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Abstract

One of the main bene…ts of multicast communication is the overall reduction of
network load. To quantify this reduction, when compared to traditional unicast, exper-
imental studies by Chuang and Sirbu indicated the so called power law which asserts
that the number of links L(m) in a multicast delivery tree connecting a source to m
(distinct) sites satis…es L(m) ¼ cm0:8 where c is a constant. In order to explain theoret-
ically this behavior, Phillips, Shenker, and Tangmunarunkit examined approximately
L(m) for a V -ary complete tree topology, and concluded that L(m) grows nearly lin-
early with m, thus not obeying the power law. We …rst re-examine the analysis by
Phillips et.al. and provide precise asymptotic expansion for L(m) that con…rms the
nearly linear (with some wobbling) growth. Claiming that the essence of the problem
lies in the modeling assumptions, we replace the V -ary complete tree topology by a
V -ary self-similar tree with similarity factor 0 · µ < 1. In such a tree a node at level
k is replicated CV (D¡k)µ times, where D is the depth of the tree and C is a constant.
Under this assumption, we analyze again L(m) and prove that L(m) » cm1¡µ where
c is an explicitly computable constant. Hence self-similar trees provide a plausible ex-
planation of the multicast power law. Next, we examine more general conditions for
general trees, under which the power law still holds. We also discuss some experimental
results in real networks that rea¢rm the power law and show that in these networks
the general conditions hold. In particular, our experiments show that for the tested
networks µ ¼ 0:12.

1 Introduction

Multicast communication in the internet was proposed a decade ago in [1, 6] (cf. also
[5]), and the experimental MBone network has been operational since 1992. In multicast
communication senders transmit to logical address while receivers join a logical group. Mul-
ticast routing ensures that only a single copy of a packet destined to multiple destinations
traverses each link, so that the overall tra¢c load is reduced signi…cantly. Also, multicast
alleviates the overhead on senders who can reach an entire group by the transmission of a
single packet. The trade-o¤ is that multicast requires extra control and routing overhead
at the routing nodes.

In this paper we concentrate on the quanti…cation of the main advantage of multicast
routing. That is, we address the question of what is the expected tra¢c load reduction
due to multicasting, when compared to unicast communication. Only recently some e¤orts
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were undertaken to address this question. Motivated by the problem of pricing multicast
communications, Chuang and Sirbu [4] performed experiments on a number of real and
generated network topologies. They measured the average number of links L(m); in the
multicast tree needed to reach m randomly selected routing nodes from a given source.
L(m) represents the average cost of multicast tree per unit of bandwidth (it is assumed
that all destinations require the same bandwidth). If unicast communication is employed,
then the communication cost per unit of bandwidth is Um where U is the average number
of links in a unicast path. The e¢ciency gain of multicast versus unicast is re‡ected in how
far L(m) deviates from the (unicast) linear growth. Chuang and Sirbu [4], after extensive
simulations, concluded experimentally that L(m) = £(m0:8). Moreover, they found that
the constant in front of m0:8 does not change signi…cantly with network size. This naturally
raises the following questions. Is this behavior speci…c to the chosen topologies, or should
be expected for other topologies as well? In the latter case, what is the main characteristic
of the topology (or the generated multicast trees) that causes the appearance of the power
law? This paper attempts to provide theoretical answers to these questions.

The most intriguing result, in the Chuang and Sirbu paper is reproduced here in Figure 1.
The authors of 1 considered a multicast tree with N routing nodes. Multiple destination
hosts may be connected to the network through each routing node (e.g., each routing node
may have a number of dial-in ports, or may have a LAN connected to one of its ports). A
source and a number n; of multicast destination hosts, is picked randomly. A multicast tree
using shortest paths from the source to each of the destinations is constructed. We denote
by L(n) the average number of links of the multicast trees created by the above procedure.
Note that the number of destination hosts n can be either smaller or larger that the number
of routing nodes N (throughout the paper we rather work with n rather than with distinct
number of routing nodes m). Therefore, the ratio a = n=N can vary from zero to in…nity.
Figure 1 shows the Chuang and Sirbu …ndings concerning the ratio of L(n) to the average
cost of unicast communication. For n small relative to N , i.e., for a small, the power law
L(n) ¼ n0:8 seems to be exhibited. Deviation from the power law and a phase transition
appears around a = 1, and saturation occurs for aÀ 1. Our goal is to provide a theoretical
explanation of the behavior observed in Figure 1, based on topological features of multicast
trees that we introduce in the paper.

The …rst attempt to explain the power law of Chuang and Sirbu was undertaken by
Phillips, Shenker and Tangmunarunkit in [14]. The authors on [14] considered several
network topologies and provided approximate analysis of L(n) which indicated that L(n)
grows linearly rather than according to the power law (cf. (17) and (18) of [14]). To make
sure the approximation of [14] did not tilt …nal results, we provide precise analysis of the
tree topology considered in [14], (cf. Theorem 1) which con…rms that their result indeed
gives a good approximation for the leading term for L(n) when a is small. Interestingly
enough, for small a we discover some small oscillations of the coe¢cient in front of n.

There are various ways to attempt to resolve this discrepancy between experimental and
theoretical …ndings. In this work we demonstrate that the essence of the problem lies in
the modeling assumptions about the structure of the underlying multicast tree. Indeed, our
experimental results suggest that the actual geometry of the internet is such that multicast
trees cannot be modeled as the regular trees proposed in [14] but rather a new model
must be introduced. Speci…cally, we start with a full V¡ary multicast tree, i.e., a tree for
which all the nodes except the leaf nodes have outdegree V . Next, between two successive

2



1 10 100 1000 10000 10000

1

10

100

tree saturation re gion

N
or

m
al

iz
ed

 T
re

ss
 C

os
t L

(n
)/U

(n
)

n^0.8

N = 100

n

Figure 1: This is Figure 7 from Chunag and Sirbu [4] showing the phase transition of the
ratio of the number of links traverse in multicast and the average path length in unicast
versus the number of destinations n.

branchings of a multicast we add several concatenated relay (otherwise called unary) nodes,
i.e., nodes at which no branching occurs. The average number of these concatenated nodes
decreases exponentially as the distance (in number of branchings) from the source increases.
More precisely, a node in such a tree at level k is replicated V (D¡k)µ times, where D is the
depth of three tree and 0 · µ · 1 is the self-similarity factor. A tree with such a property
is shown in Figure 2. In fact, in our analysis we study trees of this structure which, for
reasons that will become apparent in Section 2, we call self-similar. For self-similar trees
we proceed to show that the ratio R(n) = L(n)=U(n) (of the number of links in a multicast
tree to the average path length in unicast) exhibits the power law. More precisely, we show
that for small a = n=N it holds R(n) » (c+Ã(n))n1¡µ where c is an explicitly computable
constant and Ã(n) is an oscillating function of rather small amplitude for small values of
V . (cf. Corollary 4(i)). Moreover, this constant is independent of the number of routing
nodes N , which is in agreement with the observed results in [4].

Motivated by our experimental results, we concentrate on certain conditions that seem
to be satis…ed by multicast trees on real networks. These conditions refer to the number
of routing nodes on a multicast tree that can be reached by a node on that tree. It turns
out that self-similar trees satisfy these conditions, and furthermore we show that these
conditions are su¢cient for the appearance of the power law (albeit in a weaker form than
in self-similar multicast trees).

The paper is organized as follows. In the next section we consider a complete V¡ary
tree network topology and provide a precise analysis of L(n) for regular and self-similar
trees (cf. Section 2). In Section 3 we provide more general conditions that guarantee the
appearance of the power law. We provide experimental results in Section 4. In particular,
for our experiments we …nd that µexp ¼ 0:12 which con…rms the power law £(n0:88). Finally,
the Appendix contains derivations of our theoretical results. In passing, we should mention
that our …ndings have been established by analytical techniques of the precise analysis of
algorithms such as Mellin transform and complex asymptotics (cf. [10, 15]). We give a brief
survey of these methods since they may be useful for the study of other problems of similar
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Figure 2: A Self-Similar Tree with D = 3 and µ = 1.
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2 Tree Topologies

In this section we present our results concerning regular and self-similar tree topologies.
Derivations of the results are provided in the Appendix.

2.1 Regular Trees

As in [14], we consider a V¡ary tree where the source is located at the root of the tree
and all the potential destination hosts of the multicast tree are connected to the network
through the leaf nodes of the tree. In Section 2.3 we consider the possibility that destination
hosts may be connected to the network through other tree nodes, not just through the leaf
nodes. We assume that behind each leaf node there may be multiple destination hosts. This
is the case when, for example, each of the leaf nodes connects a LAN to the network. We
may think of the V¡ ary tree as the tree in a communication network G, composed of the
shortest paths from the source to all the routing nodes of G. We refer to such a tree as the
“global multicast tree” for the chosen source. When a number of the destination hosts in G
needs to form a multicast group with the given source, they form a subtree of the global
multicast tree. This subtree is used for multicast communication. Shortest path multicast
trees were employed in the experiments in [4]. Multicast trees of this type are or can be
used by several Internet multicast protocols such as DVMPRP [13], MOSPF [11], PIM-DM
[7]. However, we should emphasize that the analysis that follows does not rely on the fact
that the global multicast tree is a shortest path tree.

Let D be the depth of the tree, i.e., its longest (in terms of hops) path. We assume that
the V¡ ary tree is complete (all nodes but the leaves have outdegree V and all the leaves
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are at depth D). If N is the number of leaf nodes then clearly

N = V D: (1)

Let the multicast group consist of n hosts and

a =
n

N
> 0: (2)

Note that since more than one destination hosts may be behind each node, it is possible
that a > 1. In order to explain the shape of Figure 1 we will deal with a in the region
0 · a < 1. However, the power law appears when a ¿ 1, which is the most interesting
case from an analytical point of view, and the most likely one in practice. We assume
that the probability of a host being connected to the network through a given leaf node
is uniform and independent of the way the rest of the hosts are connected. In passing we
point out, after the authors of [14], that if one insists on considering the number m of
network nodes through which the destination hosts are connected to the network, then a
good approximation is obtained by setting m = N(1¡e¡n=N) (cf. (1) of [14]). We underline
again that throughout this paper we will work with the destination host multiply n rather
than with m. Note that when a¿ 1, then from the above approximation we obtain m ¼ n.
As the power law is manifested when a¿ 1, the results are qualitatively the same whether
we work with n or m. We choose to work with n since the analysis is simpler in this case
and, moreover, the method of choosing n destination hosts independently appears more
natural.

Following Chuang and Sirbu [4], to quantify the reduction of tra¢c load in multicast
over unicast, we shall analyze the average number of links L(n) in the multicast tree that
connects n randomly selected hosts. If U denotes the average path between the source and
a host in the unicast transmission, then the reduction ratio R(n) is de…ned as

R(n) =
L(n)

U
: (3)

Observe that for the complete V -ary tree we have U = D.
To estimate the average number of links in the multicast tree connecting n nodes, we

observed that at level k of the tree, 1 · k · D, there are V k links; the probability that a
particular link is in the multicast tree after n destination hosts have been selected is

1¡ (1¡ 1=V k)n:
Thus the average number of links in the multicast tree is

L(n) =

D=logV NX
k=1

V k
³
1¡

³
1¡ V ¡k

´n´
: (4)

Our goal is to estimate L(n) asymptotically as n!1 for …xed a (cf. Theorem 1), as well
as for a! 0, a! 1 and a!1 (cf. Corollary 2).

Since V ¡(D¡k) = aV k=n, in order to evaluate (4), it seems natural to replace 1 ¡ (1 ¡
V ¡(D¡k))n by 1 ¡ e¡aV k , take the upper sum index D = logV N to be in…nity, and then
sum up. However, this direct approach leads to incorrect results since the upper index
D = logV N is at the cu¤-o¤ of a signi…cant contribution coming from (1¡ 1=V k)n and the
in…nite series diverges. We need to be much more careful.

In the Appendix we prove the following result.
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Table 1: Comparison of the exact L(n) with the asymptotic expansion Lasym(n) obtained
in Theorem 1 and the approximation LPST(n) proposed by Phillips, Shenker, and Tangmu-
narunkit [14] for a = 0:5, that is, N = 2n.

N L(n) Lasym(n) LPST(n)

2 3.250 3.202 4.885
4 7.919 7.895 9.771
8 17.295 17.283 19.541
16 36.083 36.057 39.083
32 73.609 73.605 78.166
64 148.704 148.702 156.332
128 298.896 298.896 312.665
256 599.283 599.282 625.330
512 1200.056 1200.056 1250.650
1024 2401.602 2401.602 2501.320

Theorem 1 For …xed a, 0 < a = n=N < 1, and large n (hence large N) the average
number of traversed links L(n) attains the following asymptotic expansion

L(n) = N

µ
V

V ¡ 1 ¡ c1(a)
¶
¡ V

V ¡ 1 ¡
1

2
c2(a) +O

µ
1

logn

¶
; (5)

where

c1(a) =
1X
l=0

V ¡l exp
³
¡aV l

´
; (6)

c2(a) =
1X
l=0

aV l exp
³
¡aV l

´
: (7)

The quantities c1(a) and c2(a) converge quickly and hence (5) provides a convenient
way for the approximate computation of L(n). In order to verify the accuracy of the above
asymptotic expansion (denoted Lasym(n) in Table 1) we compare it to the exact formula
L(n) and the approximation LPST(n) proposed by the authors of [14]. From Table 1 one
concludes that the asymptotic expansion presented in Theorem 1 is very good, even for
small values of n.

From Theorem 1 one also must conclude that R(n) » N
D (V=(V ¡1)¡c1(a)), which most

de…nitely does not exhibit the power law for general a. But, Figure 7 of [4] (cf. Figure 1)
suggests that the power law appears only for small values of a, while for large values of a
one should expect a saturation. To explain this situation, in the corollary below we analyze
(5) for a ! 0, a ! 1 and a ! 1. This is equivalent to estimating asymptotically the
constants c1(a) and c2(a) for these three regimes.

Corollary 2 Under the same conditions as in Theorem 1, it holds:
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(i) For a! 0 the quantity L(n) attains the following asymptotics

L(n) = n

µ
D +

1

lnV
¡ lnn

lnV
+

µ
1

2
¡ °

lnV

¶
+ Ã1(lna)

¶
¡ V

V ¡ 1 ¡
1

2 lnV
+
1

2
Ã2(ln a) +O

µ
1

logn

¶
; (8)

where ° = 0:571 : : : is the Euler constant, and Ã1(x), Ã2(x), are oscillating periodic func-
tions of small amplitude for small V that can be expressed as

Ã1(x) =
1X

k=¡1
k 6=0

¡(¡1¡ 2¼ik= lnV )
lnV

exp
³
2¼ik

x

lnV

´
; (9)

Ã2(x) = 2¼i
1X

k=¡1
k 6=0

k¡(¡2¼ik= lnV )
ln2 V

exp
³
2¼ik

x

lnV

´
: (10)

In fact, jÃ1(x)j < 0:0000001725; 0:00041227; 0:0085; 0:068; 0:153 for V = 2; 3; 5; 100; 1000,
respectively.

(ii) For a! 1 we have

L(n) = N

µ
V

V ¡ 1 ¡C1 ¡C2 (a¡ 1) +C3 (a¡ 1)
2

¶
¡ V

V ¡ 1 ¡
C3
2
a+O

µ
1

logn

¶
; (11)

where

C1 =
1X
l=0

V ¡le¡V
l
; C2 =

1X
l=0

e¡V
l
; C3 =

P1
l=0 V

le¡V l

2
:

(iii) For a!1 we arrive at

L(n) = N

µ
V

V ¡ 1 ¡ e
¡a
¶
¡ V

V ¡ 1 ¡
1

2

¡
ae¡a + aV e¡aV

¢
+O

µ
1

logn

¶
: (12)

We can now compare the theoretical results of Corollary 2 to the experimental results
of Chuang and Sirbu presented in Figure 1. In particular, taking into account that lnN =
D lnV we see from (8) that the ratio R(n) for a! 0 can be approximated by

RD(n) ¼ n
µ
1 +

1¡ °
lnN

+
lnV

2 lnN
¡ lnn

lnN
+
lnV

lnN
Ã1(ln a)

¶
which again most decidedly is not of the power law form. However, one can argue that for
large a! 1 and …xed N formulas (11) and (12) could explain respectively the transition
and saturation region of Figure 1.

We note that the approximate analysis in [14] lead to the approximation

L(n) ¼ n (D + 1= lnV ¡ lnn= lnV ) :
From (8) we see that the main term that the approximate analysis missed, is d = (:5 ¡
:5772= lnV ) plus the oscillating function Ã1(ln a) which for small to medium V is of small
amplitude. The term d is small, i.e., ¡0:33272 · d < :5. Moreover, we must note that the
approximation is valid for a¿ 1.
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2.2 Self-Similar Trees

In view of the results in the previous section, we conclude that we cannot explain the
multicast power law based on the adopted modeling assumptions. As discussed in the
introduction, we shall argue that a possible explanation is the assumption regarding the
structure of the global multicast tree. In this section we show that if the tree has a “self-
similar” structure in the sense to be discussed below, then we indeed have the power law
behavior for small a.

As in the previous subsection, consider a V¡ary tree where all possible hosts are located
at the leaves of the tree. However, we assume now that the link connecting a node at level
k and a node at level k ¡ 1 consists of a concatenation of a random number of links. Let
`k be the average number of these links. We postulate that `k is a fraction of `k¡1, that is,
for some A we have `1 = A and

`k = Á`k¡1; 0 · Á · 1:
Therefore, `k = Ák¡1A: Setting Á = V ¡µ we …nd,

`k = V
¡µ(k¡1)A = `DV (D¡k)µ; µ > 0:

In the rest of the paper, we assume for simplicity and without loss of generality that `D = 1.
The last equality suggests another interpretation of µ. Observe that there are K = V D¡k

leaves hanging from a node at level k; thus we reproduce such a node Kµ times.
We call a tree with the above structure, a self-similar V¡ary tree with similarity factor

µ. Figure 2 shows a binary self-similar tree with similarity factor µ = 1 and depth D = 3.
Note that when µ = 0, we have the regular V¡ ary tree. In the following we assume that
0 · µ < 1.

We analyze now Lµ(n) and Rµ(n) for self-similar trees. In particular, as before, we
derive

Lµ(n) =
DX
k=1

V (D¡k)µV k
³
1¡

³
1¡ V ¡k

´n´
;

and for the average path length in a unicast connection we …nd

Uµ =
DX
k=1

V (D¡k)µ =
Nµ ¡ 1
V µ ¡ 1 : (13)

In the Appendix we prove the following asymptotic expansions for Lµ(n).

Theorem 3 For …xed a, 0 < a = n=N <1, and large n the average number of links Lµ(n)
in the self-similar tree attains the following asymptotic expansion

Lµ(n) = N

Ã
V
¹µ

V ¹µ ¡ 1 ¡ c1 (a; µ)
!
¡ NµV

¹µ

V ¹µ ¡ 1 ¡
1

2
c2(a; µ) +O

µ
1

logn

¶
; (14)

where µ = 1¡ µ and

c1(a; µ) =
1X
l=0

V ¡¹µl exp
³
¡aV l

´
; (15)

c2(a; µ) =
1X
l=0

aV (1+µ)l exp
³
¡aV l

´
: (16)
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Corollary 4 Under the same conditions as in Theorem 3, we …nd:

(i) For a! 0 the quantity L(n) attains the following asymptotics

Lµ(n) = N
µ

Ã
n
¹µ

µ
¡ (µ)
¹µ lnV

¡ Ã3(ln a)
¶
¡ V

¹µ

V ¹µ ¡ 1 ¡
1

2

µ¡ (µ)

nµ lnV
¡ 1

nµ
Ã4(ln a)

!
+O

µ
1

logn

¶
;

(17)
where ° = 0:571 : : : is the Euler constant, ¡(µ) is the Gamma function, Ã3(a) and Ã4(a)
are oscillating periodic functions of small amplitude for small V that can be expressed as

Ã3(x) =
1X

k=¡1
k 6=0

¡(¡1 + µ ¡ 2¼ik= lnV )
lnV

exp
³
2¼ik

x

lnV

´
; (18)

Ã4(x) =
1X

k=¡1
k 6=0

(µ ¡ i2¼k= lnV )¡(µ ¡ 2¼ik= lnV )
lnV

exp
³
2¼ik

x

lnV

´
: (19)

(ii) For a! 1 we have

L(n) = N

Ã
V

¹µ

V
¹µ ¡ 1 ¡C1(µ)¡C2(µ) (a¡ 1) +C3(µ) (a¡ 1)

2

!
(20)

¡ NµV
¹µ

V ¹µ ¡ 1 ¡
C3(µ)

2
a+O

µ
1

logn

¶
where

C1(µ) =
1X
l=0

V ¡µle¡V
l
; C2(µ) =

1X
l=0

V µle¡V
l
; C3(µ) =

P1
l=0 V

(1+µ)le¡V l

2
:

(iii) For a!1 we arrive at

Lµ(n) = N

Ã
V

¹µ

V
¹µ ¡ 1 ¡ e

¡a
!
¡ NµV

¹µ

V ¹µ ¡ 1 ¡
1

2

³
ae¡a + aV 1+µe¡aV

´
+O

µ
1

logn

¶
: (21)

Now we are in a position to explain Figure 1 and to justify the power law of Chuang
and Sirbu [4]. Observe that for small a Corollary 4(i) and (13) suggest the following ap-
proximation.

R(n; µ) =
L(n; µ)

Uµ
¼ n1¡µ

³
V µ ¡ 1

´µ ¡ (µ)

(1¡ µ) lnV ¡ Ã3(ln a)
¶
¡ V ¡ V

1¡µ

V 1¡µ ¡ 1 : (22)

Thus, we obtain the power law with exponent of n equal to 1¡ µ. In addition, we observe
that the constant that multiplies n1¡µ is independent of the tree size, which also agrees with
the experimental results. We see from Corollary 4(iii) that for a!1 with N …xed the ratio
L(n) tends to (NV 1¡µ¡NµV 1¡µ)=(V 1¡µ¡1). Of course this is to be expected, since in this
case all nodes belong to the multicast tree and hence L(n) is equal to the number of links
in the global multicast tree. Finally, around a = 1 we have a transitive behavior predicted
by Corollary 4(ii). Therefore, Figure 1 is explained under the assumption of self-similar
multicast trees.
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2.3 Hosts Located at Non-relay Nodes

In the previous sections we assumed that destination hosts are located at the leaves of the
global multicast tree. If destination hosts can also be located at any of the non-relay nodes
of the global multicast tree, then in order to …nd the average cost of multicast we argue as
in Section 2 and …nd

Lµ(n) =
DX
k=1

µ
V (D¡k)µV k

µ
1¡

µ
1¡ V

D¡k+1 ¡ 1
V D+1 ¡ V

¶n¶¶

= V Dµ
V µ(D+1) ¡ V µ
V µ ¡ 1 ¡ V D

D¡1X
k=0

V ¡µk
Ã
1¡ a

V k+1¡1
V¡1
n

!n
:

The term of Lµ(n) that needs to be analyzed asymptotically is

Lµ(n) =
D¡1X
k=0

V ¡µk
Ã
1¡ a

V k+1¡1
V¡1
n

!n
:

This term has the same form as the one analyzed before and hence its asymptotic expansion
has also the same form. Hence, the results are qualitatively the same as in the case where
destination hosts are located at nodes at the leaves of the tree.

3 Generalization

Motivated by experimental results, see Figure 3 of Section 4, we provide in this section
general conditions on the global multicast tree, that give rise to the multicast power law.

For a node A on the global multicast tree, de…ne by r(A) the number of destination tree
nodes that can be reached by A, using the multicast tree links (the tree links are considered
unidirectional). For example, in the self-similar tree in Figure 2 if destination hosts are
located at leaf nodes, then we have r(A) = 1 if A is a leaf node or if A is a relay node
between levels 2 and 3. If A is located at level 1 or if A is a relay node between levels 0 and
1 we have r(A) = 4 = 23¡1. We call r(A) the “reachability degree of A”.

Let Q(k) the number of nodes with reachability degree k. If destination nodes are at the
leaves of the global multicast tree, it is easy to see that for the regular V -ary tree, we have
Q(k) = V Dk¡1 if k = V l, 0 · l · D, and Q(k) = 0 when k is not a power of V . Similarly,
taking into account that there are V µ(D¡l)¡1 relay nodes between levels l¡1 and l we …nd
that for the self-similar V -ary tree we have Q(k) = k¡1+µV D, if k = V l, 1 · l · D and
Q(k) = 0 when k is not a power of V .

Now, let us de…ne by F (k) the number of tree nodes with reachability degree at least k.
That is,

F (k) =
NX
l=k

Q(k):
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For a self-similar tree of depth D, we have for 1 · k · N ,

F (k) =
DX

l=dlogV ke
Q(k)

= N
DX

l=dlogV ke
V l(¡1+µ)

= NV dlogV ke(¡1+µ)
1¡ V (D¡dlogV ke+1)(¡1+µ)

1¡ V ¡1+µ :

Hence,

NV ¡1+µk¡1+µ · F (k) · N

1¡ V ¡1+µ k
¡1+µ:

From the previous discussion we conclude that for self-similar trees, F (k) is decreasing
according to k¡1+µ. The experimental results in Section 4 (see Figure 3) con…rm that
this latter relation holds in real networks as well. Hence it seems natural to ask whether
networks satisfying relations of this type give rise to the multicast power law. It turns out
that indeed this is the case as shown in the next theorem.

Theorem 5 If for the global multicast tree and 0 < µ < 1 it holds for large N

aNk
¡1+µ · F (k) · ANk¡1+µ (23)

then we have for n · N ,
aN
AN

¡(µ)µn1¡µ
¡
1 +O

¡
maxfn¡1; n=Ng¢¢ · R(n)

· AN
aN
¡(µ)µn1¡µ

¡
1 +O

¡
maxfn¡1; n=Ng¢¢ :

The proof of Theorem 5 is given in the appendix. We see that under the generalized
assumptions of Theorem 5 the power law appears again, albeit in a weaker form than in
self-similar trees. Note that if AN = AS(N) and aN = aS(N) (as is the case for self-similar
trees with S(N) = N) then the bounds on R(n) for small n=N become independent of N .

4 Experiments

We conducted a set of experiments on a real network in order to provide further evidence of
the power law. We used data that was graciously made available by Bill Cheswick and Hal
Burch on their site Internet Mapping Project [3]: They run frequent traceroute-style path
probe on registered Internet networks: these probes give a good approximation of the paths
used to route packets to many Internet networks, and all together give an approximation of
the tree starting from one host in the Internet to all other networks. We will use this data
to construct a tree topology and a multicast tree.

The above experimentally built tree was used to generate a multicast tree and compute
R(n). Here is a brief description of our experiment:

² The probes were taken on May 2000.
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Figure 3: Log-log plots of F (k) versus k for the experimental tree.

² The total number of networks probed is 103625.
² The total number of successful probes is N = 28587.

² The destination hosts were all drawn randomly.
² After each draw, the size of the multicast tree is computed and updated along with
the size of the unicast tree.

Note that not all probes are successful. This is due to the fact that probes rely on
heuristics to guess what IP addresses are actually used in a given network. When an IP
address is not correctly guessed, the probe isn’t taken into account. For each successful
probe, a complete path to some network is found that lists all the intermediary routers.
Using the set of all these probes, we build a tree. Given n, we pick a random number of
n destination hosts and construct the multicast tree connecting the source to the routers
at which the destination hosts are located. This multicast tree is a subset of the global
multicast tree.

In Figure 3 we plot F (k), i.e., the number of routers in the global multicast tree that
have reachability degree k, versus k. We see that F (k) is decreasing according to k¡:88.
From the discussion in Section 3 we conclude that for this network, µ = 1¡ :88 = :12. For
comparison in Figure 4 we plot F (k) versus k for a self similar tree with D = 15 and the
same µ = :12.

In Figure 5 we plotted R(n)=n versus n together with the curve f(n) = n¡0:12. In
addition, in Figure 6 we plot µ versus n. The approximation seems to be very good.

The previous experiments rea¢rm the power law for multicast trees as observed in [4].
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5 Conclusions

In this paper we examined structural conditions on global multicast trees that give rise
to the multicast power law. Regular V¡ary trees do not exhibit the power law, while
self-similar trees do. In fact, the power law rises under conditions weaker than tree self-
similarity. Experimental work demonstrated that these latter conditions indeed hold for
the tested networks.

The question whether multicast communication follows the power law arose from the
attempt to price multicast communication in [4]. Power laws related to Internet topology
parameters were studied in [8]. As indicated in the latter reference, power laws of this
nature may be valuable for a¢rming how realistic simulated topologies are. This is an
important issue that received a lot of attention [2], [16].

Our analysis provides a link between the structural properties of the global multicast
tree and the generated multicast tree load. This leads to several new questions. Are the
structural properties of the global multicast tree examined in this paper inherent to other
networks as well? If so, what causes the appearance of this structure, and what is its
implication in network performance, pricing, simulation etc? Is self-similarity an inherent
multicast tree structure, or are networks with more general structure (e.g., appropriately
behaving F (k)) the rule? Self-similarity implies an increased number of relay nodes (or
in reality nodes with small outdegree) in the tree. Support for this property provide the
experimental results in [8] and [12] where it is observed that the number of network nodes
with small outdegree is a signi…cantly large proportion of the total number of nodes in the
network (see Figure 6 in [8] and Figure 4 in [12]). However, further experimental work is
needed in order to validate self-similarity or the more general conditions examined in this
work. Of course, in real networks one does not expect simple V -ary trees or the appearance
of self-similarity in the exact form presented here.

More generally, given the fact that several power laws related to various network para-
meters have been observed experimentally, the question arises as to why these laws appear

14



and when one law implies the other. In this paper we touched one aspect of this big problem.

A APPENDIX

In this appendix we establish our main theoretical results from Section 2. As observed
before, our results for self-similar trees cover as the special case (µ = 0) the …nding for
regular V -ary trees. Thus we concentrate here only on proving Theorem 3 and Corollary 4.

A.1 Proof of Theorem 3

We saw that the average cost of the multicast self-similar tree is

Lµ(n) =
DX
k=1

V (D¡k)µV k
³
1¡

³
1¡ V ¡k

´n´
:

Observe that since D = logV N and n = aN , for k = D the last term of the above sum is
approximately equal to V D(1¡ e¡a). This term is not small in general and thus we cannot
extend the limit of the summation to in…nity without introducing signi…cant error. In order
to provide an asymptotic analysis of Lµ(n), we de…ne ¹µ = 1¡ µ and proceed as follows:

Lµ(n) =
DX
k=1

V (D¡k)µV k
³
1¡

³
1¡ V ¡k

´n´
= V D

D¡1X
l=0

V ¡¹µl
µ
1¡

µ
1¡ V l

V D

¶n¶

= V D

Ã
1¡ V ¡D¹µ
1¡ V ¡¹µ

!
¡ V D

D¡1X
l=0

V ¡¹µl
µ
1¡ V l

V D

¶n
= N

Ã
1¡N¡¹µ

1¡ V ¡¹µ

!
¡ ¹Lµ(n);

where

¹Lµ(n) = N
D¡1X
l=0

V ¡¹µl
µ
1¡ aV

l

n

¶n
:

We shall use the following expansion for x · lnn
³
1¡ x

n

´n
= exp (¡x)

Ã
1¡ x2

2n
+
x

n
O

Ã
(lnn)3

n

!!
: (24)

After setting

An =

$
ln
¡
lnn
a

¢
lnV

%
;

(hence lnn < eaV An · e lnn) we obtain

¹Lµ(n) = N
AnX
l=0

V ¡¹µl
µ
1¡ aV

l

n

¶n
+N

D¡1X
l=An+1

V ¡¹µl
µ
1¡ aV

l

n

¶n
: (25)

We analyze separately each of the terms on the right hand side of the previous equation.
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We …rst look at the term
AnX
l=0

V ¡¹µl
µ
1¡ aV

l

n

¶n
:

For l · An we have aV l · lnn and hence from (24),

AnX
l=0

V ¡¹µl
µ
1¡ aV

l

n

¶n
=

AnX
l=0

V ¡¹µl exp
³
¡aV l

´Ã
1¡ a

2V 2l

2n
+
aV l

n
O

Ã
(lnn)3

n

!!

=
AnX
l=0

V ¡¹µl exp
³
¡aV l

´
¡ a

2N

AnX
l=0

V (1+µ)l exp
³
¡aV l

´
+

1

N ¹µ
O

Ã
(lnn)3+µ

n1+µ

!
+ [[µ = 0]]

lnN

N
O

Ã
(lnn)3

n

!
;

where [[µ = 0]] is equal to 1 when µ = 0 and zero otherwise. We now look separately at each
of the above terms. We …nd

AnX
l=0

V ¡¹µl exp
³
¡aV l

´
=

1X
l=0

V ¡¹µl exp
³
¡aV l

´
¡

1X
l=An+1

V ¡¹µl exp
³
¡aV l

´
: (26)

But 1X
l=An+1

V ¡¹µl exp
³
¡aV l

´
=

1

N ¹µ
:O

Ã
1

nµ (lnn)
¹µ

!
; (27)

which …nally yields
AnX
l=0

V ¡¹µl
µ
1¡ aV

l

n

¶n
= c1(a; µ)¡ 1

2N
c2(a; µ) +

1

N ¹µ
O

Ã
1

nµ (lnn)
¹µ

!
; (28)

where

c1(a; µ) =
1X
l=0

V ¡¹µl exp
³
¡aV l

´
(29)

c2(a; µ) =
1X
l=0

aV (1+µ)l exp
³
¡aV l

´
: (30)

To complete the proof of Theorem 3 we must estimate the term
D¡1X

l=An+1

V ¡¹µl
µ
1¡ aV

l

n

¶n
:

But for l > An we …nd µ
1¡ aV

l

n

¶n
<

µ
1¡ lnn

n

¶n
= O(1=n);

and hence
D¡1X

l=An+1

V ¡¹µl
µ
1¡ aV

l

n

¶n
= V ¡¹µAnO

µ
1

n

¶
=
³ a

lnn

´¹µ
O

µ
1

n

¶
=

1

N ¹µ
O

Ã
1

nµ (lnn)
¹µ

!
: (31)

Combining our previous estimates we …nally prove Theorem 3.
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A.2 Derivation of Corollary 4

We now prove Corollary 4, that is, we …nd asymptotic expansions of Lµ(n) for n: Observe
that we only need to analyze the quantities c1(a; µ) and c2(a; µ) de…ned in (15) and (16),
respectively. The regimes: (i) a! 1 and (ii) a!1 are easy and are omitted due to lack
of space.

Next we look at the regime a ! 0 which is the most interesting case, and the hardest.
It turns out that this case can be handled by a special analytic tool, namely the Mellin
transform. The Mellin transform found myriad of applications in the analysis of algorithms.
The reader is referred to an excellent survey by Flajolet, Gourdon and Dumas [9] (cf.
[10, 15]). For reader convenience, we collected the most important properties of the Mellin
transform in Section A.4. In particular, the de…nition of Mellin transform is given in (34).
Property (M2) de…nes the so called fundamental strip of the complex plane where the Mellin
transform exists. The harmonic sum property (M3) and the mapping properties (M4) are
crucial. We shall use them to derive asymptotics of c1(a; µ) and c2(a; µ) as a! 0.

Let us …rst consider c1(a; µ) =
P1
l=0 V

¡¹µl exp
¡¡aV l¢. Observe that by (M3) the sum

in c1(a; µ) := c1(a) is a harmonic sum with ¸k = V ¡k and g(x) = e¡x with ¹k = V k. Thus
the Mellin transform c¤1(s) with respect to a of c1(a) is by (M3) (and the well known fact
that the Mellin of e¡x is the Euler gamma function ¡(s) for <(s) > 0):

c¤1(s) =
¡(s)

1¡ V ¡(1+s¡µ) :

We now use (M4) to …nd c1(a) as a ! 0, that is, we shall …nd the inverse to the Mellin
transform which according to (M1) is

c1(a) =
1

2¼i

Z 1
2
+i1

1
2
¡i1

¡(s)

1¡ V ¡(1+s¡µ)x
¡sds: (32)

The goal is to apply the Cauchy residue theorem. But …rst we must consider a large
rectangle left the the line, say from the line (12 ¡ i1; 12 + i1) to (¡M ¡ i1;¡M + i1)
for some large M > 0. Due to the factor x¡s the left line contributes O(x¡M) for any
M > 0, which is negligible. The top and bottom lines of the big rectangle cancel out, thus
the integral in (32) is equal to the residues inside the rectangle.

We now evaluate the residues. We note that the function c¤1(s) has poles at sk =
¡1+ µ¡ (2¼ik)= lnV ; k = §1;§2; :::. All these poles are single. The pole at 0 has residue

c0;0 =
V
¹µ

V ¹µ ¡ 1 :

The poles at sk, k 6= 1 have residues

c0;sk =
¡(¡1 + µ ¡ 2¼ik= lnV )

lnV
:

Using now the Reverse Mapping Theorem (M4) and the property ¡(¡1+µ) = ¡(µ)=(¡1+
µ), we see that for a! 0 we have the expansion for any M > 0

c1(a; µ) =
v
¹µ

v¹µ ¡ 1 ¡
¡ (µ)
¹µ ln v

a
¹µ
+ a

¹µÃ3(lna) +O(a
M); (33)
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where

Ã3(x) =
1X

k=¡1
k 6=0

¡(¡1 + µ ¡ 2¼ik= lnV )
lnV

exp
³
2¼ik

x

lnV

´
:

Now we consider c2(a; µ) =
P1
l=0 aV

(1+µ)l exp
¡¡aV l¢. It is again a harmonic sum,

hence by (M2) we …nd its Mellin transform to be

c¤2(a) =
s¡ (s)

1¡ v¡(s¡µ) :

But c¤2(s) has a single poles at µ with residue

c0;0 =
µ¡ (µ)

ln v
;

and single poles at sk = µ ¡ (2¼ik)= lnV , k 6= 0 with residues
(µ ¡ i2¼k)¡(µ ¡ 2¼ik= lnV )

lnV
:

Hence using again the Reverse Mapping Theorem (M4) we obtain

c2(a; µ) =
µ¡ (µ)

lnV
a¡µ ¡ a¡µÃ4(ln a) +O(aM)

where

Ã4(x) =
1X

k=¡1
k 6=0

(µ ¡ 2i¼k= lnV )¡(µ ¡ 2¼ik= lnV )
lnV

exp
³
2¼ik

x

lnV

´
:

Combining everything we …nally prove Corollary 4.

A.3 Proof of Theorem 5

We …rst deal with L(n). Using Abel’s partial summation formula (cf. [15]) we observe that
for two real-valued sequences vk and uk it holds

NX
k=1

(uk ¡ uk+1)vk = u1v1 ¡ uN+1vN +
NX
k=2

uk(vk ¡ vk¡1):

Using this and taking into account that F (N + 1) = 0, we proceed as follows:

L(n) =
NX
k=1

Q(k)

µ
1¡

µ
1¡ k

N

¶n¶
=

NX
k=1

(F (k)¡ F (k + 1))
µ
1¡

µ
1¡ k

N

¶n¶

=
NX
k=2

F (k)

µµ
1¡ k ¡ 1

N

¶n
¡
µ
1¡ k

N

¶n¶
+ F (1)

µ
1¡

µ
1¡ 1

N

¶n¶

=
NX
k=1

F (k)

µµ
1¡ k ¡ 1

N

¶n
¡
µ
1¡ k

N

¶n¶
:
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Now we deal with the upper bound. Using Taylor’s expansion we haveµ
1¡ k ¡ 1

N

¶n
¡
µ
1¡ k

N

¶n
= n

µ
1¡ k

N

¶n¡1 1
N
+O

µ
n2

N2

¶µ
1¡ k ¡ 1

N

¶n¡2
:

Using this expansion and (23) we conclude

L(n) · ANNµ¡1n
NX
k=1

µ
k

N

¶µ¡1µ
1¡ k

N

¶n¡1 1
N

+ANN
µ¡1n

Ã
NX
k=1

µ
k

N

¶µ¡1µ
1¡ k ¡ 1

N

¶n¡2 1
N

!
O
³ n
N

´
:

The function xµ¡1 (1¡ x)n¡1 is decreasing for 0 < x < 1: Therefore
NX
k=1

µ
k

N

¶µ¡1µ
1¡ k

N

¶n¡1 1
N
·
Z 1

0
xµ¡1 (1¡ x)n¡1 dx = ¯(µ; n) = ¡(µ)¡(n)

¡(n+ µ)
;

where ¯(µ; n) and ¡(x) are respectively the Beta and Gamma functions [15]. Also, we have

NX
k=1

µ
k

N

¶µ¡1µ
1¡ k ¡ 1

N

¶n¡2 1
N
= N¡µ +

NX
k=2

µ
k

N

¶µ¡1µ
1¡ k ¡ 1

N

¶n¡2 1
N

· N¡µ +
NX
k=2

µ
k ¡ 1
N

¶µ¡1µ
1¡ k ¡ 1

N

¶n¡2 1
N

· N¡µ +
NX
k=1

µ
k

N

¶µ¡1µ
1¡ k

N

¶n¡2 1
N

· N¡µ +
¡(µ)¡(n¡ 1)
¡(n¡ 1 + µ) :

Therefore,

L(n) · ANNµ¡1n
¡(µ)¡(n)

¡(n+ µ)
+ANN

µ¡1n
¡(µ)¡(n¡ 1)
¡(n¡ 1 + µ)O

³ n
N

´
+ANN

µ¡1nN¡µO
³ n
N

´
:

Using now the approximation [15],

¡(n)

¡(n+ µ)
= n¡µ

¡
1 +O(n¡1)

¢
;

we have

L(n) = ANN
µ¡1n1¡µ¡(µ)

¡
1 +O(n¡1)

¢
+ANN

µ¡1n (n¡ 1)¡µ ¡(µ)
³
1 +O((n¡ 1)¡1)

´
O
³ n
N

´
+ANN

µ¡1nN¡µO
³ n
N

´
= ANN

µ¡1n1¡µ¡(µ)
µ³
1 +O(n¡1) +O

³ n
N

´´
+

1

¡(µ)
O

µ³ n
N

´1+µ¶¶
= ANN

µ¡1n1¡µ¡(µ)
³
1 +O(n¡1) +O

³ n
N

´´
;

19



where in the last equality we used the fact that n < N . It remains to compute U(n).
Arguing as above we obtain

U(n) =
NX
k=1

k

N
Q(k) =

NX
k=1

k

N
(F (k)¡ F (k + 1)) =

NX
k=1

1

N
F (k)

¸ aNNµ¡1
µZ 1

0
xµ¡1dx+O

µ
1

N

¶¶
= aNN

µ¡1µ¡1
µ
1 +O

µ
1

N

¶¶
:

The lower bound is derived in a similar fashion.

A.4 Main Properties of Mellin Transform

For the reader convenience, we collected here the main properties of the Mellin transform.
For details and proofs see [9, 15].
(M1) Direct and Inverse Mellin Transforms. Let c belong to the fundamental strip
de…ned below. Then

f¤(s) :=M(f(x); s) =

Z 1

0
f(x)xs¡1dx () f(x) =

1

2¼i

Z c+i1

c¡i1
f¤(s)x¡sds:

(34)
(M2) Fundamental Strip. The Mellin transform of f(x) exists in the fundamental strip
<(s) 2 (¡®;¡¯), where

f(x) = O(x®) (x! 0); f(x) = O(x¯) (x!1)

for ¯ < ®.
(M3) Harmonic Sum Property. By linearity and the scale ruleM(f(ax); s) = a¡sM(f(x); s),

f(x) =
X
k¸0

¸kg(¹kx) () f¤(s) = g¤(s)
X
k¸0

¸k¹
¡
k s: (35)

(M4) Mapping Properties (Asymptotic expansion of f(x) and singularities of f¤(s)).

f(x) =
X

(»;k)2A
c»; kx

»(log x)k +O(xM) () f¤(s) ³
X

(»;k)2A
c»; k

(¡1)kk!
(s+ »)k + 1

: (36)

— (i) Direct Mapping. Assume that f(x) admits as x! 0+ the asymptotic expansion (36)
for some ¡M < ¡® and k > 0. Then for <(s) 2 (¡M;¡¯), the transform f¤(s) satis…es
the singular expansion (36)

— (ii) Reverse Mapping. Assume that f¤(s) = O(jsj¡r) with r > 1, as jsj ! 1 and that
f¤(s) admits the singular expansion (36) for <(s) 2 (¡M;¡¯). Then f(x) satis…es the
asymptotic expansion (36) at x = 0+.
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