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Abstract

We study the entropy rate of a hidden Markov process (HMP) defined by observing

the output of a binary symmetric channel whose input is a first-order binary Markov

process. Despite the simplicity of the models involved, the characterization of this

entropy is a long standing open problem. By presenting the probability of a sequence

under the model as a product of random matrices, we show that the entropy rate sought

is equal to a top Lyapunov exponent of the product. This offers an explanation for the

elusiveness of explicit expressions for the HMP entropy rate, as Lyapunov exponents

are notoriously difficult to compute. Consequently, we focus on asymptotic estimates,

and apply the same product of random matrices to derive an explicit expression for a

Taylor approximation of the entropy rate with respect to the parameter of the binary

symmetric channel. The accuracy of the approximation is validated against empirical

simulation results. We also extend our results to higher order Markov processes and to

Rényi entropies of any order.
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1 Introduction

Let X = {Xk}k≥1 be a first order stationary Markov process over a binary alphabet, with

transition matrix P = {pab} such that pab = PX(Xk=b|Xk−1=a), a, b ∈ {0, 1}. Consider

also a Bernoulli (binary i.i.d.) noise process E = {Ek}k≥1, independent of X, such that

P (Ei = 1) = ε. Finally, define the process Z = {Zk}k≥1, with

Zk = Xk ⊕ Ek, k ≥ 1, (1)

where ⊕ denotes addition modulo 2 (exclusive-or). One can view Z as the output of a

binary symmetric channel with noise E, whose input is X. Notice that the process Z is

completely characterized by the parameters p01, p10, and ε.

The process Z is one of the simplest examples of a hidden Markov process (HMP).

More generally, a HMP is a process resulting from observing any discrete-time, finite state

homogeneous Markov chain through a discrete-time memoryless channel [6, 7, 2]. The chain

and the channel can be defined over arbitrary alphabets, discrete or continuous. HMPs

have been studied extensively, and few other statistical tools have had such a wide range

of applications in so many domains of science and technology. The applications, to cite

just a few, include automatic character recognition [32], speech recognition [17, 10, 31],

statistics [23], communications and information theory [1], DNA sequencing [4, 24], etc.,

with just a small sample of references given for each application. A comprehensive survey

of HMP research and applications can be found in [8], including an extensive bibliography.

HMPs are also referred to in the literature as hidden Markov models (HMM) (cf. [10, 31]).

The simplicity of the definition of HMPs is misleading, and despite the extensive re-

search on their properties and applications, some questions on fundamental properties of

the processes remain open, even for the “simple” case defined in (1). Some of these ques-

tions concern the performance of filtering [21, 29], denoising [38, 29], and compression [8]

on hidden Markov sources. In all these cases, algorithms exist that achieve optimal perfor-

mance (e.g., minimal residual noise or code length), even universally (without knowledge

of the process parameters). However, in general, the optimal value of the performance of

interest for each of the problems has not been explicitly characterized. In the case of com-

pression, the problem of interest is the determination of the Shannon entropy rate H(Z) of

the process Z in terms of the parameters of the process [8]. This is the problem addressed

in this paper, where we also consider the case of the more general Rényi entropies [33].

The Shannon entropy is obviously relevant in data compression, but both Shannon

and Rényi entropies arise also in other contexts, such as searching, sorting, and pattern

matching [36]. For example, consider a sequence Z1, Z2, . . . , Zn, . . . generated by a strong

mixing source. Define Ls
n as the length of the longest substring of Z1 . . . Zn that has s copies

inside Z1, . . . , Zn, s ≥ 1. It is known (cf. [35]) that almost surely1

lim
n→∞

Ls
n

log n
=

s

(s − 1)Hs(Z)

1All logarithms are natural, and entropies are measured in nats. Unnormalized entropies will be denoted

by H(·), and normalized (per symbol) entropy rates by H(·).
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where Hs(Z) is the s-th order Rényi entropy rate of Z, as defined in (35). As s → 1 the

Rényi entropy approaches the Shannon entropy, and the above holds once L1
n is interpreted

as the length of the longest prefix of Zn+1, Zn+2 . . . that occurs at least once inside the

sequence Z1, Z2, . . . , Zn [35]. Furthermore, Ls
n can be viewed as the height of the so-called

s-suffix trie in which an s-trie is built from suffixes of the sequence Z1, . . . , Zn, as explained

in [36]. In many applications, data modeled by Markov processes is affected by noise, and

thus, the above mentioned asymptotic behaviors are governed by the corresponding HMP

entropies.

The question of computing the Shannon entropy (or, simply, entropy) of a HMP was

studied as early as [3], where the analysis suggests the intrinsic complexity of expressing the

HMP entropy as a function of the process parameters. The reference shows an expression

of the entropy in terms of a measure Q, which solves an integral equation dependent on

the parameters of the process. The measure is hard to extract from the equation in any

explicit way. More recently, the problem of determining the residual noise of the best filter

for a HMP was studied in [21], and explicit asymptotic formulas for the regime where

pab → 0, a 6= b were obtained. Furthermore, there has been a flurry of activity on the

subject of asymptotic estimates of the HMP entropy rate since (and partly stimulated by)

the preliminary publication of the results of this paper in [19]. In particular, Ordentlich

and Weissman [28, 29] present a different methodology for analyzing the HMP entropy rate,

from which the first derivative can be obtained in various regimes of the parameters p01, p10,

and ε. Zuk et al. [39] present formulas for higher order coefficients of the Taylor expansion

in the symmetric case (p01=p10), obtained using mathematical tools from statistical physics.

Han and Marcus [14, 15] characterize the analyticity of the HMP entropy rate, and obtain

a broad generalization of the results of [39]. As this paper is going to press, insights gained

from the study of the HMP entropy rate are being applied to another long standing open

problem, namely, the capacity of a noisy constrained channel [16, 20].

Our study will focus on the estimation of the HMP entropy rate in the regime where

the channel parameter (noise) ε is small. The paper is organized as follows: In Section 2 we

outline the analysis and our main results. In particular, we derive the probability of a HMP

sequence Zn
1 as a product of random matrices. Relying on classical results on products

of random matrices, in Theorem 1 we show that the entropy we seek is a top Lyapunov

exponent of a well defined matrix process. Lyapunov exponents are notoriously difficult, or

even infeasible to compute, as argued in [37]. This provides additional supporting evidence

to the elusiveness of the HMP entropy. In Theorem 2 we present an explicit first-order Taylor

expansion of H(Z) near ε = 0, as a function of the parameters pab. We show that the linear

term of the expansion has a pleasant information-theoretic flavor, and can be expressed

as a Kullback-Liebler divergence between distributions of triplets related to the underlying

Markov process. We also give an estimate of the quadratic term of the expansion, and extend

our analysis to higher order HMPs and to Rényi’s entropies. The section also includes results

of empirical simulations of HMPs, which validate the entropy rate approximation. Most

proofs are deferred to Section 3 where we use spectral representation of positive matrices

to derive our main results.
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2 Main Results

We denote by Ȳ the Boolean complement of a binary variable Y , and, for any sequence

{Yk}k≥1, we denote by Y j
i the (sub-)sequence Yi, Yi+1 . . . Yj , j ≥ i. Recalling the definition

of the HMP in (1), we observe that Zi = Xi if Ei = 0 and Zi = X̄i if Ei = 1. We next

derive an expression for the probability distribution2 P (Zn
1 ) of a sequence Zn

1 emitted by

the HMP, for some n ≥ 1. First, using elementary properties of probabilities, and our

assumptions on the processes X and E, we have

P (Zn
1 , En) = P (Zn

1 , En−1 = 0, En) + P (Zn
1 , En−1 = 1, En) (2)

= P (Zn−1
1 , Zn, En−1 = 0, En) + P (Zn−1

1 , Zn, En−1 = 1, En)

= P (Zn, En|Z
n−1
1 , En−1 = 0)P (Zn−1

1 , En−1 = 0) +

P (Zn, En|Z
n−1
1 , En−1 = 1)P (Zn−1

1 , En−1 = 1)

= P (En)PX(Zn ⊕ En|Zn−1)P (Zn−1
1 , En−1 = 0)

+ P (En)PX(Zn ⊕ En|Z̄n−1)P (Zn−1
1 , En−1 = 1)

Next, we recast this expression in matrix form. Denote row vectors by bold lowercase

letters, matrices by bold uppercase letters, and let 1 = [1, 1]; superscript t will denote

transposition. Let

pn = [P (Zn
1 , En = 0), P (Zn

1 , En = 1) ] (3)

and

Mε(Zn−1, Zn) =

[
(1−ε)PX(Zn|Zn−1) εPX(Z̄n|Zn−1)

(1−ε)PX(Zn|Z̄n−1) εPX(Z̄n|Z̄n−1)

]
(4)

where the expressions PX(Zi|Zi−1) are the Markov transition probabilities computed on the

components of the HMP Z, and ε is the parameter of the Bernoulli noise process.

One concludes from (2) that

pn = pn−1Mε(Zn−1, Zn), n > 1. (5)

Since P (Zn
1 ) = pn1

t = P (Zn
1 , En = 0) + P (Zn

1 , En = 1), after iterating (5), we obtain

P (Zn
1 ) = p1Mε(Z1, Z2) · · ·Mε(Zn−1, Zn)1t. (6)

The joint distribution P (Zn
1 ) of the HMP, as presented in (6), has the form of a product

of random matrices, since the conditionals PX(Zi|Zi−1) are random variables. Notice that

the components of the process {Mε(Zi, Zi+1)}i≥1 take values from a set of four different

matrices. Applying a subadditive ergodic theorem, it is possible to show that the expecta-

tion E[log P (Zn
1 )] must converge to a constant known as the top Lyapunov exponent of the

matrix process [11, 27, 37]). We will rely on the following result by Furstenberg and Kesten

[11] (see also [27]), which formally established this fact.

2In general, the measures governing probability expressions will be clear from the context. In cases when

confusion is possible, we will explicitly indicate the measure, e.g., PX(Zn|Zn−1).
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Proposition 1 (Furstenberg and Kesten [11]) Let {Mi}i≥1, be a stationary ergodic

process, where the Mi are square matrices such that E[log+ ||Mi||] < ∞ for some matrix

norm || · || (where log+ x = max{0, log x}). Then there exists a real constant µ such that

lim
n→∞

1

n
E[log ||M1 · · ·Mn||] = lim

n→∞

1

n
log ||M1 · · ·Mn|| = µ a.s.. (7)

The constant µ of Proposition 1 is known as the top Lyapunov exponent of the process

{Mε(Zi, Zi+1)}i≥1. An immediate consequence of this result and (6) is that the entropy of

the HMP is equal to a top Lyapunov exponent.

Theorem 1 Consider the HMP Z defined in (1). The entropy rate

H(Z) = lim
n→∞

E[−
1

n
log P (Zn

1 ) ]

= lim
n→∞

1

n
E[− log

(
p1Mε(Z1, Z2)Mε(Z2, Z3) · · ·Mε(Zn−1, Zn)1t

)
]

is the top Lyapunov exponent of the process {Mε(Zi, Zi+1)}i≥1.

Proof. Consider a 2 × 2 nonnegative matrix A. It is readily verified that p1A1t is a norm

of A (cf. [26]). Clearly, in the case of the nonnegative matrices Mε(Zi, Zi+1), the norm

is upper bounded. The theorem follows by direct application of Proposition 1, using this

norm.

We note that the connection between discrete-time, finite state Markov chains and Lya-

punov exponents, based also on the Furstenberg and Kesten theorem, is studied in [13],

where the dual problem of a memoryless signal going through a Markov channel is consid-

ered. The results in [13] also link other interesting parameters like mutual information and

channel capacity to Lyapunov exponents.

Although some upper and lower bounds for top Lyapunov exponents are available (cf.

[12]), it is, in general, notoriously difficult (if not computationally infeasible) to compute

them precisely [37]. Therefore, it is of interest to study asymptotic approximations of

the HMP entropy rate. Next, we derive an explicit asymptotic expansion of the Shannon

entropy rate H(Z), which does not depend on direct computation of Lyapunov exponents.

2.1 Shannon entropy

From now on we deal with the entropy rate H(Z) for the HMP Z of (1) as a function of ε,

when ε is small. The following formal definition will be useful in computing the Shannon

entropy (and later Rényi entropies of any order) of Z

Rn(s, ε) =
∑

zn

1

P s
Z(zn

1 ), (8)

where the exponent s of PZ is a complex variable, and the summation is over all binary

n-tuples. (The function Rn(s, ε) was also used in entropy calculations in [18].) It is readily

verified, using the chain rule for derivatives, that

H(Zn
1 ) = E [− log P (Zn

1 )] = −
∂

∂s
Rn(s, ε)

∣∣∣∣
s=1

. (9)
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The entropy of the underlying Markov sequence is

H(Xn
1 ) = −

∂

∂s
Rn(s, 0)

∣∣∣∣
s=1

. (10)

Let π(1)= [PX(0), PX(1) ] denote the stationary distribution of the binary Markov pro-

cess X. Define the matrix

P(s) =

[
ps
00 ps

01

ps
10 ps

11

]
, (11)

and the vector π(s)= [ P s
X(0), P s

X(1) ]. It is readily verified, again by direct computation,

that the entries of the mth power, Pm(s), of P(s), m ≥ 2, are given by

(Pm(s))a,b =
∑

z
m−1

1

P s
X(z1|a)P s

X(z2|z1) . . . P s
X(b|zm−1), a, b ∈ {0, 1} . (12)

the case m = 1 being trivially covered by the definition pab = PX(b|a). It follows that

Rn(s, 0) =
∑

zn

P s
X(zn

1 ) = π(s)Pn−1(s)1t . (13)

Using a formal Taylor expansion near ε = 0, we write

Rn(s, ε) = Rn(s, 0) + ε
∂

∂ε
Rn(s, ε)|ε=0 + O(Rε,ε(s, ε

′)ε2), (14)

where Rε,ε(s, ε
′) is the second derivative with respect to ε computed at some ε′, provided

these derivatives exist. In fact, it is easy to verify that one needs additional assumptions

for this to happen. For example, for a HMP with an underlying Markov process defined by

the following transition matrix

P =

[
0 1
1
2

1
2

]
,

the derivatives of the entropy rate with respect to ε do not exist, and the above Taylor ex-

pansion does not hold. In fact, it was shown in [29] that the main error term (corresponding

to Rn(s, ε)−Rn(s, 0) in our notation) is O(ε log(1/ε)) in that case. However, we will prove

the two lemmas below, where we write P > 0 to denote a transition matrix all of whose

entries are positive.

Lemma 1 Assume P > 0, and define π̄(s) = [P s
X(1), P s

X(0) ] (the reverse of π),

Q1(s) =

[
p00p

s−1
01 p01p

s−1
00

p10p
s−1
11 p11p

s−1
10

]
, and Q2(s) =

[
p00p

s−1
10 p01p

s−1
11

p10p
s−1
00 p11p

s−1
01

]
. (15)

Then,

∂

∂ε
Rn(s, ε)

∣∣∣∣
ε=0

= s
(
π̄(s)Q2(s) − π(s)P(s)

)
Pn−2(s)1t

+ sπ(s)

n−3∑

i=1

Pi−1(s)
(
Q1(s)Q2(s) − P2(s)

)
Pn−i−2(s)1t

+ sπ(s)Pn−2(s)
(
Q1(s) − P(s)

)
1t . (16)
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The first and third terms in (16) reflect border conditions at the beginning and end of

the sequence, respectively, and their contribution will be asymptotically negligible. The

second, and main, term will determine the asymptotic behavior of the entropy. Lemma 1

will be useful to derive the linear term in the asymptotic expansion of the Shannon, and

later the Rényi, entropy rate. This requires, however, bounding the growth of the quadratic

term in the expansion, which is accomplished in the next lemma, proved in Section 3.

Lemma 2 Let P > 0. Then for all ε ∈ [0, 1
2 ) we have,

∂

∂s

∂2

∂ε2
Rn(s, ε)|ε=0,s=1 = O(n) . (17)

With the lemmas established, it follows from (9), (10), (14), and (17) that

H(Zn
1 ) = H(Xn

1 ) − ε
∂2

∂s∂ε
Rn(s, ε)

∣∣∣∣
ε=0,s=1

+ O(nε2) . (18)

To find the linear term in the Taylor expansion (18), we need to differentiate (16) with

respect to s, and evaluate at s = 1. To facilitate this computation, we use the spectral

representation [22, 34, 36] of the matrix P(s). Let λ(s) be the main eigenvalue of P(s)

with rt
1(s) and ℓ1(s) being the corresponding right and left main eigenvectors, respectively,

normalized so that ℓ1(s)r
t
1(s) = 1. Let also µ(s) be the second eigenvalue, with rt

2(s) and

ℓ2(s) the respective right and left eigenvectors. Since P > 0, the the Perron-Frobenius

theorem [22, 36] applies, and we know that λ(s) > |µ(s)| and r1 and ℓ1 are real-valued

nonnegative vectors. The matrix spectral representation yields

Pk(s) = λk(s)
(
rt
1(s) ℓ1(s)

)
+ µk(s)

(
rt
2(s) ℓ2(s)

)

= λk(s)
(
rt
1(s) ℓ1(s)

)
(1 + O(ρk)) , (19)

where ρ = |µ(s)|/λ(s) < 1. Note that
(
rt
i(s) ℓi(s)

)
is an outer product resulting in a 2 × 2

matrix of rank one.

Define Q(s) = Q1(s)Q2(s). It follows immediately from (11) and (15) that Q(1) =

P2(1). Therefore, when differentiating (16) with respect to s and evaluating at s = 1,

the only terms that do not vanish in the derivative of the middle term of (16) are those

involving the derivative of Q(s)−P2(s). Also, since P(1) is a positive stochastic matrix, we

have λ(1) = 1. Now, substituting the spectral representation for powers of P(s) from (19)

in (16), differentiating with respect to s and evaluating at s = 1, and simplifying power

sums, we obtain

∂2

∂ε∂s
Rn(s, ε)

∣∣∣∣ε=0,
s=1

= n π(1)
(
rt
1(1) ℓ1(1)

) ∂

∂s

(
Q(s) − P2(s)

)∣∣∣∣
s=1

(
rt
1(1) ℓ1(1)

)
1t + o(n).

(20)

The o(n) term in (20) is contributed by the summation of powers of ρ originating in the

approximation (19), the first and last terms in (16), and the adjustment needed to make n

(rather than n−2) the multiplier in (20).
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For the transition probability matrix P = P(1), we have

ℓ1(1) = π(1) =

[
p10

p10 + p01
,

p01

p10 + p01

]
,

and r1(1) = [1, 1]. Thus, π(1)rt
1(1) = ℓ1(1)1

t = 1, and (20) simplifies to

∂2

∂ε∂s
Rn(s, ε)

∣∣∣∣ε=0,
s=1

= n π(1)
∂

∂s

(
Q(s) − P2(s)

)∣∣∣∣
s=1

1t + o(n). (21)

The derivative in (21) is obtained through a rather straightforward symbolic manipulation.

We show the derivative of each term, evaluated at s = 1, to give some insight into how the

final result takes its form. We have

∂P2(s)

∂s

∣∣∣∣
s=1

=




2p2
00 log(p00) + p01p10 log(p01pp10) p00p01 log(p00p01) + p01p11 log(p01p11)

p10p00 log(p10p00) + p11p10 log(p11p10) p10p01 log(p10p01) + 2p2
11 log(p11)


,

(22)

and

∂Q(s)

∂s

∣∣∣∣
s=1

=




p2
00 log(p01p10) + +2p01p10 log(p00) p00p01 log(p01p11) + p01p11 log(p00p01)

p10p00 log(p11p10) + p11p10 log(p10p00) 2p10p01 log(p11) + p2
11 log p10p01


 .

(23)

Putting it all together, from (18), (21), (22) and (23), after some symbolic manipulation

and rearrangement of terms, we obtain the following result for the Shannon entropy.

Theorem 2 Let P > 0. The first order term in the entropy rate of the process Z,

H(Z) = lim
n→∞

1

n
Hn(Zn) = H(X) + f1(p01, p10)ε + O(ε2), (24)

is given by

f1(p01, p10) = D (PX(z1z2z3)||PX(z1z̄2z3)) =
∑

z1z2z3

PX(z1z2z3) log
PX(z1z2z3)

PX(z1z̄2z3)
, (25)

where H(X) is the entropy rate of the Markov process X, D denotes the Kullback-Liebler

divergence, and the summation is over all binary triplets.

Remark. The expansion of Theorem 2 does not hold, in general, when the condition

P > 0 is not satisfied, i.e., some transition probabilities are zero. For example, consider the

Markov chain discussed above Lemma 1, with the following general transition probabilities

P =

[
1 − p p

1 0

]
(26)
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where 0 ≤ p ≤ 1. Clearly, some sequences xn
1 are not reachable by the Markov process in

this case, i.e., the set of sequences of nonzero probability under the process is constrained.

This set of sequences, however, may have nonzero probability with respect to the channel

output process Z. The probability of the set in this case is polynomial in ε, which will

generally contribute a term O(ε log ε) to the entropy rate H(Z) when ε is small. This was

observed for the transition matrix P of (26) in [29], where it was shown that

H(Z) = H(X) −
p(2 − p)

1 + p
ε log ε + O(ε) (27)

as ε → 0. Recently, Han and Marcus [15] generalized this result to HMPs with underlying

Markov processes of arbitrary order, showing that, in general,

H(Z) = H(X) − f0(P)ε log ε + O(ε) (28)

when at least one of the transition probabilities in the Markov chain is zero. This setting is

closely related to the long-standing noisy constrained capacity problem [9], originally posed

by Shannon. The link between the two problems is also studied in [20], where the coefficient

f0(P) in (28) is determined explicitly for the important family of (d, k) constraints [25].

The methodology leading to the proof of Theorem 2 allows for the computation of further

terms of the Taylor expansion, provided one bounds the error term as done in Lemma 2.

For example, after verifying that the third derivative of H(Zn
1 ) with respect to ε is O(n),

we obtain an explicit expression for the second derivative of H(Zn
1 ) at ε = 0, denoted

f2(p01, p10) (this coefficient multiplies ε2/2 in the Taylor expansion). Let

Q3(s) =

[
p00p

s−1
11 p01p

s−1
10

p10p
s−1
01 p11p

s−1
00

]
. (29)

Then,

f2(p01, p10) = −f1(p0,1, p10) − π(1)[Q1(0)Q2(0) − P2(0)]r1(1) (30)

− ℓ1(1)
∂

∂s

(
P3(s) − P2(s)Q2(s) − Q3(s)Q1(s)P(s) + Q2

3(s)P(s)
)∣∣∣

s=1
1t ,

As above, ℓ1(1) and r1(1) are left and right eigenvectors of P(1). At the end of Sec-

tion 3.2 we present an outline of the derivation of (30), using tools similar to those leading

to Theorem 2.

We illustrate these results in the following example.

Example. Symmetric Markov Process

Consider a Markov process with symmetric transition probabilities p01 = p10 = p,

p00 = p11 = 1−p. This process has stationary probabilities PX(0) = PX(1) = 1
2 . The

probabilities PX(z3
1) of binary triplets are readily computed as PX(000) = PX(111) =

1
2 (1−p)2, PX(001) = PX(011) = PX(100) = PX(110) = 1

2p(1−p), PX(010) = PX(101) = p2.

Substituting these values into (25), we obtain

f1(p, p) = 2(1 − 2p) log
1 − p

p
, (31)
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Parameters Calculated Empirical

H(X)+

ε p n H(X) f1(p, p) f2(p, p) f1ε + f2
ε2

2
− log PZ (zn

1
)

n

0.001 0.005 4 · 109 0.031 10.481 -19810.0 0.032 0.039

0.001 0.010 4 · 109 0.056 9.006 -4908.5 0.063 0.063

0.001 0.025 1 · 109 0.117 6.961 -766.5 0.123 0.123

0.010 0.050 1 · 108 0.199 5.300 -184.8 0.242 0.242

0.010 0.100 1 · 108 0.325 3.516 -43.0 0.358 0.357

0.010 0.300 1 · 108 0.611 0.678 -2.5 0.618 0.617

Table 1: Second order Taylor approximation of H(Z) vs. empirical estimation.

and, for the second order term, from (30),

f2(p, p) = −f1(p, p) −
1

2

(
2p − 1

p(1 − p)

)2

. (32)

This expression coincides with the one given in [39] for the second derivative of the entropy

rate of a symmetric HMP.

HMPs for various values of the parameters ε and p01 = p10 = p were simulated, gen-

erating pseudo-random HMP sequences of lengths between n = 108 and n = 4 · 109. For

each generated sequence zn
1 , the probability PZ(zn

1 ) assigned by the hidden Markov model

of the given parameters was computed, and − 1
n

log PZ(zn
1 ) was taken as an estimate of the

entropy rate. This is justified by the fact that a sequence emitted by the HMP is “typi-

cal” and, thus, satisfies | 1
n

log PZ(zn
1 ) + Hn(Z)| < δ for any δ > 0, with probability that

approaches one exponentially fast as n → ∞ [5]. A sample of results for some values of ε

and p are given in Table 1, where values of H(Z) estimated using a second-order Taylor

approximation according to (31) and (32) are compared with simulation estimates. The

slope ∂Hn(Z)/∂ε|ε=0, as a function of p, is plotted in Figure 1. The empirical slope was

estimated using first differences of the estimated values of Hn(Z) near ε = 0, and the result

compared with the analytical value produced by (31).

The methods leading to the results of this section can also be applied to HMPs with un-

derlying Markov processes of higher order. Consider a binary stationary Markov process, X,

of order r. The process is defined by the set of conditional probabilities P (Xt=ar+1 |X
t−1
t−r =ar

1),

ar+1
1 ∈ {0, 1}r+1 (we assume X0

−r+1 is defined and distributed according to the stationary

distribution of the process). The HMP is still defined by Equation (1), with a Bernoulli

process {Ei}. A generalization of Theorem 1 holds also in this case, where the process

{Mε(Zi, Zi+1)}i≥1 is supported by a set of 2r+1 binary matrices of dimensions 2r × 2r. The

generalization of Theorem 2, in turn, takes the following form.

Theorem 3 Let P be a stationary binary Markov process such that P (Xt = ar+1|X
t−1
t−r =

ar
1) > 0 for all ar+1

1 ∈ {0, 1}r+1. For a binary sequence z2r+1
1 , let ž2r+1

1 denote a sequence

that is identical to z2r+1
1 , except for the (r+1)st coordinate, where žr+1 = z̄r+1. The first

10



Figure 1: Values of f1 and empirical estimation of ∂h/∂ε|ε=0 as a function of p (entropy

measured in nats).

order term in the entropy rate of the process Z,

H(Z) = lim
n→∞

1

n
Hn(Zn) = H(X) + f1(P )ε + O(ε2), (33)

is given by

f1(P ) = D
(
PX(z2r+1

1 )||PX(ž2r+1
1 )

)
=

∑

z
2r+1

1

PX(ž2r+1
1 ) log

PX(z2r+1
1 )

PX(ž2r+1
1 )

, (34)

where the summation is over all binary strings of length 2r + 1.

The proof of Theorem 3 follows along the same lines as that of Theorem 2 (and, of course,

generalizes it), but with more cumbersome notation and symbolic expressions. Therefore,

for clarity, in the next section we provide details for the proof of Theorem 2, but just a

sketch of the proof of Theorem 3, pointing out the parallelism between the two.

2.2 Rényi entropy

We next deal with the Rényi [33] entropy, Hs, of order s, defined as

Hs(Z
n
1 ) =

log Rn(s, ε)

1 − s
. (35)

As in the case of the Shannon entropy, we focus our attention on deriving an asymptotic

approximation of Hs(Z), and, in particular, on the first order error term of the Taylor

expansion around ε = 0. Observe first, however, that the Rényi entropy of the underlying

Markov process can be expressed as (cf. [36])

Hs(X) =
1

1 − s
log λ(s),

11



where λ(s) is the main eigenvalue of the matrix P of (11). Using arguments similar to those

of Section 2.1, we derive the following result, proved in Section 3.

Theorem 4 If P > 0, then for any s and small ε

Hs(Z) = Hs(X) + ε
s

(1 − s)λ2(s)
ℓ1(s)

(
Q1(s)Q2(s) −P2(s)

)
r1(s) + O(ε2), (36)

where ℓ1(s) and r1(s) are, respectively, the left and the right main eigenvectors of P(s), and

Q1(s) and Q2(s) are defined in (15).

3 Analysis and Proofs

In this section we first prove Lemmas 1 and 2 leading directly to the proof of Theorem 2.

We also present an outline of the derivation of the second order term in the expansion

of the Shannon entropy rate, given in (30). We then proceed to the proof of Theorem 4.

Throughout this section we assume that P > 0.

3.1 Proof of Lemma 1

Our goal is to prove Equation (16) of Lemma 1. Recall the definition of the matrices

Mε(Zi, Zi+1) in (4). We construct these matrices for a given realization zn
1 of Zn

1 . Also, to

reduce clutter, we will use the abbreviated notation Mi = Mε(zi, zi+1). Hence, we have

Mi =

[
(1 − ε)PX(zi+1|zi) εPX (z̄i+1|zi)

(1 − ε)PX(zi+1|z̄i) εPX (z̄i+1|z̄i)

]

=

[
PX(zi+1|zi) 0

PX(zi+1|z̄i) 0

]
+ ε

[
−PX(zi+1|zi) PX(z̄i+1|zi)

−PX(zi+1|z̄i) PX(z̄i+1|z̄i)

]

def
= M

(0)
i + εM

(1)
i , 1 ≤ i ≤ n − 1 . (37)

Similarly, for the vector p1 defined in (3), we have

p1 = [PX(z1), 0 ] + ε[−PX(z1), PX(z̄1) ]
def
= p

(0)
1 + εp

(1)
1 . (38)

Now, we recall the expression (6) for the probability, which we recast as

PZ(zn
1 ) = p1M1M2 · · ·Mn−11

t

= (p
(0)
1 +εp

(1)
1 )(M

(0)
1 +εM

(1)
1 )(M

(0)
2 +εM

(1)
2 ) · · · (M

(0)
n−1+εM

(1)
n−1)1

t . (39)

To compute the derivative of PZ(zn
1 ) at ε = 0, we differentiate both sides of (39), obtaining

∂

∂ε
PZ(zn

1 )

∣∣∣∣
ε=0

= p
(1)
1

n−1∏

j=1

M
(0)
j 1t +

p
(0)
1

n−2∑

i=1




i−1∏

j=1

M
(0)
j · M

(1)
i ·

n−1∏

j=i+1

M
(0)
j


 1t +

p
(0)
1

n−2∏

j=1

M
(0)
j ·M

(1)
n−11

t . (40)

12



Focusing on a typical term in the summation on the second line of (40), it follows from the

definitions in (37)–(38) that

p
(0)
1

i−1∏

j=1

M
(0)
j =

[
PX(zi

1), 0
]

.

Multiplication by M
(1)
i yields the vector [−PX(zi+1

1 ), PX(zi
1z̄i+1) ], and further multiplica-

tion by
∏n−1

j=i+1 M
(0)
j 1t results in

p
(0)
1

i−1∏

j=1

M
(0)
j · M

(1)
i ·

n−1∏

j=i+1

M
(0)
j 1t = PX(zi

1z̄i+1z
n
i+2) − PX(zn

1 )

The first and third lines of (40) deal with the edge cases (i = 0 and i = n − 1), but are

otherwise similar. Let ei denote a binary unit vector of length n, with a one in the ith

coordinate. It follows from the foregoing discussion that

∂

∂ε
PZ(zn

1 )

∣∣∣∣
ε=0

= −PX(zn
1 ) +

n∑

i=1

PX(zn
1 ⊕ ei) (41)

= −PX(zn
1 ) +


PX(z̄1)PX(z2|z̄1)

n−1∏

j=2

PX(zj+1|zj)+

n−2∑

i=2

PX(z1)
i−2∏

j=1

PX(zj+1|zj) · PX(z̄i|zi−1)PX(zi+1|z̄i) ·
n−1∏

j=i+1

PX(zj+1|zj) +

PX(z1)

n−2∏

j=1

PX(zj+1|zj) · PX(z̄n|zn−1)


1t . (42)

By the definition of R(s, ε) in (8), we have

∂

∂ε
R(s, ε)

∣∣∣∣
ε=0

=
∑

zn

1

sP s−1
Z (zn)

∂

∂ε
PZ(zn

1 )

∣∣∣∣
ε=0

(43)

Applying the definitions of P(s),Q1(s), and Q2(s) in (11) and (15), and recalling the

characterization of powers of P(s) in (12), we verify

π̄(s)Q2(s)P
n−2(s)1t =

∑

zn

1

P s−1
X (zn

1 )PX(z̄1z
n
2 ), (44)

π(s)P i−1
X (s)Q1(s)Q2(s)P

n−i−2(s)1t =
∑

zn

1

P s−1
X (zn

1 )PX(zi−1
1 z̄iz

n
i+1), 1≤i≤n−1, (45)

π(s)Pn−2(s)Q1(s)1
t =

∑

zn

1

P s−1
X (zn

1 )PX(zn−1
1 z̄n). (46)

Equation (16) now follows from (42)–(46).

13



3.2 Proof of Lemma 2

Here we are to prove that the second derivative of H(Zn
1 ) with respect to ε is O(n). We

have
∂2

∂ε2
H(Zn

1 ) = −
∑

zn

1

∂2P (zn
1 )

∂ε2
log P (zn

1 ) −
∑

zn

1

(
∂P (zn

1 )

∂ε

)2 1

P (zn
1 )

.

It follows from (37) that

∂

∂ε
Mε(a, b) =

M1−ε(a, b) − Mε(a, b)

1 − 2ε
. (47)

Now, from (39), applying (47), we obtain

∂

∂ε
P (zn

1 ) =
1

1 − 2ε

n∑

i=1

(PX(zn
1 ⊕ ei) − PX(zn

1 )) . (48)

Using (48), we write

∂2P (zn
1 )

∂ε2
=

2

1 − 2ε

∂P (zn
1 )

∂ε
+

1

(1 − 2ε)2

∑

1≤j,k≤n

(
PX(zn

1 ⊕ ej ⊕ ek) − PX(zn
1 ⊕ ej) − PX(zn

1 ⊕ ek) + PX(zn
1 )

)
.

Thus,

∂2H(Zn
1 )

∂ε2
= −

2

1 − 2ε

∂H(Zn
1 )

∂ε
−

∑

zn

1

(
∂P (zn

1 )

∂ε

)2 1

P (zn
1 )

− (49)

1

(1 − 2ε)2

∑

1≤j,k≤n

∑

zn

1

(
PX(zn

1 ⊕ ej ⊕ ek) − PX(zn
1 ⊕ ej) − PX(zn

1 ⊕ ek) + PX(zn
1 )

)
log PX(zn

1 ).

Observe that we already established, in (21), that the first term of (49) is O(n). Hence we

only deal with the other two terms that we denote by D2 and D1, respectively.

We first estimate D1 defined as

D1 =
∑

1≤j,k≤n

∑

zn

1

(
PX(zn

1 ⊕ ej ⊕ ek) − PX(zn
1 ⊕ ej) − PX(zn

1 ⊕ ek) + PX(zn
1 )

)
log PX(zn

1 ).

Observe that

D1 =
∑

1≤j,k≤n

∑

zn

1

PX(zn
1 )

(
log PX(zn

1 ⊕ ej ⊕ ek) − log PX(zn
1 ⊕ ej) − log PX(zn

1 ⊕ ek) + log PX(zn
1 )

)

=
∑

1≤j,k≤n

∑

zn

1

PX(zn
1 ) log

PX(zn
1 ⊕ ej ⊕ ek)PX(zn

1 )

PX(zn
1 ⊕ ej)PX(zn

1 ⊕ ek)

To complete our derivation we will use the following lemma, which we prove at the end

of this section.
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Lemma 3 There exists ρ < 1 such that

PX(zn
1 ⊕ ej ⊕ ek)PX(zn

1 )

PX(zn
1 ⊕ ej)PX(zn

1 ⊕ ek)
= 1 + O(ρk) + O(ρj) + O(ρ|j−k|) + O(ρn−j) + O(ρn−k) (50)

uniformly over all zn
1 .

Granted Lemma 3, we proceed as follows

D1 =
∑

1≤j,k≤n

∑

zn

1

PX(zn
1 ) log

PX(zn
1 ⊕ ej ⊕ ek)PX(zn

1 )

PX(zn
1 ⊕ ej)PX(zn

1 ⊕ ek)

=
∑

zn

1

PX(zn
1 )

∑

1≤j,k≤n

log
(
1 + O(ρk) + O(ρj) + O(ρ|j−k|) + O(ρn−j) + O(ρn−k)

)

=
∑

zn

1

PX(zn
1 )O

(
n

1 − ρ

)
= O(n)

as needed.

Now we deal with D2 defined as

D2 =
∑

zn

1

(
∂P (zn

1 )

∂ε

)2 1

P (zn
1 )

.

Using (48) we find

D2 =
∑

zn

1

∑

1≤j,k≤n

(PX(zn
1 ⊕ ej) − PX(zn

1 )) (PX(zn
1 ⊕ ek) − PX(zn

1 ))
1

P (zn
1 )

=
∑

zn

1

∑

1≤j,k≤n


PX(zn

1 ) − PX(zn
1 ⊕ ej) − PX(zn

1 ⊕ ek) + PX(zn
1 ⊕ ej ⊕ ek)

+

(
PX(zn

1 ⊕ ej)PX(zn
1 ⊕⊕ek)

PX(zn
1 ⊕ ej ⊕ ek)PX(zn

1 )
− 1

)
PX(zn

1 ⊕ ej ⊕ ek)




= 0 + 0 +
∑

zn

1

PX(zn
1 )O

(
n

1 − ρ

)

= O(n)

where the first two zeros are due to 0 =
∑

zn

1
(PX(zn

1 ) − PX(zn
1 ⊕ ej)), while the last estimate

follows from Lemma 3.

To complete the proof of Lemma 2 it remains to establish Lemma 3.

Proof of Lemma 3. To facilitate the parsing of matrix formulas, we introduce a somewhat

redundant notation for inner and outer products. For row vectors l and r we write 〈l, r〉 for

the scalar product, while r⊗ l is the outer (tensor) product. Furthermore, for a matrix M

and row vectors l and r we write 〈l,M, r〉 := 〈lM, r〉 = 〈l,Mrt〉.
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Let now {Bi}i≥1 be a set of positive matrices. We write Bj
i = Bi · · ·Bj . Seneta in

Section 3.2 of [34] presented an interesting generalization of the Perron-Frobenius theorem

for positive set of matrices {Bi}i≥1 that we briefly review. Let l(Bj
i ) and r(Bj

i ) be left and

right main eigenvectors of Bj
i corresponding to the main eigenvalue λ(Bj

i ). Corollary 2 of

Section 3.2 in [34] asserts that there exists 0 < ρ < 1 such that

Bj
i = Bi · · ·Bj = λ(Bj

i )r(B
j
i ) ⊗ l(Bj

i )
(
1 + O(ρ|j−i|)

)
, (51)

that is, positive matrices are well approximated by the rank one matrix r(Bj
i ) ⊗ l(Bj

i ).

We apply (51) to our problem, in particular to the subset M(zj
i ) = M(zi, zi+1) · · ·M(zj−1, zj)

of matrices {M(zk, zk+1)}
n−1
k=0 . With notations as above we find that

M(zj
i ) = λ(zj

i )r(z
j
i ) ⊗ l(zj

i )
(
1 + O(ρ|j−i|)

)
.

Applying above to the matrix product representation (6) of P (zn
1 ) with p1 = π we arrive

at

P (zn
1 ) = λ(zj−1

1 )λ(zk−1
j+1 )λ(zn

k+1)〈π, r(zj−1
1 )〉〈l(zj−1

1 ),M(zj+1
j−1), r(zk−1

j+1 )〉

〈l(zk−1
j+1 ),M(zk+1

k−1)r(zn
k+1)〉〈l(z

n
k+1)1〉 ·

(
1 + O(ρj + ρk + ρ|k−j| + ρn−k)

)

Applying the above to P (zn
1 ⊕ ej), P (zn

1 ⊕ ek) and P (zn
1 ⊕ ej + ekk) we obtain the same

formulas except that M(zj+1
j−1) is replaced by M(zj−1, z̄j , zj+1) and M(zk+1

k−1) is replaced by

M(zk−1z̄kzk+1) which cancel out in the ratio (50) proving Lemma 3. The proof of Theorem 2

is now completed.

Finally, let us briefly show how we derived the second term of the Taylor expansion

presented in the remark after Theorem 2. Thus we want to establish (30). Observe first

that
∂2P s(zn

1 )

∂ε2
=

1

s

∂P s(zn
1 )

∂ε
+ s(s − 1)P s−2(zn

1 ) + sP s−1(zn
1 )

∂2P (zn
1 )

∂ε2
. (52)

When computing the derivative with respect to s at s = 1, the first term above will lead to

f1 term of Theorem 2, the second term gives us the second term of (30), thus we are left

with the third term that we compute now.

With the notation as in Section 3.1, we find

∂2P (zn
1 )

∂ε2
=

n−1∑

k=1

M
(0)
0 M

(0)
1 · · ·M

(1)
k−1M

(1)
k M

(0)
i+1 · · ·M

(0)
n−1 1t

+
∑

|i−j|>1

M
(0)
0 · · ·M

(1)
i · · ·M

(1)
j · · ·M

(0)
n−1 1t

But the second term of the above will give us zero when differentiating with respect to s at

s = 1, so we only consider the first term which we can write as

n−1∑

k=1

PX(zk−1
1 )

(
PX(zk+2zk+1zk|zk−1) − PX(zk+2|z̄k+1)PX(zk+1z̄k|zk−1)

−PX(zk+2|zk+1)PX(z̄k+1|zk)PX(zk|zk−1) + PX(zk+2|z̄k+1)PX(z̄k+1z̄k|zk−1)
)
PX(zn

k+3|zk+2).
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Thus the third term of (52) can be written in matrix form as follows

sπ(s)

n−1∑

k=1

Pk−1(s)
(
P3(s) − P2(s)Q2(s) − Q2

1(s)Q2(s) + Q1(s)Q2(s)Q3(s)
)
Pn−k−31t

+sπ(s)
∑

|i−j|>1

Pi−1(s)
(
Q1(s)Q2(s) −P2(s)

)
P|j−i−2|(s)[Q1(s)Q2(s) − P2(s)]Pn−j−2(s)1t

where Q3(s) is defined in (29). From the above it should be clear why the derivative of

second term is zero at s = 1. Thus the only contribution comes from the first term (which

obviously is O(n), as desired). This completes a brief derivation of (30).

3.3 Sketch of Proof of Theorem 3

To derive an analogue of (5), we consider the Markov chain of states st = Xt−1
t−r , t > 0

(we assume X0
−r+1 is defined and distributed according to the stationary distribution of

the process) of the rth order Markov process X. Thus, we will focus on r-symbol sliding

windows of the binary processes of interest. In what follows, vectors are of dimension 2r,

and matrices are of dimensions 2r × 2r (e.g., 1 is now a row vector of 2r ones). Entries in

vectors and matrices are indexed by vectors in {0, 1}r , according to some fixed order, so

that {0, 1}r = {a1,a2, . . . ,a2r}. Reasoning as in the derivation of (5), we obtain

P (Zn
1 ) = p1Mε(Z

r+1
2 , Zr

1) · · ·Mε(Z
n
n−r+1, Z

n−1
n−r )1t, (53)

where

p1 =
[
P (Zr

1 , Er
1=a1), P (Zr

1 , Er
1=a2), . . . , P (Zr

1 , Er
1=a2r)

]
,

and Mε(Z
i+r−1
i , Zi+r−2

i−1 ) is a 2r ×2r matrix defined as follows: for each binary (r +1)-tuple

ar+1
1 , we have

(
Mε(Z

i+r−1
i , Zi+r−2

i−1 )
)
ar

1
,a

r+1

2

= PX(Zi+r−1
i ⊕ ar+1

2 |Zi+r−2
i−1 ⊕ ar

1)P (Ei+r−1
i =ar+1

2 ), i > 1.

(54)

All other entries of the matrix are zero. Clearly, Mε(Z
i+r−1
i , Zi+r−2

i−1 ) is a random matrix,

drawn from a set of 2r+1 possible realizations. We now proceed as in the case r = 1, and,

for a realization zn
1 of Zn

1 , we write

Mi = Mε(z
i+r−1
i , zi+r−2

i−1 ) = M
(0)
i + εM

(1)
i ,

and p1 = p
(0)
1 + εp

(0)
1 . For example, for r = 2, we have

M
(0)
n−1 =




PX(zn, zn+1|zn−1, zn) 0 0 0

0 0 PX(z̄n, zn+1|zn−1, z̄n) 0

PX(zn, zn+1|z̄n−1, zn) 0 0 0

0 0 PX(z̄n, zn+1|z̄n−1, z̄n) )
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and

M
(1)
n−1 =




−PX(zn, zn+1|zn−1, zn) PX(zn, z̄n+1|zn−1, zn) 0 0

0 0 −PX(z̄n, zn+1|zn−1, z̄n) PX(z̄n, z̄n+1|zn−1, z̄n)

−PX(zn, zn+1|z̄n−1, zn) PX(zn, z̄n+1|z̄n−1, zn) 0 0

0 0 −PX(z̄n, zn+1|z̄n−1, z̄n) PX(z̄n, z̄n+1|z̄n−1, z̄n)




.

Using the above definitions and (53), we arrive at

∂

∂ε
PZ(zn

1 )

∣∣∣∣
ε=0

=

n−3∑

i=1

p
(0)
1 M

(0)
1 · · ·M

(0)
i−1M

(1)
i M

(0)
i+1 · · ·M

(0)
n−1 1t + O(1),

where the O(1) term contains the boundary cases. This is an analogue of (40). After some

further manipulations, we obtain, in analogy to (42),

∂

∂ε
PZ(zn

1 )

∣∣∣∣
ε=0

= −PX(zn
1 ) +

n−r∑

i=2

PX(zi−1
1 ) · PX(zi−r+1z̄iz

i+r−1
i+1 |zi−1

i−r ) · PX(zn
i+1|z̄iz

i+r−1
i+1 ) + O(1).

The matrix P(s) for an rth order process is defined by

(P(s))(a1,...ai...ar),(a2,...ai,...ar+1)
= ps

(a1,...āi...ar),(a2,...āi,...ar+1), ar+1
1 ∈ {0, 1}r ,

with zeroes in the remaining locations, where

p(a1,...ai...ar),(a2,...ai,...ar+1) = PX(a2, . . . ai, . . . ar+1|a1, . . . ai . . . ar)

are the transition probabilities of the Markov chain. We also define

Qi(s) = P(1) ◦ Q̃i(s)

where ◦ denotes the Schur (element-wise) product of matrices, and the 2r ×2r matrix Q̃i(s)

is defined by
(
Q̃i

)
(a1,...ai...ar),(a2,...ai,...ar+1)

= ps−1
(a1,...āi...ar),(a2,...āi,...ar+1), ar+1

1 ∈ {0, 1}r ,

with zeroes in the remaining locations (notice that this generalizes the definitions in (15)).

With these definitions, using (55), we compute the derivative of R(s, ε) at ε = 0. Thus,

∂

∂ε
Rn(s, ε)

∣∣∣∣
ε=0

= sπ(s)
n−r−2∑

i=r

Pi−r(s)
[
Q1(s) · · ·Qr+1(s) − Pr+1(s)

]
Pn−i−r−1(s)1t + O(1).

(55)

To find the linear term in the Taylor expansion for the entropy rate, we need to differenti-

ate (55) with respect to s, and evaluate it at s = 1. To facilitate this computation, we apply,
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as for the r = 1 case, spectral matrix representations. Defining Q(s) = Q1(s) · · ·Qr+1(s),

we obtain

∂2

∂ε∂s
Rn(s, ε)

∣∣∣∣ε=0,
s=1

= n π(1)
(
rt
1(1) ℓ1(1)

) ∂

∂s

(
Q(s) − Pr+1(s)

)∣∣∣∣
s=1

(
rt
1(1) ℓ1(1)

)
1t + o(n),

which is derived using the relation Q(1) = Pr+1(1). Theorem 3 now follows by observing

that, as before, we have π(1) = ℓ1(1), r1(1) = 1, and ℓ1(1)r1(1) = 1, writing explicit

expressions for the derivatives of Q(s) and Pr+1(s) at s = 1 (in analogy to (22)–(23)), and

carrying out the ensuing symbolic computations.

3.4 Proof of Theorem 4

In this section we derive the Taylor expansion for the Rényi entropy of order s, establishing

Theorem 4. Taking the Taylor expansion of log Rn(s, ε) around ε = 0 we arrive at

(1 − s)Hs(Z
n
1 ) = log Rn(s, ε) = log Rn(s, 0) + ε

R′
ε(s, 0)

Rn(s, 0)
+ O(nε2),

where the error term follows from Lemma 2. From (13) and (19) (or Lemma 3 above) we

conclude that

Rn(s, 0) = π(s)Pn−1(s)1t = λn−1(s)〈π(s), r1(s)〉〈(ℓ1(s),1〉(1 + O(ρn)),

for ρ < 1, where λ(s) is the main eigenvalue of P(s) and ℓ1(s) and r1(s) are the main left

and right eigenvectors.

In a similar fashion we can express R′
ε(s, 0) given by (16) of Lemma 1. Indeed,

R′
ε(s, 0) = sπ(s)

n−1∑

i=1

Pi−1(s)
(
Q1(s)Q2(s) − P2(s)

)
Pn−i−2(s)1t

= s

n−1∑

i=1

λn−3〈(π(s), r1(s)〉〈ℓ1(s),Q(s) − P2(s), r1(s)〉〈ℓ1(s),1〉(1 + O(ρn))

= s(n − 1)λn−3〈(π(s), r1(s)〉〈ℓ1(s),Q(s) − P2(s), r1(s)〉〈ℓ1(s),1〉

Thus

log Rn(s, 0) = (n − 1) log λ(s) + O(1)

R′
ε(s, 0)

Rn(s, 0)
=

s(n − 1)〈ℓ1(s),Q(s) − P2(s), r1(s)〉

λ2(s)
(1 + O(ρn))

Putting everything together, we finally establish Theorem 4.

4 Conclusions

We studied the entropy rate of a hidden Markov process (HMP) defined as an output of

a binary symmetric channel whose input is a binary Markov process. We first established
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that the entropy rate of the HMP coincides with the value of the top Lyapunov exponent

of a well defined product of random matrices. These exponents are notoriously difficult

to compute. Therefore, we turned our attention to asymptotic expansions, and derived

a Taylor expansion of the HMP entropy rate when the probability of error is small. We

observed that the linear term of the expansion is the Kullback-Liebler divergence between

distributions of triplets of symbols, which are determined from marginals of the underlying

Markov process. We also determined the second order term of the expansion explicitly, and

validated the accuracy of the Taylor approximation with empirical simulation results. We

showed extensions of our results to HMPs with underlying Markov processes of arbitrary

order, and to the computation of HMP Rényi entropies of any order.
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