A Master Theorem for Discrete Divide and Conquer Recurrences*

Wojciech Szpankowski Department of Computer Science Purdue University W. Lafayette, IN 47907

April 18, 2011

Dedicated to PHILIPPE FLAJOLET

PARIS 13, Paris 2011

^{*}Research supported by NSF Science & Technology Center, and Humboldt Foundation.

Outline

- 1. Divide and Conquer
- 2. Example: Boncelet's Algorithm
- 3. Continuous Relaxation of the Recurrence
- 4. Master Theorem
- 5. Examples
- 6. Boncelet's Algorithm Revisited
- 7. Sketch of Proof.

Divide and Conquer

Divide and Conquer:

A divide and conquer algorithm splits the input into several smaller subproblems, solving each subproblem separately, and then knitting together to solve the original problem.

Complexity:

A problem of size n is divided into $m \ge 2$ subproblems of size $\lfloor p_j n + \delta_j \rfloor$ and $\lceil p_j n + \delta'_j \rceil$ and each subproblem contributes b_j , b'_j fraction to the final solution; there is a cost a_n associated with combining subproblems.

Total Cost:

The total cost T(n) satisfies the discrete divide and conquer recurrence:

$$T(n) = a_n + \sum_{j=1}^m b_j T\left(\lfloor p_j n + \delta_j \rfloor\right) + \sum_{j=1}^m b'_j T\left(\left\lceil p_j n + \delta'_j \right\rceil\right) \qquad (n \ge 2)$$

where $0 \leq p_j < 1$ (e.g., $\sum_{i=1}^m p_i = 1$).

(Flajolet & Golin, Acta Informatica, 1994, simpler version for $p_1 = p_2 = 1/2$.)

Outline Update

- 1. Divide and Conquer
- 2. Example: Boncelet's Algorithm
- 3. Continuous Relaxation of the Recurrence
- 4. Master Theorem
- 5. Examples
- 6. Boncelet's Algorithm Revisited
- 7. Sketch of Proof.

Example: Boncelet's Algorithm

Arithmetic entropy coders are stream coders, and therefore long input streams are prone to transmission errors.

Boncelet's algorithm is a variable-to-fixed block arithmetic data compression coder with low complexity.

Example: Boncelet's Algorithm

Arithmetic entropy coders are stream coders, and therefore long input streams are prone to transmission errors.

Boncelet's algorithm is a variable-to-fixed block arithmetic data compression coder with low complexity.

- 1. A variable-to-fixed length encoder partitions a source string over an *m*-ary alphabet into variable-length phrases.
- 2. Each phrase belongs to a given dictionary.
- 3. A dictionary is represented by a complete parsing tree.
- 4. The dictionary entries correspond to the leaves of the parsing tree.

Note: Tunstall variable-to-fixed scheme requires searching a codebook, so is more complex.

Example: Boncelet's Algorithm Recurrences

Let a sequence X be generated by a memoryless source over alphabet A of size m with symbol probabilities p_i , $i \in A$.

Using the Boncelet's parsing tree, we parse X into phrases $\{v_1, \ldots, v_n\}$ of length $\ell(v_1), \ldots, \ell(v_n)$ with phrase probabilities $P(v_1), \ldots, P(v_n)$.

Phrase Length and its Probability Generating Function:

Let D_n be the phrase length while its probability generating function is $C(n, y) = \mathbf{E}[y^{D_n}]$. It satisfies the following divide & conquer recurrence:

$$\boldsymbol{C}(\boldsymbol{n},\boldsymbol{y}) = \boldsymbol{y} \sum_{i=1}^{m} p_i \boldsymbol{C}([\boldsymbol{p}_i \boldsymbol{n} + \boldsymbol{\delta}_i], \boldsymbol{y})$$

where [x] is the quantized value of x.

The average redundancy R_n of the Boncelet code is (H is the entropy):

$$R_n = \frac{\log n}{\mathbf{E}[D_n]} - H = \frac{\log n}{d(n)} - H.$$

The expected phrase length $d(n) = \mathbf{E}[D_n] = C'(n, 1)$ satisfies the following recurrence with $d(0) = \cdots = d(m-1) = 0$

$$\boldsymbol{d}(\boldsymbol{n}) = 1 + \sum_{i=1}^{m} p_i \boldsymbol{d}([p_i \boldsymbol{n} + \delta_i])$$

These are discrete divide & conquer recurrences.

Outline Update

- 1. Divide and Conquer
- 2. Example: Boncelet's Algorithm
- 3. Continuous Relaxation of the Recurrence
- 4. Master Theorem
- 5. Examples
- 6. Boncelet's algorithm Revisited
- 7. Sketch of Proof.

Continuous Relaxation

We relax the discrete nature of the recurrence and consider a continuous version:

$$T(x) = a(x) + \sum_{j=1}^{m} b_j T(p_j x)), \quad x > 1, \quad b'_j = 0.$$

Akra and Bazzi (1998) proved that

$$\boldsymbol{T}(\boldsymbol{x}) = \Theta\left(\boldsymbol{x}^{s_0}\left(1 + \int_1^x \frac{a(u)}{u^{s_0+1}} du\right)\right)$$

where s_0 is a unique real root of $\sum_j b_j p_j^{s_0} = 1$.

Continuous Relaxation

We relax the discrete nature of the recurrence and consider a continuous version:

$$T(x) = a(x) + \sum_{j=1}^{m} b_j T(p_j x)), \quad x > 1, \quad b'_j = 0.$$

Akra and Bazzi (1998) proved that

$$\boldsymbol{T}(\boldsymbol{x}) = \Theta\left(\boldsymbol{x}^{s_0}\left(1 + \int_1^x \frac{a(u)}{u^{s_0+1}} du\right)\right)$$

where s_0 is a unique real root of $\sum_j b_j p_j^{s_0} = 1$.

Indeed, by taking Mellin transform of the relaxed recurrence:

$$t(s) = \int_0^\infty T(x) x^{s-1} dx$$

we find (for some a(s) and g(s))

$$t(s) = \frac{a(s) + g(s)}{1 - \sum_{j=1}^{m} b_j p_i^{-s}}.$$

An application of the Wiener-Ikehara theorem leads to

$$T(x) \sim Cx^{s_0}$$
 with $C = \frac{a(-s_0) + g(-s_0)}{\sum_j b_j p_j^{s_0} \log(1/p_j)}$

Outline Update

- 1. Divide and Conquer
- 2. Example: Boncelet's Algorithm
- 3. Continuous Relaxation of the Recurrence
- 4. Master Theorem
- 5. Examples
- 6. Boncelet's Algorithm Revisited
- 7. Sketch of Proof.

Discrete Divide & Conquer Recurrence by Dirichlet Series

For a sequence c(n) define the Dirichlet series as

$$C(s) = \sum_{n=1}^\infty rac{c(n)}{n^s}$$

provided it exists for $\Re(s) > \sigma_c$ for some $\sigma_c \ge -\infty$. **Theorem 1** (Perron-Mellin Formula). For all $\sigma > \sigma_c$ and all x > 0

$$\sum_{n < x} c(n) + \frac{c(\lfloor x \rfloor)}{2} \llbracket x \in \mathbb{Z} \rrbracket = \lim_{T \to \infty} \frac{1}{2\pi i} \int_{\sigma - iT}^{\sigma + iT} \frac{C(s)}{s} \frac{x^s}{s} ds.$$

where $\llbracket P \rrbracket$ is 1 if P is a true proposition and 0 otherwise.

Discrete Divide & Conquer Recurrence by Dirichlet Series

For a sequence c(n) define the Dirichlet series as

$$C(s) = \sum_{n=1}^{\infty} rac{c(n)}{n^s}$$

provided it exists for $\Re(s) > \sigma_c$ for some $\sigma_c \ge -\infty$. **Theorem 1** (Perron-Mellin Formula). For all $\sigma > \sigma_c$ and all x > 0

$$\sum_{n < x} c(n) + \frac{c(\lfloor x \rfloor)}{2} \llbracket x \in \mathbb{Z} \rrbracket = \lim_{T \to \infty} \frac{1}{2\pi i} \int_{\sigma - iT}^{\sigma + iT} C(s) \frac{x^s}{s} ds.$$

where $\llbracket P \rrbracket$ is 1 if P is a true proposition and 0 otherwise.

Example: Define c(n) = T(n+2) - T(n+1). Then

$$T(n) = T(2) + \lim_{T \to \infty} \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \widetilde{T}(s) \frac{\left(n - \frac{3}{2}\right)^s}{s} ds$$

for some $c > \sigma_{\widetilde{T}}$ with

$$\widetilde{T}(s) = \sum_{n=1}^{\infty} rac{T(n+2) - T(n+1)}{n^s}$$

where $\Re(s) > \sigma_{\tilde{T}}$.

Assumptions

Let a_n be a nondecreasing sequence. Define

$$\widetilde{A}(s) = \sum_{n=1}^\infty rac{a_{n+2}-a_{n+1}}{n^s}$$

which is postulated to exists for $\Re(s) > \sigma_a$.

Example. Define $a_n = n^{\sigma} (\log n)^{\alpha}$. Then

$$\widetilde{A}(s) = \sigma rac{\Gamma(lpha+1)}{(s-\sigma)^{lpha+1}} + rac{\Gamma(lpha+1)}{(s-\sigma)^{lpha}} + ilde{F}(s),$$

where $\tilde{F}(s)$ is analytic for $\Re(s) > \sigma - 1$ and $\Gamma(s)$ is the gamma function.

Define s_0 to be the **unique real** root of

$$\sum_{j=1}^{m} (b_j + b'_j) \, p_j^{\ s} = 1.$$

Other zeros depend on the relation among $\log(1/p_1), \ldots, \log(1/p_m)$.

Rationally and Irrationally Related Numbers

Definition 1. (i) $\log(1/p_1), \ldots, \log(1/p_m)$ are rationally related if $\log(1/p_1), \ldots, \log(1/p_m)$ are integer multiples of L, that is, $\log(1/p_j) = n_j L, n_j \in \mathbb{Z}, (1 \le j \le m)$. (ii) Otherwise $\log(1/p_1), \ldots, \log(1/p_m)$ are irrationally related.

Example. If m = 1, then we are always in the rationally related case. For m = 2, if $\log(1/p_1)/\log(1/p_2) = m/n$, (m, n integers), then rationally related.

Lemma 1. (i) If $\log(1/p_1), \ldots, \log(1/p_m)$ are irrationally related, then s_0 is the only solution on $\Re(s) = s_0$.

(ii) If $\log(1/p_1), \ldots, \log(1/p_m)$ are rationally related, then there are infinitely many solutions

$$s_k = s_0 + \frac{2\pi i k}{L} \qquad (k \in \mathbb{Z})$$

where $\log(1/p_j)$ are all integer multiples of L.

Evaluation of T(n): A Bird View

Main Master Theorem

Theorem 2 (DISCRETE MASTER THEOREM). Let $a_n = Cn^{\sigma_a} (\log n)^{\alpha}$ with $\min\{\sigma, \alpha\} \ge 0$.

(i) If $\log(1/p_1), \ldots, \log(1/p_m)$ are irrationally related, then

$$T(n) = \begin{cases} C_1 + o(1) & \text{if } \sigma_a \leq 0 \text{ and } s_0 < 0, \\ C_2 \log n + C'_2 + o(1) & \text{if } \sigma_a < s_0 = 0, \\ C_3 (\log n)^{\alpha + 1} (1 + + o(1)) & \text{if } \sigma_a = s_0 = 0 \\ C_4 n^{s_0} \cdot (1 + o(1)) & \text{if } \sigma_a < s_0 \text{ and } s_0 > 0, \\ C_5 n^{s_0} (\log n)^{\alpha + 1} \cdot (1 + o(1)) & \text{if } \sigma_a = s_0 > 0 \text{ and } \alpha \neq -1, \\ C_5 n^{s_0} \log \log n \cdot (1 + o(1)) & \text{if } \sigma_a = s_0 > 0 \text{ and } \alpha \neq -1, \\ C_6 (\log n)^{\alpha} (1 + o(1)) & \text{if } \sigma_a = 0 \text{ and } s_0 < 0, \\ C_7 n^{\sigma_a} (\log n)^{\alpha} \cdot (1 + o(1)) & \text{if } \sigma_a > s_0 \text{ and } \sigma_a > 0. \end{cases}$$

(ii) If $\log(1/p_1), \ldots, \log(1/p_m)$ are rationally related, then T(n) behaves as in the irrationally related case with the following two exceptions:

$$T(n) = \begin{cases} C_2 \log n + \Psi_2(\log n) + o(1) & \text{if } \sigma_a < s_0 = 0, \\ \Psi_4(\log n) n^{s_0} \cdot (1 + o(1)) & \text{if } \sigma_a < s_0 \text{ and } s_0 > 0, \end{cases}$$

where C_2 is positive and $\Psi_2(t)$, $\Psi_4(t)$ are periodic functions with period L (with usually countably many discontinuities).

Extensions and Remarks

1. We can handle any a_n sequence with Dirichlet series $\widetilde{A}(s)$:

$$\widetilde{A}(s) = g_0(s) \frac{\left(\log \frac{1}{s - \sigma_a}\right)^{\beta_0}}{(s - \sigma_a)^{\alpha_0}} + \sum_{j=1}^J g_j(s) \frac{\left(\log \frac{1}{s - \sigma_a}\right)^{\beta_j}}{(s - \sigma_a)^{\alpha_j}} + \widetilde{F}(s),$$

 $\tilde{F}(s)$ is analytic, $g_0(\sigma_a) \neq 0$, β_j non-negative integers, and α_0 real. Then (under some additional conditions on the Fourier series of $\tilde{A}(s)$):

$$T(n) \sim C n^{\sigma'} (\log n)^{\alpha'} (\log \log n)^{\beta'}$$
 or $T(n) \sim \Psi(\log n) n^{s_0}$

 $\sigma' = \max\{\sigma, s_0\}$), depending whether $\log p_1, \ldots \log p_m$ are irrationally or rationally related.

2. The periodic function $\Psi(t)$ has the following building blocks

$$\lambda^{-t} \sum_{n \ge 1} B_n rac{\lambda^{\left\lfloor t - rac{\log n}{L}
ight
floor + 1}}{\lambda - 1}$$

where $\lambda > 1$ and B_n is such that $\sum_{n \ge 1} B_n \lambda^{-(\log n)/L}$ converges absolutely. This function is discontinuous at

$$t = \{ \log n/L \},\$$

where $\{x\} = x - \lfloor x \rfloor$ denotes the fractional part of a real number x.

Outline Update

- 1. Divide and Conquer
- 2. Example: Boncelet's Algorithm
- 3. Continuous Relaxation of the Recurrence
- 4. Master Theorem
- 5. Examples
- 6. Boncelet's Algorithm Revisited
- 7. Sketch of Proof.

Here $\sigma_a = 1$ since $a_n = n \log n$. The equation

$$2 \cdot 2^{-s} + 3 \cdot 6^{-s} = 1$$

has the (real) solution $s_0 = 1.402... > 1$, and finally $\log(1/2)/\log(1/6)$ are irrationally related. Thus by our **Master Theorem** Case 4

$$T(n) \sim C n^{s_0}$$

for some constant C > 0

Example 2. Irrationally Related; Case 6:

Consider the recurrence

$$T(n) = 2T(\lfloor n/2 \rfloor) + \frac{8}{9}T(\lfloor 3n/4 \rfloor) + \frac{n^2}{\log n}.$$

Here $\sigma_a = s_0 = 2$, and we deal with irrationally related case. Furthermore,

$$\widetilde{A}(s) = s \log \frac{1}{s-2} + G(s)$$

for G(s) analytic for $\Re(s) > 1$. By Master Theorem Case 6

 $T(n) \sim Cn^2 \log \log n.$

Example 3. Rationally Related (m = 1); Case 3:

Next consider

$$T(n) = T(\lfloor n/2 \rfloor) + \log n.$$

Here $\sigma_a = s_0 = 0$, and we have rational case (m = 1). Since

$$\widetilde{A}(s) = \frac{1}{s} + G(s)$$

we conclude

 $T(n) \sim C(\log n)^2.$

Example 4: Karatsuba algorithm: Rationally Related (m = 1):

Here, $s_0 = (\log 3)/(\log 2) = 1.5849\ldots$ and $s_0 > \sigma_a = 1$. Thus

$$T(n) = \Psi(\log n) n^{\frac{\log 3}{\log 2}} \cdot (1 + o(1))$$

for some periodic function $\Psi(t)$.

Example 5. Rationally Related (m = 1). The recurrence

$$T(n) = \frac{1}{2}T(\lfloor n/2 \rfloor) + \frac{1}{n}$$

is not covered by our Master Theorem but our methodology still works. Here $\sigma_a = s_0 = -1 < 0$. It follows that

$$T(n) = C\frac{\log n}{n} + \frac{\Psi(\log n)}{n} + o\left(\frac{1}{n}\right)$$

for a periodic function $\Psi(t)$.

Example 6: Mergesort. Rationally Related.

The mergesort recurrences are

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n - 1,$$

$$Y(n) = Y(\lfloor n/2 \rfloor) + Y(\lceil n/2 \rceil) + \lfloor n/2 \rfloor.$$

Here $\sigma_a = s_0 = 1$ and we deal with the rationally related case. By our Master Theorem (cf. Flajolet & Golin, 1994)

$$T(n) = \frac{1}{\log 2} n \log n + n \Psi(\log n) + o(n),$$

$$Y(n) = \frac{1}{2\log 2} n \log n + n \Psi(\log n) + o(n).$$

Outline Update

- 1. Divide and Conquer
- 2. Example: Boncelet's Algorithm
- 3. Continuous Relaxation of the Recurrence
- 4. Master Theorem
- 5. Examples
- 6. Boncelet's Algorithm Revisited
- 7. Sketch of Proof.

Boncelet's Algorithm Revisited

Let a sequence X be generated by a memoryless source over alphabet A of size m with symbol probabilities p_i , $i \in A$.

Using the Boncelet's parsing tree, we parse X into phrases $\{v_1, \ldots, v_n\}$ of length $\ell(v_1), \ldots, \ell(v_n)$ with phrase probabilities $P(v_1), \ldots, P(v_n)$.

Phrase Length and its Probability Generating Function:

Let D_n denote the phrase length and define the probability generating function as

$$\boldsymbol{C}(\boldsymbol{n},\boldsymbol{y}) = \mathbf{E}[\boldsymbol{y}^{\boldsymbol{D}\boldsymbol{n}}]$$

It satisfies the following discrete divide and conquer recurrence:

$$\boldsymbol{C}(\boldsymbol{n},\boldsymbol{y}) = \boldsymbol{y} \sum_{i=1}^{m} p_i \boldsymbol{C}([\boldsymbol{p}_i \boldsymbol{n} + \boldsymbol{\delta}_i], \boldsymbol{y})$$

The expected phrase length $d(n) = \mathbf{E}[D_n] = C'(n, 1)$ satisfies the following discrete divide and conquer recurrence:

$$oldsymbol{d}(n) = 1 + \sum_{i=1}^m p_i oldsymbol{d}([p_i n + \delta_i])$$

with $d(0) = \cdots = d(m-1) = 0$.

Main Results for Boncelet's Algorithm

Theorem 3. Consider an *m*-ary memoryless source with probabilities $p_i > 0$ and the entropy rate $H = \sum_{i=1}^{m} p_i \log(1/p_i)$.

(i) If $\log(1/p_1), \ldots \log(1/p_m)$ are irrationally related, then

$$d(n) = \frac{1}{H} \log n - \frac{\alpha}{H} + o(1),$$

where

$$\alpha = E'(0) - H - \frac{H_2}{2H},$$

 $H_2 = \sum_{i=1}^{m} p_i \log^2 p_i$, and E'(0) is the derivative at s = 0 of a Dirichlet series E(s) arises from the **discrete** nature of the recurrence.

(ii) If $\log(1/p_1), \ldots \log(1/p_m)$ are rationally related, then

$$d(n) = \frac{1}{H} \log n - \frac{\alpha + \Psi(\log n)}{H} + O(n^{-\eta})$$

for some $\eta > 0$, where $\Psi(t)$ is a periodic function of bounded variation that has usually an infinite number of discontinuities.

Redundancy of the Boncelet's Algorithm

Corollary 1. Let R_n denote the redundancy of the Boncelet code:

$$R_n = \frac{\log n}{\mathrm{E}[D_n]} - H = \frac{\log n}{d(n)} - H.$$

(i) If $\log(1/p_1), \ldots \log(1/p_m)$ are irrationally related, then

$$R_n = \frac{H\alpha}{\log n} + o\left(\frac{1}{\log n}\right).$$

(ii) If $\log(1/p_1), \ldots \log(1/p_m)$ are rationally related, then

$$\mathbf{R}_n = \frac{H\alpha + \Psi(\log n)}{\log n} + o\left(\frac{1}{\log n}\right).$$

Tunstall Code Redundancy:

$$\boldsymbol{R}_{n}^{T} = \frac{H}{\log n} \left(-\log H - \frac{H_{2}}{2H} \right) + o\left(\frac{1}{\log n}\right)$$

for irrational case; in the rational case there is aperiodic function.

Example. Consider p = 1/3 and q = 2/3. Then one computes $\alpha = E'(0) - H - \frac{H_2}{2H} \approx 0.322$ while for the Tunstall code $-\log H - \frac{H_2}{2H} \approx 0.0496$.

Limiting Distribution for the Phrase length

Theorem 4. Consider a memoryless source generating a sequence of length n parsed by the Boncelet algorithm. If (p_1, \ldots, p_m) is not the uniform distribution, then the phrase length D_n satisfies the central limit law, that is,

$$rac{D_n - rac{1}{H} \mathrm{log}\,n}{\left/ \left(rac{H_2}{H^3} - rac{1}{H}
ight) \mathrm{log}\,n} o N(0,1),$$

where N(0,1) denotes the standard normal distribution, $H_2 = \sum_{i=1}^{m} p_i \log^2 p_i$, and and

$$\mathbf{E}[\mathbf{D}_n] = \frac{\log n}{H} + O(1),$$

$$\operatorname{Var} \mathbf{D}_n \sim \left(\frac{H_2}{H^3} - \frac{1}{H}\right) \log n$$

for $n \to \infty$.

Outline Update

- 1. Divide and Conquer
- 2. Example: Boncelet's Algorithm
- 3. Continuous Relaxation of the Recurrence
- 4. Master Theorem
- 5. Examples
- 6. Boncelet's Algorithm Revisited
- 7. Sketch of Proof

Sketch of Proof

1. From the recurrence we have

$$\widetilde{T}(s) = \widetilde{A}(s) + \sum_{j=1}^m b_j \sum_{n=1}^\infty \frac{T\left(\lfloor p_j(n+2) + \delta_j \rfloor\right) - T\left(\lfloor p_j(n+1) + \delta_j \rfloor\right)}{n^s}.$$

But defining

$$n = \left\lfloor \frac{k + 2 - \delta_j}{p_j} \right\rfloor - 2$$

for some integer k for which we have $\lfloor p_j(n+1) + \delta_j \rfloor = k + 1$ and $\lfloor p_j(n+2) + \delta_j \rfloor = k + 2$. Then $\sum_{n=1}^{\infty} \frac{T\left(\lfloor p_j(n+2) + \delta_j \rfloor\right) - T\left(\lfloor p_j(n+1) + \delta_j \rfloor\right)}{n^s} = G_j(s) + \sum_{k=1}^{\infty} \frac{T(k+2) - T(k+1)}{\left(\left\lfloor \frac{k+2-\delta_j}{p_j} \right\rfloor - 2\right)^s}.$

for an explicit (and simple) analytic function $G_j(s)$, namely

$$G_j(s) = \sum_{3p_j + \delta_j - 2 \le k \le 0} \frac{T(k+2) - T(k+1)}{\left(\left\lfloor \frac{k+2-\delta_j}{p_j} \right\rfloor - 2\right)^s}$$

Sketch of Proof – Continuation

2. We now compare the last sum to $p_j^s \widetilde{T}(s)$ and obtain

$$\sum_{k=1}^{\infty} \frac{T(k+2) - T(k+1)}{\left(\left\lfloor \frac{k+2-\delta_j}{p_j} \right\rfloor - 2\right)^s} = \sum_{k=1}^{\infty} \frac{T(k+2) - T(k+1)}{(k/p_j)^s} - E_j(s) = p_j^s \widetilde{T}(s) - E_j(s),$$

where

$$E_j(s) = \sum_{k=1}^{\infty} (T(k+2) - T(k+1)) \left(\frac{1}{(k/p_j)^s} - \frac{1}{\left(\left\lfloor \frac{k+2-\delta_j}{p_j} \right\rfloor - 2 \right)^s} \right)$$

3. Defining

$$E(s) = \sum_{j=1}^{m} b_j E_j(s)$$
 and $G(s) = \sum_{j=1}^{m} b_j G_j(s)$

we finally obtain our final formula

$$\widetilde{T}(s) = \frac{\widetilde{A}(s) + G(s) - E(s)}{1 - \sum_{j=1}^{m} b_j p_j^s}.$$

Asymptotics – Tauberian Theorem

For any sequence c(n) with Dirichlet series C(s) define

$$\overline{c}(v) = \sum_{n \le v} c(n).$$

Notice that the Mellin-Stieltjes transform of C(s) becomes

$$C(s) = \sum_{n \ge 1} c(n) n^{-s} = \int_{1-}^{\infty} v^{-s} d\overline{c}(v) = s \int_{1}^{\infty} \overline{c}(v) v^{-s-1} dv.$$

Theorem 5 (Wiener-Ikehara). Suppose that for some constant $A_0 > 0$, the analytic function

$$F(s) = C(s) - \frac{A_0}{s-1}$$
 ($\Re(s) > 1$)

has a continuous extension to the closed half-plane $\Re(s) \ge 1$. Then

$$\overline{c}(v) \sim A_0 v, \quad v \to \infty.$$

More general version by Delange that covers singularities of algebraiclogarithmic type.

Asymptotics – Perron-Mellin Formula

Inn order to provide error term and second order terms, one needs to use the Perron-Mellin formula:

$$T(n) = T(2) + \lim_{T \to \infty} \frac{1}{2\pi i} \int_{c-iT}^{c+iT} \widetilde{T}(s) \frac{(n-\frac{3}{2})^s}{s} ds$$

Unfortunately, the integrals and series (of residues) are not absolutely convergent because of the terms 1/s.

To remedy it we consider the auxiliary function (for any sequence (c(n)))

$$\overline{c}_1(v) = \int_0^v \left(\sum_{n \le w} c(n)\right) dw$$

which is also given by

$$\overline{c}_1(v) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{C(s)}{s(s+1)} \, ds.$$

But to recover $\overline{c}(v)$, and then T(n), we need a Wiener-Ikehara Tauberian result.

Asymptotics – Rationally Related Case

Previous methods generally cannot handle infinitely many poles on the line $\Re(s) = s_0!$ That is, it is not true that

$$\overline{c}_1(v) = \int_0^v \overline{c}(w) \, dw \sim \Psi_1(\log v) \cdot v^{s_0+1}$$

implies $\overline{c}(v) \sim \Psi(\log v) \cdot v^{s_0}$.

Suppose that $\log p_j = -n_j L$ for some real L > 0. In our case, we replace the denominator $1 - \sum_{j=1}^m b_j p_j^s$ with a single real root $z_0 = e^{-Ls_0}$ by

$$1 - \sum_{j=1}^{m} b_j z^{n_j} = (1 - e^{Ls_0} z) P(z), \quad P(z) \text{ polynomial.}$$

Then we prove the following

$$\frac{1}{2\pi i} \lim_{T \to \infty} \int_{c-iT}^{c+iT} \frac{1}{1 - e^{-Ls}\lambda} \frac{x^s}{s} \, ds = \frac{\lambda^{\left\lfloor \frac{\log x}{L} \right\rfloor + 1} - 1}{\lambda - 1} - \frac{1}{2} \lambda^{\left\lfloor \frac{\log x}{L} \right\rfloor} \left[\log x/L \in \mathbb{Z} \right].$$

where $\left\lfloor \frac{\log x}{L} \right\rfloor$ lead to fluctuations.

Sketch of Proof – Binary Boncelet's Algorithm

1. Define

$$C(s,y) = \sum_{n=1}^{\infty} \frac{C(n+2,y) - C(n+1,y)}{n^s}.$$

which from the basic recurrence becomes

$$C(s,y) = rac{(y-1)-E(s,y)}{1-y(p^{s+1}+q^{s+1})},$$

where E(s, y) converges (in the right half a plane) and satisfies E(0, y) = 0 and E(s, 1) = 0.

2. Let $s_0(y)$ be the real zero of

$$y(p^{s+1} + q^{s+1}) = 1, \quad q = 1 - p.$$

3. By Mellin-Perron formula and residue theorem we can prove that

$$C(n, y) = (1 + O(y - 1))n^{s_0(y)}(1 + o(1))$$

where

$$s_0(y) = \frac{y-1}{H} + \left(\frac{H_2}{2H^3} - \frac{1}{H}\right)(y-1)^2 + O((y-1)^3).$$

Continuation

4. By setting $y = e^{t/(\log n)^{1/2}}$ we obtain

$$n^{s_0(y)} = \exp\left(\log n\left(\frac{y-1}{H} - \left(\frac{1}{H} - \frac{H_2}{2H^3}\right)(y-1)^2 + O(|y-1|^3)\right)\right)$$
$$= \exp\left(\frac{1}{H}t\sqrt{\log n} + \frac{1}{H}\frac{t^2}{2} - \left(\frac{1}{H} - \frac{H_2}{2H^3}\right)t^2 + O(t^3/\sqrt{\log n})\right)$$
$$= \exp\left(\frac{1}{H}t\sqrt{\log n} + \left(\frac{H_2}{H^3} - \frac{1}{H}\right)\frac{t^2}{2} + O(t^3/\sqrt{\log n})\right)$$

and consequently

$$\mathbb{E}\left[e^{D_n t/\sqrt{\log n}}\right] = C\left(n, e^{t/\sqrt{\log n}}\right) = \exp\left(\frac{1}{H}t\sqrt{\log n} + \left(\frac{H_2}{H^3} - \frac{1}{H}\right)\frac{t^2}{2}\right)(1+o(1)).$$

arriving at

$$\mathbb{E}\left[e^{t(D_n - \frac{1}{H}\log n)/\sqrt{\log n}}\right] = e^{-(t/H)\sqrt{\log n}} \mathbb{E}\left[e^{D_n t/\sqrt{\log n}}\right]$$
$$= e^{\frac{t^2}{2}\left(\frac{H_2}{H^3} - \frac{1}{H}\right)} + o(1).$$

By Goncharev's theorem, this completes the proof.

That's It

THANK YOU