disseminating Updates
on Broadcast Disks,” Proc. 22nd Int’l Conf. Very Large Data Bases,
T.M. Vijayaraman et al., eds., pp. 354-365, Sept. 1996.

S. Acharya, R. Alonso, M.J. Franklin, and S.B. Zdonik, “Broadcast
Disks: Data Management for Asymmetric Communications
Environments,” Proc. 1995 ACM SIGMOD Int’l Conf. Management
of Data, pp. 199-210, May 1995.

P.K. Agarwal, L. Arge, and J. Erickson, “Indexing Moving Points,”
Proc. 2000 ACM SIGACT-SIGMOD-SIGART Symp. Principles of
Database Systems (PODS), May 2000.

A. Aggarwal and S. Suri, “Fast Algorithms for Computing the
Largest Empty Rectangle,” Proc. Third Symp. Computational
Geometry, pp. 278-290, 1987.

A. Aggarwal and]. Wein, “Computational Geometry,” Lecture
Notes for MIT, 1988.

N. Amenta, “Bounded Boxes, Hausdorff Distance, and a New
Proof of an Interesting Helly-Type Theorem,” Proc. Symp.
Computational Geometry, pp. 340-347, 1994.

W.G. Aref, SE. Hambrusch, and S. Prabhakar, “Information
Management in a Ubiquitous Global Positioning Environment,”
Technical Report 00-006, Dept. of Computer Sciences, Purdue
Univ., West Lafayette, Ind., Feb. 2000.

B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer, “An
Asymptotically Optimal Multiversion B-Tree,” The VLDB]., vol. 5,
no. 4, pp. 264-275, Dec. 1996.

N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The
R*-Tree: An Efficient and Robust Access Method for Points and
Rectangles,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
pp- 322-331, May 1990.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms. New York: McGraw-Hill, 1990.

US Wireless Corp., “The Market Potential of the Wireless Location
Industry,” http://www.uswcorp.com/USWCMainPages/laby.
htm, year?

L. Forlizzi, RH. Guting, E. Nardelli, and M. Scheider, “A Data
Model and Data Structures for Moving Objects Databases,” Proc.
ACM SIGMOD Conf., May 2000.

R.H. Guting, M.H. Bohlen, M. Erwig, C.S. Jensen, N.A. Lorentzos,
M. Schneider, and M. Vazirgiannis, “A Foundation for Represent-
ing and Querying Moving Objects,” ACM Trans. Database Systems,
2000.

(2]

B3]

4

(5]
(6]

(7]

(8]

]

[10]

(11]

(12]

[13]

PRABHAKAR ET AL.: QUERY INDEXING AND VELOCITY CONSTRAINED INDEXING: SCALABLE TECHNIQUES FOR CONTINUOUS QUERIES... 17

(14]

[15]

[10]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

[20]

(27]

(28]

(29]

(30]

(31]

(32]

[33]

(34]

(33]

[30]

(371

(38]

[39]

[40]

S.E. Hambrusch, C.-M. Liu, W. Aref, and S. Prabhakar, “Query
Processing in Broadcasted Spatial Index Trees,” Proc. Seventh Int’l
Symp. Spatial and Temporal Databases (SSTD 2001), July 2001.

Q. Hu, W.-C. Lee, and D.L. Lee, “Power Conservative Multi-
Attribute Queries on Data Broadcast,” Proc. Int’l Conf. Data Eng.
(ICDE), pp. 157-166, 2000.

Q. Hu, W.-C. Lee, and D.L. Lee, “A Hybrid Index Technique for
Power Efficient Data Broadcast,” Distributed and Parallel Databases,
vol. 9, no. 2, pp. 151-177, 2001.

T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Energy
Efficient Indexing on Air,” Proc. Int’'l Conf. Management of Data,
R.T. Snodgrass and M. Winslett, eds., pp. 25-36, May 1994.

G. Kollios, D. Gunopulos, and V.J. Tsotras, “On Indexing Mobile
Objects,” Proc. 1999 ACM SIGACT-SIGMOD-SIGART Symp.
Principles of Database Systems (PODS), June 1999.

H. Koshima and J. Hoshen, “Personal Locator Services Emerge,”
IEEE Spectrum, vol. 37, no. 2, pp. 41-48, Feb. 2000.

A. Kumar, V]J. Tsotras, and C. Faloutsos, “Designing Access
Methods for Bitemporal Databases,” IEEE Trans. Knowledge and
Data Eng., vol. 10, no. 1, pp. 1-20, 1998.

Trimble Navigation Ltd. , “Trimble Customer Solutions,” http://
www.trimble.com/solution/index.htm, 1999.

M. McKenna,]J. O'Rourke, and S. Suri, “Finding the Largest
Rectangle in an Orthogonal Polygon,” Proc. 23rd Allerton Conf.
Comm., Control, and Computing, pp. 486-495, 1985.

Rand McNally, “Streetfinder GPS for Palm IIIc Connected
Organizer,” http://www.randmcnally.com/palmIllc/index.
ehtml#receiver, year?

D. Pfoser and C.S. Jensen, “Capturing the Uncertainty of Moving-
Objects Representations,” Proc. SSDBM Conf., pp. 123-132, 1999.
D. Pfoser, C.S. Jensen, and Y. Theodoridis, “Novel Approaches in
Query Processing for Moving Objects,” Proc. 26th Int’l Conf. Very
Large Databases (VLDB), Sept. 2000.

D. Pfoser, Y. Theodoridis, and C.S. Jensen, “Indexing Trajectories
of Moving Point Objects,” Technical Report CH-99-3, Chorochro-
nos Technical Report, June 1999.

N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest Neighbor
Queries,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
pp- 71-79, 1995.

S. Prabhakar, S. Hambrusch, and W. Aref, “Pervasive Location-
Aware Computing Enviroments,” http://www.cs.purdue.edu/
place, year?

S. Saltenis, C. Jensen, S. Leutenegger, and M. Lopez, “Indexing the
Position of Continuously Moving Objects,” Proc. ACM SIGMOD
Conf., May 2000.

H. Samet, The Design and Analysis of Spatial Data Structures.
Reading, Mass.: Addison-Wesley, 1990.

A.P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao, “Modeling
and Querying Moving Objects,” Proc. 14th Int’l Conf. Data Eng.
(ICDE '97), pp. 422-432, 1997.

J. Tayeb, O. Ulusoy, and O. Wolfson, “A Quadtree-Based Dynamic
Attribute Indexing Method,” The Computer |., vol. 41, no. 3, pp. 185-
200, 1998.

TruePosition, “What Is Trueposition Cellular Location System?”
http:/ /www.trueposition.com/intro.htm, year?

J. Werb and C. Lanzl, “Designing a Positioning System for Finding
Things and People Indoors,” IEEE Spectrum, vol. 35, no. 9, pp. 71-
78, Sept. 1998.

O. Wolfson, “Research Issues on Moving Object Databases
(Tutorial),” Proc. ACM SIGMOD Conf., p. 581, May 2000.

O. Wolfson, S. Chamberlain, S. Dao, L. Jiang, and G. Mendez,
“Cost and Imprecision in Modeling the Position of Moving
Objects,” Proc. 14th Int’l Conf. Data Eng. (ICDE '98), Feb. 1998.

O. Wolfson, P.A. Sistla, S. Chamberlain, and Y. Yesha, “Updating
and Querying Databases that Track Mobile Units,” Distributed and
Parallel Databases, vol. 7, no. 3, pp. 257-387, 1999.

O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang, “Moving Objects
Databases: Issues and Solutions,” Proc. Scientific and Statistical
Database Management (SSDBM) Conf., pp. 111-122, 1998.

J.M. Zagami, S.A. Parl,].J. Bussgang, and K.D. Melillo, “Providing
Universal Location Services Using a Wireless €911 Location
Network,” IEEE Comm. Magazine, Apr. 1998.

S. Zdonik, M. Franklin, R. Alonso, and S. Acharya, “Are ’'Disks in
the Air’ Just Pie in the Sky?” Proc. IEEE Workshop Mobile
Computing Systems and Applications, Dec. 1994.

Sunil Prabhakar received the Bachelor of
Technology in electrical engineering from the
Indian Institute of Technology, Delhi, in 1990
and the MS and PhD degrees in computer
science from the University of California, Santa
Barbara in 1998. He is an assistant professor in
the Department of Computer Sciences at Pur-
due University. Dr. Prabhakar’s research inter-
ests are in large-scale data management,
parallel and multimedia databases, and digital
watermarking. His research has been supported by the US National
Science Foundation (NSF), Microsoft Corp., IBM Corp., and the Center
for Education and Research in Information Assurance and Security
(CERIAS) at Purdue University. He is a recepient of the NSF CAREER
award. He is a member of the editorial board for the Journal of Database
Management and a member of the IEEE and ACM.

Yuni Xia received the BS degree from Huaz-
hong University of Science and Technology in
the People’s Republic of China. She is a third
year PhD student in the Department of Compu-
ter at Purdue Universtiy. Her research interests
are in database management, database access
methods, evolving databases, spatiotemporal
databases, and data dissemination. Currently,
she is working on efficient data structures for
indexing mobile objects.

Dmitri V. Kalashnikov received the MS degree
in computer science from the Computer Science
Department, Purdue University, West Lafayette,
Indiana, in 2001; the diploma of Moscow State
University, Moscow, Russia, in 1999, where he
was a student in the Computational Mathematics
and Cybernetics (a.k.a. CS) Department. Cur-
rently, he is a PhD student in the Computer
Science Department of Purdue University. He is
working on efficient main memory and 1/O
techniques for constantly evolving data. He has received several
scholarships, awards, and honors in the USA and Russia, including an
Intel Fellowship. His research interests include database systems and
networking. He is a member of the ACM.

Walid G. Aref received the PhD degree in
computer science from the University of Mary-
land, College Park, in 1993. Dr. Aref is currently
an associate professor at Purdue University. In
2001, Dr. Aref received the US National Science
Foundation (NSF) CAREER award for his
research on database technologies for emerging
applications. His primary research interests
include database indexing and query processing
in spatial and multimedia databases, data
mining, mobile databases, and bioinformatics. His activities have been
supported by several grants from the NSF, Purdue University, Microsoft,
and Panasonic. Dr. Aref is a member of the ACM and the IEEE.

Susanne E. Hambrusch received the Diplom
Ingenieur in computer science from the Techni-
cal University of Vienna, Austria, in 1977, and
the PhD degree in computer science from Penn
State University in 1982. She is a professor and
head of the Department of Computer Sciences
at Purdue University. Dr. Hambrusch’s research
interests are in analysis of algorithms, data
management and dissemination in wireless
environments, and parallel and distributed com-
putation. Her research has been supported by the US National Science
Foundation, Microsoft Corp., Us Office of Naval Research, and US
Defense Aadvanced Research Projects Agency. Dr. Hambrusch is a
member of the editorial board for Parallel Computing and Information
Processing Letters and she serves on the IEEE Technical Committee on
Parallel Processing. She is a member of the IEEE.

