
A Master Theorem for Discrete Divide and Conquer

Recurrences∗

Wojciech Szpankowski

Department of Computer Science

Purdue University

W. Lafayette, IN 47907

April 18, 2011

Dedicated to PHILIPPE FLAJOLET

PARIS 13, Paris 2011

∗Research supported by NSF Science & Technology Center, and Humboldt Foundation.

Outline

1. Divide and Conquer

2. Example: Boncelet’s Algorithm

3. Continuous Relaxation of the Recurrence

4. Master Theorem

5. Examples

6. Boncelet’s Algorithm Revisited

7. Sketch of Proof.

Divide and Conquer

Divide and Conquer:

A divide and conquer algorithm splits the input into several smaller

subproblems, solving each subproblem separately, and then knitting

together to solve the original problem.

Complexity:

A problem of size n is divided into m ≥ 2 subproblems of size ⌊pjn + δj⌋
and ⌈pjn+δ′j⌉ and each subproblem contributes bj, b

′
j fraction to the final

solution; there is a cost an associated with combining subproblems.

Total Cost:

The total cost T (n) satisfies the discrete divide and conquer recurrence:

T (n) = an +
m∑

j=1

bjT (⌊pjn + δj⌋) +
m∑

j=1

b′jT
(⌈

pjn + δ′j

⌉)
(n ≥ 2)

where 0 ≤ pj < 1 (e.g.,
∑m

i=1 pi = 1).

(Flajolet & Golin, Acta Informatica, 1994, simpler version for p1 = p2 = 1/2.)

Outline Update

1. Divide and Conquer

2. Example: Boncelet’s Algorithm

3. Continuous Relaxation of the Recurrence

4. Master Theorem

5. Examples

6. Boncelet’s Algorithm Revisited

7. Sketch of Proof.

Example: Boncelet’s Algorithm

Arithmetic entropy coders are stream coders, and therefore long input

streams are prone to transmission errors.

Boncelet’s algorithm is a variable-to-fixed block arithmetic data

compression coder with low complexity.

Example: Boncelet’s Algorithm

Arithmetic entropy coders are stream coders, and therefore long input

streams are prone to transmission errors.

Boncelet’s algorithm is a variable-to-fixed block arithmetic data

compression coder with low complexity.

1. A variable-to-fixed length encoder partitions a source string over an m-

ary alphabet into variable-length phrases.

2. Each phrase belongs to a given dictionary.

3. A dictionary is represented by a complete parsing tree.

4. The dictionary entries correspond to the leaves of the parsing tree.

Note: Tunstall variable-to-fixed scheme requires searching a codebook, so

is more complex.

Example: Boncelet’s Algorithm Recurrences

Let a sequence X be generated by a memoryless source over alphabet

A of size m with symbol probabilities pi, i ∈ A.

Using the Boncelet’s parsing tree, we parse X into phrases {v1, . . . vn} of

length ℓ(v1), . . . , ℓ(vn) with phrase probabilities P (v1), . . . , P (vn).

Phrase Length and its Probability Generating Function:

Let Dn be the phrase length while its probability generating function is

C(n, y) = E[yDn]. It satisfies the following divide & conquer recurrence:

C(n, y) = y

m∑

i=1

piC([pin + δi], y)

where [x] is the quantized value of x.

The average redundancy Rn of the Boncelet code is (H is the entropy):

Rn =
logn

E[Dn]
− H =

logn

d(n)
− H.

The expected phrase length d(n) = E[Dn] = C′(n, 1) satisfies the

following recurrence with d(0) = · · · = d(m − 1) = 0

d(n) = 1 +
m∑

i=1

pid([pin + δi])

These are discrete divide & conquer recurrences.

Outline Update

1. Divide and Conquer

2. Example: Boncelet’s Algorithm

3. Continuous Relaxation of the Recurrence

4. Master Theorem

5. Examples

6. Boncelet’s algorithm Revisited

7. Sketch of Proof.

Continuous Relaxation

We relax the discrete nature of the recurrence and consider a continuous

version:

T (x) = a(x) +

m∑

j=1

bjT (pjx)), x > 1, b
′
j = 0.

Akra and Bazzi (1998) proved that

T (x) = Θ

(
x
s0

(
1 +

∫ x

1

a(u)

us0+1
du

))

where s0 is a unique real root of
∑

j bjpj
s0 = 1.

Continuous Relaxation

We relax the discrete nature of the recurrence and consider a continuous

version:

T (x) = a(x) +
m∑

j=1

bjT (pjx)), x > 1, b′j = 0.

Akra and Bazzi (1998) proved that

T (x) = Θ

(
xs0

(
1 +

∫ x

1

a(u)

us0+1
du

))

where s0 is a unique real root of
∑

j bjpj
s0 = 1.

Indeed, by taking Mellin transform of the relaxed recurrence:

t(s) =

∫ ∞

0

T (x)xs−1dx

we find (for some a(s) and g(s))

t(s) =
a(s) + g(s)

1 −∑m
j=1 bjp

−s
i

.

An application of the Wiener-Ikehara theorem leads to

T (x) ∼ Cx
s0 with C =

a(−s0) + g(−s0)∑
j bjp

s0
j log(1/pj)

.

Outline Update

1. Divide and Conquer

2. Example: Boncelet’s Algorithm

3. Continuous Relaxation of the Recurrence

4. Master Theorem

5. Examples

6. Boncelet’s Algorithm Revisited

7. Sketch of Proof.

Discrete Divide & Conquer Recurrence by Dirichlet Series

For a sequence c(n) define the Dirichlet series as

C(s) =
∞∑

n=1

c(n)

ns

provided it exists for ℜ(s) > σc for some σc ≥ −∞.

Theorem 1 (Perron-Mellin Formula). For all σ > σc and all x > 0

∑

n<x

c(n) +
c(⌊x⌋)

2
[[x ∈ Z]] = lim

T→∞

1

2πi

∫ σ+iT

σ−iT

C(s)
xs

s
ds.

where [[P]] is 1 if P is a true proposition and 0 otherwise.

Discrete Divide & Conquer Recurrence by Dirichlet Series

For a sequence c(n) define the Dirichlet series as

C(s) =

∞∑

n=1

c(n)

ns

provided it exists for ℜ(s) > σc for some σc ≥ −∞.

Theorem 1 (Perron-Mellin Formula). For all σ > σc and all x > 0

∑

n<x

c(n) +
c(⌊x⌋)

2
[[x ∈ Z]] = lim

T→∞

1

2πi

∫ σ+iT

σ−iT

C(s)
xs

s
ds.

where [[P]] is 1 if P is a true proposition and 0 otherwise.

Example: Define c(n) = T (n + 2) − T (n + 1). Then

T (n) = T (2) + lim
T→∞

1

2πi

∫ c+iT

c−iT

T̃ (s)
(n − 3

2)
s

s
ds

for some c > σT̃ with

T̃ (s) =

∞∑

n=1

T (n + 2) − T (n + 1)

ns
.

where ℜ(s) > σT̃ .

Assumptions

Let an be a nondecreasing sequence. Define

Ã(s) =
∞∑

n=1

an+2 − an+1

ns

which is postulated to exists for ℜ(s) > σa.

Example. Define an = nσ(log n)α. Then

Ã(s) = σ
Γ(α + 1)

(s − σ)α+1
+

Γ(α + 1)

(s − σ)α
+ F̃ (s),

where F̃ (s) is analytic for ℜ(s) > σ − 1 and Γ(s) is the gamma function.

Define s0 to be the unique real root of

m∑

j=1

(bj + b′j) pj
s = 1.

Other zeros depend on the relation among log(1/p1), . . . , log(1/pm).

Rationally and Irrationally Related Numbers

Definition 1. (i) log(1/p1), . . . , log(1/pm) are rationally related if

log(1/p1), . . . , log(1/pm) are integer multiples of L, that is, log(1/pj) =
njL, nj ∈ Z, (1 ≤ j ≤ m).

(ii) Otherwise log(1/p1), . . . , log(1/pm) are irrationally related.

Example. If m = 1, then we are always in the rationally related case.

For m = 2, if log(1/p1)/ log(1/p2) = m/n, (m,n integers), then rationally

related.

Lemma 1. (i) If log(1/p1), . . . , log(1/pm) are irrationally related, then s0 is

the only solution on ℜ(s) = s0.

(ii) If log(1/p1), . . . , log(1/pm) are rationally related, then there are

infinitely many solutions

sk = s0 +
2πik

L
(k ∈ Z)

where log(1/pj) are all integer multiples of L.

Evaluation of T (n): A Bird View

We estimate T (n) by the Cauchy residue theorem.

T̃ (s) = Ã(s)+B(s)
1−
∑m

j=1(bj+b′j) p
s
j
,

T (n) = 1
2πi

∫ c+i∞
c−i∞ T̃ (s)

(n−3
2)

s

s ds

Main Master Theorem

Theorem 2 (D ISCRETE MASTER THEOREM). Let an = Cnσa(log n)α with

min{σ, α} ≥ 0.

(i) If log(1/p1), . . . , log(1/pm) are irrationally related, then

T (n) =

C1 + o(1) if σa ≤ 0 and s0 < 0,

C2log n + C′
2 + o(1) if σa < s0 = 0,

C3(log n)α+1(1 + +o(1)) if σa = s0 = 0

C4 n
s0 · (1 + o(1)) if σa < s0 and s0 > 0,

C5n
s0(log n)α+1 · (1 + o(1)) if σa = s0 > 0 and α 6= −1,

C5n
s0log log n · (1 + o(1)) if σa = s0 > 0 and α = −1,

C6(log n)α(1 + o(1)) if σa = 0 and s0 < 0,

C7n
σa(log n)α · (1 + o(1)) if σa > s0 and σa > 0.

(ii) If log(1/p1), . . . , log(1/pm) are rationally related, then T (n) behaves

as in the irrationally related case with the following two exceptions:

T (n) =

{
C2logn + Ψ2(logn) + o(1) if σa < s0 = 0,

Ψ4(log n)ns0 · (1 + o(1)) if σa < s0 and s0 > 0,

where C2 is positive and Ψ2(t),Ψ4(t) are periodic functions with period L
(with usually countably many discontinuities).

Extensions and Remarks

1. We can handle any an sequence with Dirichlet series Ã(s):

Ã(s) = g0(s)

(
log 1

s−σa

)β0

(s − σa)α0
+

J∑

j=1

gj(s)

(
log 1

s−σa

)βj

(s − σa)
αj

+ F̃ (s),

F̃ (s) is analytic, g0(σa) 6= 0, βj non-negative integers, and α0 real.

Then (under some additional conditions on the Fourier series of Ã(s)):

T (n) ∼ C nσ′(log n)α
′
(log logn)β

′
or T (n) ∼ Ψ(log n)ns0

σ′ = max{σ, s0}), depending whether log p1, . . . log pm are irrationally or

rationally related.

2. The periodic function Ψ(t) has the following building blocks

λ−t
∑

n≥1

Bn

λ

⌊
t− log n

L

⌋
+1

λ − 1

where λ > 1 and Bn is such that
∑

n≥1 Bnλ
−(log n)/L converges absolutely.

This function is discontinuous at

t = {log n/L},

where{x} = x − ⌊x⌋ denotes the fractional part of a real number x.

Outline Update

1. Divide and Conquer

2. Example: Boncelet’s Algorithm

3. Continuous Relaxation of the Recurrence

4. Master Theorem

5. Examples

6. Boncelet’s Algorithm Revisited

7. Sketch of Proof.

Examples

Example 1. Irrationally Related; Case 4:

T (n) = 2T (⌊n/2⌋) + 3T (⌊n/6⌋) + n logn

Here σa = 1 since an = n logn.

The equation

2 · 2−s
+ 3 · 6−s

= 1

has the (real) solution s0 = 1.402 . . . > 1, and finally log(1/2)/ log(1/6)
are irrationally related. Thus by our Master Theorem Case 4

T (n) ∼ Cns0

for some constant C > 0

Examples

Example 2. Irrationally Related; Case 6:

Consider the recurrence

T (n) = 2T (⌊n/2⌋) + 8

9
T (⌊3n/4⌋) + n2

log n
.

Here σa = s0 = 2, and we deal with irrationally related case. Furthermore,

Ã(s) = s log
1

s − 2
+ G(s)

for G(s) analytic for ℜ(s) > 1. By Master Theorem Case 6

T (n) ∼ Cn2log logn.

Example 3. Rationally Related (m = 1); Case 3:

Next consider

T (n) = T (⌊n/2⌋) + logn.

Here σa = s0 = 0, and we have rational case (m = 1). Since

Ã(s) =
1

s
+ G(s)

we conclude

T (n) ∼ C(log n)
2
.

Examples

Example 4: Karatsuba algorithm: Rationally Related (m = 1):

T (n) = 3T (⌈n/2⌉) + n

Here, s0 = (log 3)/(log 2) = 1.5849 . . . and s0 > σa = 1. Thus

T (n) = Ψ(log n)n
log 3
log 2 · (1 + o(1))

for some periodic function Ψ(t).

Examples

Example 5. Rationally Related (m = 1). The recurrence

T (n) =
1

2
T (⌊n/2⌋) + 1

n

is not covered by our Master Theorem but our methodology still works.

Here σa = s0 = −1 < 0. It follows that

T (n) = C
logn

n
+

Ψ(log n)

n
+ o

(
1

n

)

for a periodic function Ψ(t).

Example 6: Mergesort. Rationally Related.

The mergesort recurrences are

T (n) = T (⌊n/2⌋) + T (⌈n/2⌉) + n − 1,

Y (n) = Y (⌊n/2⌋) + Y (⌈n/2⌉) + ⌊n/2⌋.

Here σa = s0 = 1 and we deal with the rationally related case. By our

Master Theorem (cf. Flajolet & Golin, 1994)

T (n) =
1

log 2
n log n + nΨ(log n) + o(n),

Y (n) =
1

2 log 2
n logn + nΨ(log n) + o(n).

Outline Update

1. Divide and Conquer

2. Example: Boncelet’s Algorithm

3. Continuous Relaxation of the Recurrence

4. Master Theorem

5. Examples

6. Boncelet’s Algorithm Revisited

7. Sketch of Proof.

Boncelet’s Algorithm Revisited

Let a sequence X be generated by a memoryless source over alphabet

A of size m with symbol probabilities pi, i ∈ A.

Using the Boncelet’s parsing tree, we parse X into phrases {v1, . . . vn} of

length ℓ(v1), . . . , ℓ(vn) with phrase probabilities P (v1), . . . , P (vn).

Phrase Length and its Probability Generating Function:

Let Dn denote the phrase length and define the probability generating

function as

C(n, y) = E[y
Dn]

It satisfies the following discrete divide and conquer recurrence:

C(n, y) = y
m∑

i=1

piC([pin + δi], y)

The expected phrase length d(n) = E[Dn] = C′(n, 1) satisfies the

following discrete divide and conquer recurrence:

d(n) = 1 +

m∑

i=1

pid([pin + δi])

with d(0) = · · · = d(m − 1) = 0.

Main Results for Boncelet’s Algorithm

Theorem 3. Consider an m-ary memoryless source with probabilities pi > 0
and the entropy rate H =

∑m
i=1 pi log(1/pi).

(i) If log(1/p1), . . . log(1/pm) are irrationally related, then

d(n) =
1

H
log n − α

H
+ o(1),

where

α = E
′
(0) − H − H2

2H
,

H2 =
∑m

i=1 pi log
2 pi, and E′(0) is the derivative at s = 0 of a Dirichlet

series E(s) arises from the discrete nature of the recurrence.

(ii) If log(1/p1), . . . log(1/pm) are rationally related, then

d(n) =
1

H
logn − α + Ψ(log n)

H
+ O(n

−η
)

for some η > 0, where Ψ(t) is a periodic function of bounded variation

that has usually an infinite number of discontinuities.

Redundancy of the Boncelet’s Algorithm

Corollary 1. Let Rn denote the redundancy of the Boncelet code:

Rn =
logn

E[Dn

] − H =
logn

d(n)
− H.

(i) If log(1/p1), . . . log(1/pm) are irrationally related, then

Rn =
Hα

log n
+ o

(
1

logn

)
.

(ii) If log(1/p1), . . . log(1/pm) are rationally related, then

Rn =
Hα + Ψ(logn)

log n
+ o

(
1

logn

)
.

Tunstall Code Redundancy:

R
T
n =

H

logn

(
− logH − H2

2H

)
+ o

(
1

log n

)

for irrational case; in the rational case there is aperiodic function.

Example. Consider p = 1/3 and q = 2/3. Then one computes α =

E′(0)−H− H2
2H ≈ 0.322 while for the Tunstall code − logH− H2

2H ≈ 0.0496.

Limiting Distribution for the Phrase length

Theorem 4. Consider a memoryless source generating a sequence of

length n parsed by the Boncelet algorithm. If (p1, . . . , pm) is not the

uniform distribution, then the phrase length Dn satisfies the central limit

law, that is,
Dn − 1

H log n
√(

H2
H3 − 1

H

)
logn

→ N(0, 1),

where N(0, 1) denotes the standard normal distribution, H2 =∑m
i=1 pi log

2 pi, and and

E[Dn] =
logn

H
+ O(1),

VarDn ∼
(
H2

H3
− 1

H

)
logn

for n → ∞.

Outline Update

1. Divide and Conquer

2. Example: Boncelet’s Algorithm

3. Continuous Relaxation of the Recurrence

4. Master Theorem

5. Examples

6. Boncelet’s Algorithm Revisited

7. Sketch of Proof

Sketch of Proof

1. From the recurrence we have

T̃ (s) = Ã(s) +

m∑

j=1

bj

∞∑

n=1

T (⌊pj(n + 2) + δj⌋) − T (⌊pj(n + 1) + δj⌋)
ns

.

But defining

n =

⌊
k + 2 − δj

pj

⌋
− 2

for some integer k for which we have

⌊pj(n + 1) + δj⌋ = k + 1 and ⌊pj(n + 2) + δj⌋ = k + 2. Then

∞∑

n=1

T (⌊pj(n + 2) + δj⌋) − T (⌊pj(n + 1) + δj⌋)
ns

= Gj(s)+
∞∑

k=1

T (k + 2) − T (k + 1)
(⌊

k+2−δj
pj

⌋
− 2
)s .

for an explicit (and simple) analytic function Gj(s), namely

Gj(s) =
∑

3pj+δj−2≤k≤0

T (k + 2) − T (k + 1)
(⌊

k+2−δj
pj

⌋
− 2
)s .

Sketch of Proof – Continuation

2. We now compare the last sum to ps
jT̃ (s) and obtain

∞∑

k=1

T (k + 2) − T (k + 1)
(⌊

k+2−δj
pj

⌋
− 2
)s =

∞∑

k=1

T (k + 2) − T (k + 1)

(k/pj)s
−Ej(s) = p

s
jT̃ (s)−Ej(s),

where

Ej(s) =
∞∑

k=1

(T (k + 2) − T (k + 1))

1

(k/pj)s
− 1
(⌊

k+2−δj
pj

⌋
− 2
)s

 .

3. Defining

E(s) =
m∑

j=1

bjEj(s) and G(s) =
m∑

j=1

bjGj(s)

we finally obtain our final formula

T̃ (s) =
Ã(s) + G(s) − E(s)

1 −∑m
j=1 bj p

s
j

.

Asymptotics – Tauberian Theorem

For any sequence c(n) with Dirichlet series C(s) define

c(v) =
∑

n≤v

c(n).

Notice that the Mellin-Stieltjes transform of C(s) becomes

C(s) =
∑

n≥1

c(n)n−s =

∫ ∞

1−
v−sdc(v) = s

∫ ∞

1

c(v)v−s−1 dv.

Theorem 5 (Wiener-Ikehara). Suppose that for some constant A0 > 0, the

analytic function

F (s) = C(s) − A0

s − 1
(ℜ(s) > 1)

has a continuous extension to the closed half-plane ℜ(s) ≥ 1. Then

c(v) ∼ A0v, v → ∞.

More general version by Delange that covers singularities of algebraic-

logarithmic type.

Asymptotics – Perron-Mellin Formula

Inn order to provide error term and second order terms, one needs to use

the Perron-Mellin formula:

T (n) = T (2) + lim
T→∞

1

2πi

∫ c+iT

c−iT

T̃ (s)
(n − 3

2)
s

s
ds

Unfortunately, the integrals and series (of residues) are not absolutely

convergent because of the terms 1/s.

To remedy it we consider the auxiliary function (for any sequence (c(n))

c1(v) =

∫ v

0

∑

n≤w

c(n)

 dw

which is also given by

c1(v) =
1

2πi

∫ c+i∞

c−i∞
C(s)

vs+1

s(s + 1)
ds.

But to recover c(v), and then T (n), we need a Wiener-Ikehara Tauberian

result.

Asymptotics – Rationally Related Case

Previous methods generally cannot handle infinitely many poles on the line

ℜ(s) = s0! That is, it is not true that

c1(v) =

∫ v

0

c(w) dw ∼ Ψ1(log v) · vs0+1

implies c(v) ∼ Ψ(log v) · vs0.

Suppose that log pj = −njL for some real L > 0. In our case, we replace

the denominator 1 −
∑m

j=1 bjp
s
j with a single real root z0 = e−Ls0 by

1 −
m∑

j=1

bjz
nj = (1 − e

Ls0z)P (z), P (z) polynomial.

Then we prove the following

1

2πi
lim
T→∞

∫ c+iT

c−iT

1

1 − e−Lsλ

xs

s
ds =

λ

⌊
log x
L

⌋
+1 − 1

λ − 1
− 1

2
λ

⌊
log x
L

⌋

[[log x/L ∈ Z]].

where
⌊
log x
L

⌋
lead to fluctuations.

Sketch of Proof – Binary Boncelet’s Algorithm

1. Define

C(s, y) =
∞∑

n=1

C(n + 2, y) − C(n + 1, y)

ns
.

which from the basic recurrence becomes

C(s, y) =
(y − 1) − E(s, y)

1 − y(ps+1 + qs+1)
,

where E(s, y) converges (in the right half a plane) and satisfies E(0, y) =
0 and E(s, 1) = 0.

2. Let s0(y) be the real zero of

y(p
s+1

+ q
s+1

) = 1, q = 1 − p.

3. By Mellin-Perron formula and residue theorem we can prove that

C(n, y) = (1 + O(y − 1))n
s0(y)(1 + o(1))

where

s0(y) =
y − 1

H
+

(
H2

2H3
− 1

H

)
(y − 1)2 + O((y − 1)3).

Continuation

4. By setting y = et/(log n)1/2 we obtain

ns0(y) = exp

(
log n

(
y − 1

H
−
(

1

H
− H2

2H3

)
(y − 1)2 + O(|y − 1|3)

))

= exp

(
1

H
t
√

logn +
1

H

t2

2
−
(

1

H
− H2

2H3

)
t
2
+ O(t

3
/
√

log n)

)

= exp

(
1

H
t
√

logn +

(
H2

H3
− 1

H

)
t2

2
+ O(t3/

√
logn)

)

and consequently

E

[
eDnt/

√
log n
]
= C

(
n, et/

√
log n
)

= exp

(
1

H
t
√

logn +

(
H2

H3
− 1

H

)
t2

2

)
(1+o(1)).

arriving at

E

[
e
t(Dn− 1

H
log n)/

√
log n
]
= e

−(t/H)
√
log n

E

[
e
Dnt/

√
log n
]

= e
t2

2

(
H2
H3−

1
H

)

+ o(1).

By Goncharev’s theorem, this completes the proof.

That’s It

THANK YOU

