A Master Theorem for Discrete Divide and Conquer Recurrences*

Wojciech Szpankowski
Department of Computer Science
Purdue University
W. Lafayette, IN 47907

April 18, 2011
Dedicated to PHILIPPE FLAJOLET

PARIS 13, Paris 2011

[^0]
Outline

1. Divide and Conquer
2. Example: Boncelet's Algorithm
3. Continuous Relaxation of the Recurrence
4. Master Theorem
5. Examples
6. Boncelet's Algorithm Revisited
7. Sketch of Proof.

Divide and Conquer

Divide and Conquer:

A divide and conquer algorithm splits the input into several smaller subproblems, solving each subproblem separately, and then knitting together to solve the original problem.

Complexity:

A problem of size n is divided into $m \geq 2$ subproblems of size $\left\lfloor p_{j} n+\delta_{j}\right\rfloor$ and $\left\lceil p_{j} n+\delta_{j}^{\prime}\right\rceil$ and each subproblem contributes b_{j}, b_{j}^{\prime} fraction to the final solution; there is a cost a_{n} associated with combining subproblems.

Total Cost:

The total cost $T(n)$ satisfies the discrete divide and conquer recurrence:

$$
T(n)=a_{n}+\sum_{j=1}^{m} b_{j} T\left(\left\lfloor p_{j} n+\delta_{j}\right\rfloor\right)+\sum_{j=1}^{m} b_{j}^{\prime} T\left(\left\lceil p_{j} n+\delta_{j}^{\prime}\right\rceil\right) \quad(n \geq 2)
$$

where $0 \leq p_{j}<1$ (e.g., $\sum_{i=1}^{m} p_{i}=1$).
(Flajolet \& Golin, Acta Informatica, 1994, simpler version for $p_{1}=p_{2}=1 / 2$.)

Outline Update

1. Divide and Conquer
2. Example: Boncelet's Algorithm
3. Continuous Relaxation of the Recurrence
4. Master Theorem
5. Examples
6. Boncelet's Algorithm Revisited
7. Sketch of Proof.

Example: Boncelet's Algorithm

Arithmetic entropy coders are stream coders, and therefore long input streams are prone to transmission errors.

Boncelet's algorithm is a variable-to-fixed block arithmetic data compression coder with low complexity.

Example: Boncelet's Algorithm

Arithmetic entropy coders are stream coders, and therefore long input streams are prone to transmission errors.

Boncelet's algorithm is a variable-to-fixed block arithmetic data compression coder with low complexity.

1. A variable-to-fixed length encoder partitions a source string over an m ary alphabet into variable-length phrases.
2. Each phrase belongs to a given dictionary.
3. A dictionary is represented by a complete parsing tree.
4. The dictionary entries correspond to the leaves of the parsing tree.

Note: Tunstall variable-to-fixed scheme requires searching a codebook, so is more complex.

Example: Boncelet's Algorithm Recurrences

Let a sequence X be generated by a memoryless source over alphabet \mathcal{A} of size m with symbol probabilities $p_{i}, i \in \mathcal{A}$.

Using the Boncelet's parsing tree, we parse X into phrases $\left\{v_{1}, \ldots v_{n}\right\}$ of length $\ell\left(v_{1}\right), \ldots, \ell\left(v_{n}\right)$ with phrase probabilities $P\left(v_{1}\right), \ldots, P\left(v_{n}\right)$.

Phrase Length and its Probability Generating Function:

Let D_{n} be the phrase length while its probability generating function is $C(n, y)=\mathbf{E}\left[y^{D_{n}}\right]$. It satisfies the following divide \& conquer recurrence:

$$
C(n, y)=y \sum_{i=1}^{m} p_{i} C\left(\left[p_{i} n+\delta_{i}\right], y\right)
$$

where $[x]$ is the quantized value of x.
The average redundancy R_{n} of the Boncelet code is (H is the entropy):

$$
R_{n}=\frac{\log n}{\mathbf{E}\left[D_{n}\right]}-H=\frac{\log n}{d(n)}-H .
$$

The expected phrase length $d(n)=\mathbf{E}\left[D_{n}\right]=C^{\prime}(n, 1)$ satisfies the following recurrence with $d(0)=\cdots=d(m-1)=0$

$$
d(n)=1+\sum_{i=1}^{m} p_{i} d\left(\left[p_{i} n+\delta_{i}\right]\right)
$$

These are discrete divide \& conquer recurrences.

Outline Update

1. Divide and Conquer
2. Example: Boncelet's Algorithm
3. Continuous Relaxation of the Recurrence
4. Master Theorem
5. Examples
6. Boncelet's algorithm Revisited
7. Sketch of Proof.

Continuous Relaxation

We relax the discrete nature of the recurrence and consider a continuous version:

$$
\left.T(x)=a(x)+\sum_{j=1}^{m} b_{j} T\left(p_{j} x\right)\right), \quad x>1, \quad b_{j}^{\prime}=0 .
$$

Akra and Bazzi (1998) proved that

$$
T(x)=\Theta\left(x^{s_{0}}\left(1+\int_{1}^{x} \frac{a(u)}{u^{s_{0}+1}} d u\right)\right)
$$

where s_{0} is a unique real root of $\sum_{j} b_{j} p_{j}{ }^{s_{0}}=1$.

Continuous Relaxation

We relax the discrete nature of the recurrence and consider a continuous version:

$$
\left.T(x)=a(x)+\sum_{j=1}^{m} b_{j} T\left(p_{j} x\right)\right), \quad x>1, \quad b_{j}^{\prime}=0 .
$$

Akra and Bazzi (1998) proved that

$$
T(x)=\Theta\left(x^{s_{0}}\left(1+\int_{1}^{x} \frac{a(u)}{u^{s_{0}+1}} d u\right)\right)
$$

where s_{0} is a unique real root of $\sum_{j} b_{j} p_{j}{ }^{s_{0}}=1$.
Indeed, by taking Mellin transform of the relaxed recurrence:

$$
t(s)=\int_{0}^{\infty} T(x) x^{s-1} d x
$$

we find (for some $a(s)$ and $g(s)$)

$$
t(s)=\frac{a(s)+g(s)}{1-\sum_{j=1}^{m} b_{j} p_{i}^{-s}} .
$$

An application of the Wiener-Ikehara theorem leads to

$$
T(x) \sim C x^{s_{0}} \quad \text { with } \quad C=\frac{a\left(-s_{0}\right)+g\left(-s_{0}\right)}{\sum_{j} b_{j} p_{j}^{s_{0}} \log \left(1 / p_{j}\right)}
$$

Outline Update

1. Divide and Conquer
2. Example: Boncelet's Algorithm
3. Continuous Relaxation of the Recurrence
4. Master Theorem
5. Examples
6. Boncelet's Algorithm Revisited
7. Sketch of Proof.

Discrete Divide \& Conquer Recurrence by Dirichlet Series

For a sequence $c(n)$ define the Dirichlet series as

$$
C(s)=\sum_{n=1}^{\infty} \frac{c(n)}{n^{s}}
$$

provided it exists for $\Re(s)>\sigma_{c}$ for some $\sigma_{c} \geq-\infty$.
Theorem 1 (Perron-Mellin Formula). For all $\sigma>\sigma_{c}$ and all $x>0$

$$
\sum_{n<x} c(n)+\frac{c(\lfloor x\rfloor)}{2} \llbracket x \in \mathbb{Z} \rrbracket=\lim _{T \rightarrow \infty} \frac{1}{2 \pi i} \int_{\sigma-i T}^{\sigma+i T} C(s) \frac{x^{s}}{s} d s
$$

where $\llbracket P \rrbracket$ is 1 if P is a true proposition and 0 otherwise.

Discrete Divide \& Conquer Recurrence by Dirichlet Series

For a sequence $c(n)$ define the Dirichlet series as

$$
C(s)=\sum_{n=1}^{\infty} \frac{c(n)}{n^{s}}
$$

provided it exists for $\Re(s)>\sigma_{c}$ for some $\sigma_{c} \geq-\infty$.
Theorem 1 (Perron-Mellin Formula). For all $\sigma>\sigma_{c}$ and all $x>0$

$$
\sum_{n<x} c(n)+\frac{c(\lfloor x\rfloor)}{2} \llbracket x \in \mathbb{Z} \rrbracket=\lim _{T \rightarrow \infty} \frac{1}{2 \pi i} \int_{\sigma-i T}^{\sigma+i T} C(s) \frac{x^{s}}{s} d s
$$

where $\llbracket P \rrbracket$ is 1 if P is a true proposition and 0 otherwise.
Example: Define $c(n)=T(n+2)-T(n+1)$. Then

$$
T(n)=T(2)+\lim _{T \rightarrow \infty} \frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \widetilde{T}(s) \frac{\left(n-\frac{3}{2}\right)^{s}}{s} d s
$$

for some $c>\sigma_{\widetilde{T}}$ with

$$
\widetilde{T}(s)=\sum_{n=1}^{\infty} \frac{T(n+2)-T(n+1)}{n^{s}}
$$

where $\Re(s)>\sigma_{\widetilde{T}}$.

Assumptions

Let a_{n} be a nondecreasing sequence. Define

$$
\widetilde{A}(s)=\sum_{n=1}^{\infty} \frac{a_{n+2}-a_{n+1}}{n^{s}}
$$

which is postulated to exists for $\Re(s)>\sigma_{a}$.
Example. Define $a_{n}=n^{\sigma}(\log n)^{\alpha}$. Then

$$
\widetilde{A}(s)=\sigma \frac{\Gamma(\alpha+1)}{(s-\sigma)^{\alpha+1}}+\frac{\Gamma(\alpha+1)}{(s-\sigma)^{\alpha}}+\tilde{F}(s)
$$

where $\tilde{F}(s)$ is analytic for $\Re(s)>\sigma-1$ and $\Gamma(s)$ is the gamma function.
Define s_{0} to be the unique real root of

$$
\sum_{j=1}^{m}\left(b_{j}+b_{j}^{\prime}\right) p_{j}^{s}=1 .
$$

Other zeros depend on the relation among $\log \left(1 / p_{1}\right), \ldots, \log \left(1 / p_{m}\right)$.

Rationally and Irrationally Related Numbers

Definition 1. (i) $\log \left(1 / p_{1}\right), \ldots, \log \left(1 / p_{m}\right)$ are rationally related if $\log \left(1 / p_{1}\right), \ldots, \log \left(1 / p_{m}\right)$ are integer multiples of L, that is, $\log \left(1 / p_{j}\right)=$ $n_{j} L, n_{j} \in \mathbb{Z},(1 \leq j \leq m)$.
(ii) Otherwise $\log \left(1 / p_{1}\right), \ldots, \log \left(1 / p_{m}\right)$ are irrationally related.

Example. If $m=1$, then we are always in the rationally related case.
For $m=2$, if $\log \left(1 / p_{1}\right) / \log \left(1 / p_{2}\right)=m / n$, $(m, n$ integers), then rationally related.

Lemma 1. (i) If $\log \left(1 / p_{1}\right), \ldots, \log \left(1 / p_{m}\right)$ are irrationally related, then s_{0} is the only solution on $\Re(s)=s_{0}$.
(ii) If $\log \left(1 / p_{1}\right), \ldots, \log \left(1 / p_{m}\right)$ are rationally related, then there are infinitely many solutions

$$
s_{k}=s_{0}+\frac{2 \pi i k}{L} \quad(k \in \mathbb{Z})
$$

where $\log \left(1 / p_{j}\right)$ are all integer multiples of L.

Evaluation of $T(n)$: A Bird View

$$
\begin{aligned}
& \widetilde{T}(s)=\frac{\widetilde{A}(s)+B(s)}{1-\sum_{j=1}^{m}\left(b_{j}+b_{j}^{\prime}\right) p_{j}^{s}} \\
& T(n)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} \widetilde{T}(s) \frac{\left(n-\frac{3}{2}\right)^{s}}{s} d s
\end{aligned}
$$

Main Master Theorem

Theorem 2 (Discrete Master Theorem). Let $a_{n}=C n^{\sigma a}(\log n)^{\alpha}$ with $\min \{\sigma, \alpha\} \geq 0$.
(i) If $\log \left(1 / p_{1}\right), \ldots, \log \left(1 / p_{m}\right)$ are irrationally related, then

$$
T(n)= \begin{cases}C_{1}+o(1) & \text { if } \sigma_{a} \leq 0 \text { and } s_{0}<0, \\ C_{2} \log n+C_{2}^{\prime}+o(1) & \text { if } \sigma_{a}<s_{0}=0, \\ C_{3}(\log n)^{\alpha+1}(1++o(1)) & \text { if } \sigma_{a}=s_{0}=0 \\ C_{4} n^{s_{0}} \cdot(1+o(1)) & \text { if } \sigma_{a}<s_{0} \text { and } s_{0}>0, \\ C_{5} n^{s_{0}}(\log n)^{\alpha+1} \cdot(1+o(1)) & \text { if } \sigma_{a}=s_{0}>0 \text { and } \alpha \neq-1, \\ C_{5} n^{s_{0} \log \log n \cdot(1+o(1))} & \text { if } \sigma_{a}=s_{0}>0 \text { and } \alpha=-1, \\ C_{6}(\log n)^{\alpha}(1+o(1)) & \text { if } \sigma_{a}=0 \text { and } s_{0}<0, \\ C_{7} n^{\sigma_{a}(\log n)^{\alpha} \cdot(1+o(1))} & \text { if } \sigma_{a}>s_{0} \text { and } \sigma_{a}>0 .\end{cases}
$$

(ii) If $\log \left(1 / p_{1}\right), \ldots, \log \left(1 / p_{m}\right)$ are rationally related, then $T(n)$ behaves as in the irrationally related case with the following two exceptions:

$$
T(n)= \begin{cases}C_{2} \log n+\Psi_{2}(\log n)+o(1) & \text { if } \sigma_{a}<s_{0}=0 \\ \Psi_{4}(\log n) n^{s_{0}} \cdot(1+o(1)) & \text { if } \sigma_{a}<s_{0} \text { and } s_{0}>0\end{cases}
$$

where C_{2} is positive and $\Psi_{2}(t), \Psi_{4}(t)$ are periodic functions with period L (with usually countably many discontinuities).

Extensions and Remarks

1. We can handle any a_{n} sequence with Dirichlet series $\widetilde{A}(s)$:

$$
\widetilde{A}(s)=g_{0}(s) \frac{\left(\log \frac{1}{s-\sigma_{a}}\right)^{\beta_{0}}}{\left(s-\sigma_{a}\right)^{\alpha}}+\sum_{j=1}^{J} g_{j}(s) \frac{\left(\log \frac{1}{s-\sigma_{a}}\right)^{\beta_{j}}}{\left(s-\sigma_{a}\right)^{\alpha_{j}}}+\tilde{F}(s)
$$

$\tilde{F}(s)$ is analytic, $g_{0}\left(\sigma_{a}\right) \neq 0, \beta_{j}$ non-negative integers, and α_{0} real. Then (under some additional conditions on the Fourier series of $\tilde{A}(s)$):

$$
T(n) \sim C n^{\sigma^{\prime}}(\log n)^{\alpha^{\prime}}(\log \log n)^{\beta^{\prime}} \quad \text { or } \quad T(n) \sim \Psi(\log n) n^{s_{0}}
$$

$\left.\sigma^{\prime}=\max \left\{\sigma, s_{0}\right\}\right)$, depending whether $\log p_{1}, \ldots \log p_{m}$ are irrationally or rationally related.
2. The periodic function $\Psi(t)$ has the following building blocks

$$
\lambda^{-t} \sum_{n \geq 1} B_{n} \frac{\lambda^{\left\lfloor t-\frac{\log n}{L}\right\rfloor+1}}{\lambda-1}
$$

where $\lambda>1$ and B_{n} is such that $\sum_{n \geq 1} B_{n} \lambda^{-(\log n) / L}$ converges absolutely. This function is discontinuous at

$$
t=\{\log n / L\}
$$

where $\{x\}=x-\lfloor x\rfloor$ denotes the fractional part of a real number x.

Outline Update

1. Divide and Conquer
2. Example: Boncelet's Algorithm
3. Continuous Relaxation of the Recurrence
4. Master Theorem
5. Examples
6. Boncelet's Algorithm Revisited
7. Sketch of Proof.

Examples

Example 1. Irrationally Related; Case 4:

Here $\sigma_{a}=1$ since $a_{n}=n \log n$.
The equation

$$
2 \cdot 2^{-s}+3 \cdot 6^{-s}=1
$$

has the (real) solution $s_{0}=1.402 \ldots>1$, and finally $\log (1 / 2) / \log (1 / 6)$ are irrationally related. Thus by our Master Theorem Case 4

$$
T(n) \sim C n^{s_{0}}
$$

for some constant $C>0$

Examples

Example 2. Irrationally Related; Case 6:
Consider the recurrence

$$
T(n)=2 T(\lfloor n / 2\rfloor)+\frac{8}{9} T(\lfloor 3 n / 4\rfloor)+\frac{n^{2}}{\log n} .
$$

Here $\sigma_{a}=s_{0}=2$, and we deal with irrationally related case. Furthermore,

$$
\widetilde{A}(s)=s \log \frac{1}{s-2}+G(s)
$$

for $G(s)$ analytic for $\Re(s)>1$. By Master Theorem Case 6

$$
T(n) \sim C n^{2} \log \log n
$$

Example 3. Rationally Related ($m=1$); Case 3:
Next consider

$$
T(n)=T(\lfloor n / 2\rfloor)+\log n
$$

Here $\sigma_{a}=s_{0}=0$, and we have rational case ($m=1$). Since

$$
\widetilde{A}(s)=\frac{1}{s}+G(s)
$$

we conclude

$$
T(n) \sim C(\log n)^{2}
$$

Examples

Example 4: Karatsuba algorithm: Rationally Related $(m=1)$:

Here, $s_{0}=(\log 3) /(\log 2)=1.5849 \ldots$ and $s_{0}>\sigma_{a}=1$. Thus

$$
T(n)=\Psi(\log n) n^{\frac{\log 3}{\log 2}} \cdot(1+o(1))
$$

for some periodic function $\Psi(t)$.

Examples

Example 5. Rationally Related ($m=1$). The recurrence

$$
T(n)=\frac{1}{2} T(\lfloor n / 2\rfloor)+\frac{1}{n}
$$

is not covered by our Master Theorem but our methodology still works. Here $\sigma_{a}=s_{0}=-1<0$. It follows that

$$
T(n)=C \frac{\log n}{n}+\frac{\Psi(\log n)}{n}+o\left(\frac{1}{n}\right)
$$

for a periodic function $\Psi(t)$.
Example 6: Mergesort. Rationally Related.
The mergesort recurrences are

$$
\begin{aligned}
& T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+n-1, \\
& Y(n)=Y(\lfloor n / 2\rfloor)+Y(\lceil n / 2\rceil)+\lfloor n / 2\rfloor .
\end{aligned}
$$

Here $\sigma_{a}=s_{0}=1$ and we deal with the rationally related case. By our Master Theorem (cf. Flajolet \& Golin, 1994)

$$
\begin{aligned}
T(n) & =\frac{1}{\log 2} n \log n+n \Psi(\log n)+o(n), \\
Y(n) & =\frac{1}{2 \log 2} n \log n+n \Psi(\log n)+o(n)
\end{aligned}
$$

Outline Update

1. Divide and Conquer
2. Example: Boncelet's Algorithm
3. Continuous Relaxation of the Recurrence
4. Master Theorem
5. Examples
6. Boncelet's Algorithm Revisited
7. Sketch of Proof.

Boncelet's Algorithm Revisited

Let a sequence X be generated by a memoryless source over alphabet \mathcal{A} of size m with symbol probabilities $p_{i}, i \in \mathcal{A}$.

Using the Boncelet's parsing tree, we parse X into phrases $\left\{v_{1}, \ldots v_{n}\right\}$ of length $\ell\left(v_{1}\right), \ldots, \ell\left(v_{n}\right)$ with phrase probabilities $P\left(v_{1}\right), \ldots, P\left(v_{n}\right)$.

Phrase Length and its Probability Generating Function:

Let D_{n} denote the phrase length and define the probability generating function as

$$
C(n, y)=\mathbf{E}\left[y^{D n}\right]
$$

It satisfies the following discrete divide and conquer recurrence:

$$
C(n, y)=y \sum_{i=1}^{m} p_{i} C\left(\left[p_{i} n+\delta_{i}\right], y\right)
$$

The expected phrase length $d(n)=\mathbf{E}\left[D_{n}\right]=C^{\prime}(n, 1)$ satisfies the following discrete divide and conquer recurrence:

$$
d(n)=1+\sum_{i=1}^{m} p_{i} d\left(\left[p_{i} n+\delta_{i}\right]\right)
$$

with $d(0)=\cdots=d(m-1)=0$.

Main Results for Boncelet's Algorithm

Theorem 3. Consider an m-ary memoryless source with probabilities $p_{i}>0$ and the entropy rate $H=\sum_{i=1}^{m} p_{i} \log \left(1 / p_{i}\right)$.
(i) If $\log \left(1 / p_{1}\right), \ldots \log \left(1 / p_{m}\right)$ are irrationally related, then

$$
d(n)=\frac{1}{H} \log n-\frac{\alpha}{H}+o(1),
$$

where

$$
\alpha=E^{\prime}(0)-H-\frac{H_{2}}{2 H},
$$

$H_{2}=\sum_{i=1}^{m} p_{i} \log ^{2} p_{i}$, and $E^{\prime}(0)$ is the derivative at $s=0$ of a Dirichlet series $E(s)$ arises from the discrete nature of the recurrence.
(ii) If $\log \left(1 / p_{1}\right), \ldots \log \left(1 / p_{m}\right)$ are rationally related, then

$$
d(n)=\frac{1}{H} \log n-\frac{\alpha+\Psi(\log n)}{H}+O\left(n^{-\eta}\right)
$$

for some $\eta>0$, where $\Psi(t)$ is a periodic function of bounded variation that has usually an infinite number of discontinuities.

Redundancy of the Boncelet's Algorithm

Corollary 1. Let R_{n} denote the redundancy of the Boncelet code:

$$
\left.R_{n}=\frac{\log n}{\mathbf{E}\left[D_{n}\right.}\right]-H=\frac{\log n}{d(n)}-H
$$

(i) If $\log \left(1 / p_{1}\right), \ldots \log \left(1 / p_{m}\right)$ are irrationally related, then

$$
R_{n}=\frac{H \alpha}{\log n}+o\left(\frac{1}{\log n}\right) .
$$

(ii) If $\log \left(1 / p_{1}\right), \ldots \log \left(1 / p_{m}\right)$ are rationally related, then

$$
R_{n}=\frac{H \alpha+\Psi(\log n)}{\log n}+o\left(\frac{1}{\log n}\right)
$$

Tunstall Code Redundancy:

$$
R_{n}^{T}=\frac{H}{\log n}\left(-\log H-\frac{H_{2}}{2 H}\right)+o\left(\frac{1}{\log n}\right)
$$

for irrational case; in the rational case there is aperiodic function.
Example. Consider $p=1 / 3$ and $q=2 / 3$. Then one computes $\alpha=$ $E^{\prime}(0)-H-\frac{H_{2}}{2 H} \approx 0.322$ while for the Tunstall code $-\log H-\frac{H_{2}}{2 H} \approx 0.0496$.

Limiting Distribution for the Phrase length

Theorem 4. Consider a memoryless source generating a sequence of length n parsed by the Boncelet algorithm. If $\left(p_{1}, \ldots, p_{m}\right)$ is not the uniform distribution, then the phrase length D_{n} satisfies the central limit law, that is,

$$
\frac{D_{n}-\frac{1}{H} \log n}{\sqrt{\left(\frac{H_{2}}{H^{3}}-\frac{1}{H}\right) \log n}} \rightarrow N(0,1)
$$

where $N(0,1)$ denotes the standard normal distribution, $H_{2}=$ $\sum_{i=1}^{m} p_{i} \log ^{2} p_{i}$, and and

$$
\begin{aligned}
\mathbf{E}\left[D_{n}\right] & =\frac{\log n}{H}+O(1) \\
\operatorname{Var} D_{n} & \sim\left(\frac{H_{2}}{H^{3}}-\frac{1}{H}\right) \log n
\end{aligned}
$$

for $n \rightarrow \infty$.

Outline Update

1. Divide and Conquer
2. Example: Boncelet's Algorithm
3. Continuous Relaxation of the Recurrence
4. Master Theorem
5. Examples
6. Boncelet's Algorithm Revisited
7. Sketch of Proof

Sketch of Proof

1. From the recurrence we have

$$
\widetilde{T}(s)=\widetilde{A}(s)+\sum_{j=1}^{m} b_{j} \sum_{n=1}^{\infty} \frac{T\left(\left\lfloor p_{j}(n+2)+\delta_{j}\right\rfloor\right)-T\left(\left\lfloor p_{j}(n+1)+\delta_{j}\right\rfloor\right)}{n^{s}} .
$$

But defining

$$
n=\left\lfloor\frac{k+2-\delta_{j}}{p_{j}}\right\rfloor-2
$$

for some integer k for which we have

$$
\left\lfloor p_{j}(n+1)+\delta_{j}\right\rfloor=k+1 \text { and }\left\lfloor p_{j}(n+2)+\delta_{j}\right\rfloor=k+2 \text {. Then }
$$

$$
\sum_{n=1}^{\infty} \frac{T\left(\left\lfloor p_{j}(n+2)+\delta_{j}\right\rfloor\right)-T\left(\left\lfloor p_{j}(n+1)+\delta_{j}\right\rfloor\right)}{n^{s}}=G_{j}(s)+\sum_{k=1}^{\infty} \frac{T(k+2)-T(k+1)}{\left(\left\lfloor\frac{k+2-\delta_{j}}{p_{j}}\right\rfloor-2\right)^{s}} .
$$

for an explicit (and simple) analytic function $G_{j}(s)$, namely

$$
G_{j}(s)=\sum_{3 p_{j}+\delta_{j}-2 \leq k \leq 0} \frac{T(k+2)-T(k+1)}{\left(\left\lfloor\frac{k+2-\delta_{j}}{p_{j}}\right\rfloor-2\right)^{s}} .
$$

Sketch of Proof - Continuation

2. We now compare the last sum to $p_{j}^{s} \widetilde{T}(s)$ and obtain
$\sum_{k=1}^{\infty} \frac{T(k+2)-T(k+1)}{\left(\left\lfloor\frac{k+2-\delta_{j}}{p_{j}}\right\rfloor-2\right)^{s}}=\sum_{k=1}^{\infty} \frac{T(k+2)-T(k+1)}{\left(k / p_{j}\right)^{s}}-E_{j}(s)=p_{j}^{s} \widetilde{T}(s)-E_{j}(s)$,
where

$$
E_{j}(s)=\sum_{k=1}^{\infty}(T(k+2)-T(k+1))\left(\frac{1}{\left(k / p_{j}\right)^{s}}-\frac{1}{\left(\left\lfloor\frac{k+2-\delta_{j}}{p_{j}}\right\rfloor-2\right)^{s}}\right)
$$

3. Defining

$$
E(s)=\sum_{j=1}^{m} b_{j} E_{j}(s) \quad \text { and } \quad G(s)=\sum_{j=1}^{m} b_{j} G_{j}(s)
$$

we finally obtain our final formula

$$
\widetilde{T}(s)=\frac{\widetilde{A}(s)+G(s)-E(s)}{1-\sum_{j=1}^{m} b_{j} p_{j}^{s}}
$$

Asymptotics - Tauberian Theorem

For any sequence $c(n)$ with Dirichlet series $C(s)$ define

$$
\bar{c}(v)=\sum_{n \leq v} c(n) .
$$

Notice that the Mellin-Stieltjes transform of $C(s)$ becomes

$$
C(s)=\sum_{n \geq 1} c(n) n^{-s}=\int_{1-}^{\infty} v^{-s} d \bar{c}(v)=s \int_{1}^{\infty} \bar{c}(v) v^{-s-1} d v
$$

Theorem 5 (Wiener-Ikehara). Suppose that for some constant $A_{0}>0$, the analytic function

$$
F(s)=C(s)-\frac{A_{0}}{s-1} \quad(\Re(s)>1)
$$

has a continuous extension to the closed half-plane $\Re(s) \geq 1$. Then

$$
\bar{c}(v) \sim A_{0} v, \quad v \rightarrow \infty
$$

More general version by Delange that covers singularities of algebraiclogarithmic type.

Asymptotics - Perron-Mellin Formula

Inn order to provide error term and second order terms, one needs to use the Perron-Mellin formula:

$$
T(n)=T(2)+\lim _{T \rightarrow \infty} \frac{1}{2 \pi i} \int_{c-i T}^{c+i T} \widetilde{T}(s) \frac{\left(n-\frac{3}{2}\right)^{s}}{s} d s
$$

Unfortunately, the integrals and series (of residues) are not absolutely convergent because of the terms $1 / s$.

To remedy it we consider the auxiliary function (for any sequence $(c(n)$)

$$
\bar{c}_{1}(v)=\int_{0}^{v}\left(\sum_{n \leq w} c(n)\right) d w
$$

which is also given by

$$
\bar{c}_{1}(v)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} C(s) \frac{v^{s+1}}{s(s+1)} d s
$$

But to recover $\bar{c}(v)$, and then $T(n)$, we need a Wiener-Ikehara Tauberian result.

Asymptotics - Rationally Related Case

Previous methods generally cannot handle infinitely many poles on the line $\Re(s)=s_{0}$! That is, it is not true that

$$
\bar{c}_{1}(v)=\int_{0}^{v} \bar{c}(w) d w \sim \Psi_{1}(\log v) \cdot v^{s_{0}+1}
$$

implies $\bar{c}(v) \sim \Psi(\log v) \cdot v^{s_{0}}$.
Suppose that $\log p_{j}=-n_{j} L$ for some real $L>0$. In our case, we replace the denominator $1-\sum_{j=1}^{m} b_{j} p_{j}^{s}$ with a single real root $z_{0}=e^{-L s_{0}}$ by

$$
1-\sum_{j=1}^{m} b_{j} z^{n_{j}}=\left(1-e^{L s_{0}} z\right) P(z), \quad P(z) \text { polynomial. }
$$

Then we prove the following
$\frac{1}{2 \pi i} \lim _{T \rightarrow \infty} \int_{c-i T}^{c+i T} \frac{1}{1-e^{-L s} \lambda} \frac{x^{s}}{s} d s=\frac{\lambda^{\left\lfloor\frac{\log x}{L}\right\rfloor+1}-1}{\lambda-1}-\frac{1}{2} \lambda^{\left\lfloor\frac{\log x}{L}\right\rfloor} \llbracket \log x / L \in \mathbb{Z} \rrbracket$.
where $\left\lfloor\frac{\log x}{L}\right\rfloor$ lead to fluctuations.

Sketch of Proof - Binary Boncelet's Algorithm

1. Define

$$
C(s, y)=\sum_{n=1}^{\infty} \frac{C(n+2, y)-C(n+1, y)}{n^{s}}
$$

which from the basic recurrence becomes

$$
C(s, y)=\frac{(y-1)-E(s, y)}{1-y\left(p^{s+1}+q^{s+1}\right)},
$$

where $E(s, y)$ converges (in the right half a plane) and satisfies $E(0, y)=$ 0 and $E(s, 1)=0$.
2. Let $s_{0}(y)$ be the real zero of

$$
y\left(p^{s+1}+q^{s+1}\right)=1, \quad q=1-p .
$$

3. By Mellin-Perron formula and residue theorem we can prove that

$$
C(n, y)=(1+O(y-1)) n^{s_{0}(y)}(1+o(1))
$$

where

$$
s_{0}(y)=\frac{y-1}{H}+\left(\frac{H_{2}}{2 H^{3}}-\frac{1}{H}\right)(y-1)^{2}+O\left((y-1)^{3}\right) .
$$

Continuation

4. By setting $y=e^{t /(\log n)^{1 / 2}}$ we obtain

$$
\begin{aligned}
n^{s_{0}(y)} & =\exp \left(\log n\left(\frac{y-1}{H}-\left(\frac{1}{H}-\frac{H_{2}}{2 H^{3}}\right)(y-1)^{2}+O\left(|y-1|^{3}\right)\right)\right) \\
& =\exp \left(\frac{1}{H} t \sqrt{\log n}+\frac{1}{H} \frac{t^{2}}{2}-\left(\frac{1}{H}-\frac{H_{2}}{2 H^{3}}\right) t^{2}+O\left(t^{3} / \sqrt{\log n}\right)\right) \\
& =\exp \left(\frac{1}{H} t \sqrt{\log n}+\left(\frac{H_{2}}{H^{3}}-\frac{1}{H}\right) \frac{t^{2}}{2}+O\left(t^{3} / \sqrt{\log n}\right)\right)
\end{aligned}
$$

and consequently
$\mathbb{E}\left[e^{D_{n} t / \sqrt{\log n}}\right]=C\left(n, e^{t / \sqrt{\log n}}\right)=\exp \left(\frac{1}{H} t \sqrt{\log n}+\left(\frac{H_{2}}{H^{3}}-\frac{1}{H}\right) \frac{t^{2}}{2}\right)(1+o(1))$.
arriving at

$$
\begin{aligned}
\mathbb{E}\left[e^{t\left(D_{n}-\frac{1}{H} \log n\right) / \sqrt{\log n}}\right] & =e^{-(t / H) \sqrt{\log n}} \mathbb{E}\left[e^{D_{n} t / \sqrt{\log n}}\right] \\
& =e^{\frac{t^{2}}{2}\left(\frac{H_{2}}{H^{3}} \frac{1}{H}\right)}+o(1)
\end{aligned}
$$

By Goncharev's theorem, this completes the proof.

That's It

THANK YOU

[^0]: *Research supported by NSF Science \& Technology Center, and Humboldt Foundation.

