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Divide and Conquer

Divide and Conquer:

A divide and conquer algorithm splits the input intfo several smaller
subproblems, solving each subproblem separately, and then knitfing
together to solve the original problem.

Complexity:
A problem of size n is divided info m > 2 subproblems of size |p;n + J,]

and [p;n+4;] and each subproblem contributes b;, b’; fraction fo the final
solution; there is a cost a,, associated with combining subproblems.

Total Cost:
The total cost T'(n) satisfies the discrete divide and conquer recurrence:

T(n) = a, + i:bjT(ijnJréjJ) +ibgT (|pm+a]) (=2

where 0 < p; < 1(e.g., >~ pi = 1).

(Flajolet & Golin, Acta Informatica, 1994, simpler version for p; = py = 1/2.)
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Example: Boncelet’s Algorithm

Arithmetic entropy coders are stream coders, and therefore long input
streams are prone to fransmission errors,

Boncelet’s algorithm is a variable-to-fixed block arithmetic data
compression coder with low complexity.



Example: Boncelet’s Algorithm

Arithmetic entropy coders are stream coders, and therefore long input
streams are prone to fransmission errors,

Boncelet’s algorithm is a variable-to-fixed block arithmetic data
compression coder with low complexity.

1. A variable-to-fixed length encoder partitions a source string over an m-
ary adlphabet intfo variable-length phrases.

2. Each phrase belongs to a given dictionary.
3. A dictionary is represented by a complete parsing tree.
4. The dictionary enftries correspond to the leaves of the parsing tree.

\ 00

) ) . 011 , 010
Note: Tunstall variable-to-fixed scheme requires searching a codebook, so

is more complex.




Example: Boncelet’s Algorithm Recurrences

Let a sequence X be generated by a memoryless source over alphabet
A of size m with symbol probabilities p;, i € A.

Using the Boncelet’s parsing tfree, we parse X into phrases {vy, ... v,} of
length £(vq), .. ., £(v,) With phrase probabilities P(vy), ..., P(v,).

Phrase Length and its Probability Generating Function:
Let D, be the phrase length while its probability generating function is
C(n,vy) = E[y""]. It satisfies the following divide & conquer recurrence:

C(n,y) =vy ZI%C([Pm + 4, y)

1=1

where [z] is the quantized value of .
The average redundancy R,, of the Boncelet code is (H is the entropy):

R — logn - logn B
E[D,] d(n)
The expected phrase length d(n) = E[D,] = C’'(n,1) satfisfies the
following recurrence with d(0) = --- = d(m — 1) = 0

d(n) =1+ Z pid([pin + di])

1=1

These are discrete divide & conquer recurrences.
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Continuous Relaxation

We relax the discrete nature of the recurrence and consider a continuous
version:

T(x) =a(x) + ijT(pjac)), x> 1, b;- = 0.

Akra and Bazzi (1998) proved that

T(x) = © <x50 (1 + /f ngldu))

where s, is a unique real roof of > _. b;p;*0 = 1.




Continuous Relaxation

We relax the discrete nature of the recurrence and consider a continuous
version:

T(z) = a(z) + Z b,T(p;x)), =z >1, b, =0.

Akra and Bazzi (1998) proved ’rho’r

- (o 1+ [ 200)

where s, is a unique real roof of > . b;p;*0 = 1.

Indeed, by taking Mellin transform of the relaxed recurrence:

t(s) = /OO T(z)z’ 'da
0
we find (for some a(s) and g(s))

a(s) + g(s)
1 — Z;n:1 bjpi_s.

An application of the Wiener-lkehara theorem leads to

a(—s0) + g(—s0)
>, bip;0log(1/ps)

t(s) =

T(x) ~Czx™ with C =




N O ok DN~

Outline Update

Divide and Conquer

Example: Boncelet’s Algorithm
Continuous Relaxation of the Recurrence
Master Theorem

Examples

Boncelet’s Algorithm Revisited

Sketch of Proof.



Discrete Divide & Conquer Recurrence by Dirichlet Series

For a sequence c¢(n) define the Dirichlet series as

0. @)

C(s) = Z c(n

S

n=1

provided it exists for R(s) > o, forsome o, > —oo.
Theorem 1 (Perron-Mellin Formula). Foralloc > o. and all x > 0

Zc(n) + C(LxJ)[[a: € Z] = lim L/UJF?;TC’(S)Q;ds.

2 T=00 2704 J o _ar

where [ P] is 1 if P is a frue proposition and 0 otherwise.



Discrete Divide & Conquer Recurrence by Dirichlet Series

For a sequence c¢(n) define the Dirichlet series as

oo

C =34

n=1

provided it exists for R(s) > o. forsome o, > —oo.
Theorem 1 (Perron-Mellin Formula). Forallc > o. and allz > 0

Zc(n) + C(LxJ)ﬂx € Z] = lim L/UHTC’(s)a;ds.

2 T—o00 21 Jo—_iT

where [P] is 1 if P is a frue proposition and 0 otherwise.

Example: Define ¢(n) =T(n+2) — T(n + 1). Then
LT (= 9)°
T(n) =T(2) + lim —/ T(s)—=—ds
T—00 2T J e—iT S

forsome c > o7 with

= T(n—|—2)—T(n—|—1).

T(s) =3 -

n=1

where R(s) > o4,



Assumptions

Let a,, be a nondecreasing sequence. Define

Ap+4+2 — afn—|—1

A(s) =

||M8

which is postulated to exists for R(s) > o,.

Example. Define a,, = n?(logn)“. Then

MNa+1) N MNa+1)

(s —o)tt (s — o)

A(s) = + F(s),

where F(s) is analytic for R(s) > o — 1 and I'(s) is the gamma function.

Define sy to be the unique real root of
D> (b + b)) =1.
j=1

Other zeros depend on the relafion among log(1/p1), ..., log(1/pm).



Rationally and Irrationally Related Numbers

Definition 1. (i) log(1/p1), . . ., log(1/p.) are rationally related if
log(1/p1),...,log(1/pm) are infeger multioles of L, that is, log(1/p;) =
n;L,n; € Z, (1 <5< m)

(ii) Otherwise log(1/p1), . . .,log(1/p.) are irrationally related.

Example. If m = 1, then we are always in the rationally related case.
Form = 2, if log(1/p1)/ log(1/p2) = m/n, (m,n infegers), then rationally
related.

Lemma 1. (i) Iflog(1/p1),...,log(1/pm) are irrationally related, then s is
the only solution on R(s) = so.

(i /f log(1/p1),...,log(1/p,) are rationally related, then there are
infinitely many solutions
21k
sk =50+ — (k € Z)

where log(1/p;) are all integer multiples of L.



Evaluation of 7'(n): A Bird View

A(s)+B(s)

1

— o

fc+ioo i:,

cC—100

C 1= (b +b) Py

_3ys
(s)% ds



Main Master Theorem

Theorem 2 (DISCRETE MASTER THEOREM). Lef a,, = Cn““%(logn)® with
min{o, a} > 0.

M Iflog(1/p1), . ..,log(1/pm) are irrationally related, then
([ C1 + o(1) if o, < 0andsy < 0,
Chlogn + Cy, + o(1) ifo, < sp =0,
C3(logn)*t (1 4+ 40(1)) ifo,=5s0=0
T(n) .y Cyn’0 . (1 —+ 0(1)) if o, i so and sg > 0,

Csn0(logn)*™ - (1 +0(1)) ifo,=s0>0anda # —1,
CsnCloglogn - (1 + o(1)) ifo,=5s0>0anda = —1,
Cs(logn)“(1 + o(1)) ifo, =0andsy <0,
Cn(logm)® - (1 4+ o(1)) ifo, > soando, > 0.

\

(ii) /f log(1/p1), ..., log(1/py) are rationally related, then T'(n) behaves
as in the irrationally related case with the following fwo excepfions:

Chlogn + Vy(logn) +o(1) ifo, < sg =0,
VUy(logn)n® - (14 o(1)) ifo, < soand sy > 0,

7(n) = {

where Cs is positive and W, (t), W4(t) are periodic functions with period L
(with usually countably many disconfinuities).



Extensions and Remarks

1. We can handle any a,, sequence with Dirichlet series A(s):

1 0 7 oo 1 bj
A(s) = go(s) (loz =) + > 9;(s) (108 ) + F(s),

(s — 04)?0 (s —04)"7

F(s)is analytic, go(c4) # 0. 3; non-negative integers, and « reall.
Then (under some additional conditions on the Fourier series of A(s)):

T(n) ~ C’na/(log n)a/(log log n)ﬂl or T(n)~ ¥(logn)n’®

o' = max{o, so}), depending whether log p1, . . . log p,,, are irrationally or
rationally related.

2. The periodic function W (t) has the following building blocks

logn
L Al
A ZBn N — 1

n>1

where A\ > 1.and B, issuch that 3> _, B, A~1e™/E converges absolutely.
This function is discontinuous at -

t = {logn/L},

where{z} = = — | x| denotes the fractional part of a real number «.
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Examples

Example 1. Irrationally Related; Case 4:

T(n) =2T(|n/2]) +3T(|n/6]) +nlogn

40000+

20000

100 200 300 400 500 600 700 800 900 1000

Here o, = 1 since a,, = n log n.
The equation
2.27°4+3.-6 =1

has the (real) solution sy = 1.402... > 1, and finally log(1/2)/log(1/6)
are irrationally related. Thus by our Master Theorem Case 4

T(n) ~ Cn"

for some constant C > 0



Examples

Example 2. Irrationally Related; Case 6:
Consider the recurrence

2
n

T(n) = 2T(In/2]) + S T(13n/4]) +

logn

Here o, = sp = 2, and we deadl with irrationally related case. Furthermore,

A(s) = slog

8—2+G(S)

for G(s) analytic for ®(s) > 1. By Master Theorem Case 6
T(n) ~ Cn’loglogn.

Example 3. Rationally Related (m = 1); Case 3.
Next consider

T(n)=T(|n/2]) + logn.
Here o, = sg = 0, and we have rational case (m = 1). Since

A(s) = é + G(s)

we conclude
T(n) ~ C(logn)”.



Examples

Example 4: Karatsuba algorithm: Rationally Related (m = 1):

100000

80000

60000+

40000

20000

0

.

100 200 300 400 500 600 700 800 900 1000

T(n)=3T([n/2])+n

Here, sp = (log3)/(log?2) = 1.5849 ... and sy > o, = 1. Thus

log 3

T(n) = Y(logn)nle2 . (1 4+ o(1))

for some periodic function W (t).



Examples

Example 5. Rationally Related (m = 1). The recurrence

T(n) = ST (In/2]) + -

is not covered by our Master Theorem but our methodology sfill works.

Here o, = sp = —1 < 0. It follows that
| (1 1
T(n) = 28" 4 (ogn)+0<_>
n mn mn

for a periodic function W(t).

Example 6: Mergesort. Rationally Related.
The mergesort recurrences are

T(n) = T(ln/2]) + T([n/2]) +n — 1,
Y(n) = Y(ln/2]) + Y([n/2]) + [n/2].

Here o, = so = 1 and we deal with the rationally related case. By our
Master Theorem (cf. Flgjolet & Golin, 1994)

1
T(n) = log ™ logn + n¥(logn) + o(n),

1
Y(n) = nlogn 4+ n¥(logn) + o(n).
2log 2
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Boncelet’s Algorithm Revisited

Let a sequence X be generated by a memoryless source over alphabet
A of size m with symbol probabilities p;, i € A.

Using the Boncelet’s parsing free, we parse X into phrases {vy, ... v,} of
length ¢(vy), ..., £(v,) with phrase probabilities P(v1), ..., P(v,).

Phrase Length and its Probability Generating Function:
Let D,  denote the phrase length and define the probability generating
function as
C(n,y) = E[y""]
It safisfies the following discrete divide and conquer recurrence:

C(n,y) =y ZI%C([Pm + 4i], y)

The expected phrase length d(n) = E[D,] = C’'(n,1) satfisfies the
following discrete divide and conquer recurrence:

d(n) =1+ Zpid([l)m + 4i])

1=1

with d(0) = - - = d(m — 1) = 0.



Main Results for Boncelet’s Algorithm

Theorem 3. Consider an m-ary memoryless source with probabilities p; > 0
and the enfropy rate H = 37" | p;log(1/p;).

(i) iflog(1/p1), . ..log(1/pm) are irrationally related, then

1
d(n) = Elogn — % + o(1),

where i
a=FE(0)—-H—-—2,
2H
Hy = > p;log®pi, and E’(0) is the derivative at s = 0 of a Dirichlet

series F(s) arises from the discrete nafure of the recurrence.
(ii) Iflog(1/p1), .. .log(1/p.y) are rationally related, then

1 a + Y(logn)

d(n) = - logn — = +O0(n™ ")

forsome n > 0, where V(t) is a periodic function of bounded variation
that has usually an infinife number of disconfinuities.



Redundancy of the Boncelet’s Algorithm

Corollary 1. Lef R,, denofe the redundancy of the Boncelet code:

1
R — ogn
E[D,,

| — H = —H

(i) Iflog(1/p1), . ..log(1/pm) are irrationally related, then

Ha ( 1 )
R, = + o )
logn logn

(ii) Iflog(1/p1), ... log(1/p.y) are rationally related, then

:Ha+\I!(logn)+O< 1 )

logn

R,

logn

Tunstall Code Redundancy:

T H Hs 1
R, = —logH ——— ) 4+ o
logn 2H logn

for irrational case; in the rational case there is aperiodic function.

Example. Consider p = 1/3 and ¢ = 2/3. Then one computes a =
E'(0) — H — 52 =~ 0.322 while for the Tunstall code — log H — 32 = 0.0496.



Limiting Distribution for the Phrase length

Theorem 4. Consider a memoryless source generating a sequence of
length n parsed by the Boncelet algorithm. If (p1,...,pm) IS Not the

uniform distribution, then the phrase length D, safisfies the central limit
law, that is,

D, — +logn

\/<% — %) logn

where N(0,1) denotfes the standard normal distrioution, H, =
> pilog” pi, and and

— N(0,1),

logn
B[D,] = ——+0(1),

H, 1
Var D,, ~ — — — | logn
H3 H

forn — oo.
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Sketch of Proof

1. From the recurrence we have

f:lT(ij(nJr?) t0;]) — T (lpj(n +1) +6;])

nS

T(s) = A(s) + Z b;

But defining

kE+2—46;
Pj
for some integer k for which we have
lpj(n+1)+6;] =k+1and |pj(n+2)+ ;] =k + 2 Then

—~ T (lpi(n+2)+6;]) —T(lpj(n+1)+6]) _ G_(S)Jri T(k+2)-T(kt1)

2 3 T, s
n = (%

=1
n P;

for an explicit (and simple) analytic function G,(s), namely

G S TEED TG+

k—|—2—5j 9 S
3pj—|—5j—2§k§0 p; -




Sketch of Proof — Continuation

2. We now compare the last sum to pjf(s) and obtain

oo

STUD MU | SN T g yr-rn
b ({ = JJ —2) — (k/p;)
where

B(s) = S (T(k +2) — T(k + 1)) ( SR ) .
— (k/pj)* Q +pj JJ _ 2)

3. Defining
E(s) => bjE;j(s) and G(s) = b;G;(s)
Jj=1 j=1

we finally obtain our final formula

A(s) + G(s) = B(s)

T(s) =
() 1 — Z;n:1 bj p;




Asymptotics - Tauberian Theorem

For any sequence c¢(n) with Dirichlet series C'(s) define

c(v) = c(n).

n<v

Nofice that the Mellin-Stieltjes fransform of C'(s) becomes

C(s) =3 e(n)n™ = /:O v dE(v) = s /100 c(w)o—" " do.

n>1

Theorem 5 (Wiener-lkehara). Suppose that for some constant Ag > 0, the
analytic function

Ao

F(s) = C(s) — (R(s) > 1)

s —1

has a continuous extension to the closed half-plane R(s) > 1. Then

c(v) ~ Agv, v — oo.

More general version by Delange that covers singularities of algebraic-
logarithmic type.



Asymptotics — Perron-Mellin Formula

Inn order to provide error term and second order terms, one needs to use
the Perron-Mellin formula:

T(n) = T(2) +715§Oi/6+i Fs) =2 4

27 J it S

Unfortunately, the integrals and series (of residues) are not absolutely
convergent because of the ferms 1/s.

To remedy it we consider the auxiliary function (for any sequence (c¢(n))

ci1(v) = /OU (Z c(n)) dw

n<w

which is also given by

1 c+i100 s+1

v
c = — C(s)——ds.
c1(v) 2700 S e—ioo (S)S(S + 1) i

But to recover ¢(v), and then T'(n), we need a Wiener-lkehara Tauberian
result.



Asymptotics — Rationally Related Case

Previous methods generally cannot handle infinitely many poles on the line
R(s) = so! Thatis, it is not true that

ci(v) = / ¢(w) dw ~ ¥y (logv) - v*0"!
0
implies ¢(v) ~ ¥(logv) - v,
Suppose that log p; = —n,; L for some real L > 0. In our case, we replace

the denominator 1 — 37", b;p’ with a single real root z; = e™"*0 by

1— Y bz" = (1—e"2)P(z), P(z)polynomial.
=1

Then we prove the following

1 c+iT 1 z AP g
—— lim

log x
ds =
24 T—oo J._7 1 —e Ls)\ s

N —%)\LTJ[[loga:/LEZ]].

where Lk’%“"J lead to fluctuations.



Sketch of Proof — Binary Boncelet’s Algorithm

1. Define

C(s,y) =) — :
n=1

which from the basic recurrence becomes

(y - 1) o E(Say)
1 —y(ps+t 4 ¢5+1)’

C(Svy) —

where E (s, y) converges (in the right half a plane) and satisfies £(0, y) =
0and E(s,1) = 0.

2. Let so(y) be the real zero of

s+1 s+1
y(p’" + ¢ =1, ¢g=1-p.

3. By Mellin-Perron formula and residue theorem we can prove that
C(n,y) = (14 0y — 1))n" " (1 + o(1))

where

y—1 H 1 2 3
(575~ 77) W=D+ 0ty = D).



Continuation

4. By setting y = e!/(1s M2 \we obtain

n0® — exp (logn (y — (i _ b > (y— 12+ O(ly — 1I3)>>

H H 2H3

H 2H3

1 1t 1 H
= exp <Et\/10gn—|—ﬁa— (—— = ) t2—|—O(t3/\/10gn)>

1
H® H

= exp <%t\/10gn -+ (E — —) % + O(t°/+/log n)>

and consequently

2
B [eDnt/\/logn] —C (n, et/\/log”> — exp (%tvlogn + <% — %) %) (140(1)).

arriving at

B [et(Dn—%logn)/\/W} o~ (t/H)Viogng [eDnt/m]

t2 (Hoy 1

— eT(m_ﬁ> + 0(1).

By Goncharev’s theorem, this completes the proof.



That’s It

THANK YOU



