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Abstract

With ever increasing amount of available data on protein-protein interaction (PPI) networks and

research revealing that these networks evolve at a modular level, discovery of conserved patterns

in these networks becomes an important problem. Recently proposed algorithms for aligning PPI

networks target simplified structures such as conserved pathways to render these problems computa-

tionally tractable. However, since conserved structures that are parts of functional modules and pro-

tein complexes generally correspond to dense subnets, algorithms that are able to extract conserved

patterns in terms of general graphs are necessary. With thismotivation, we focus on discovering

protein sets that induce subnets that are highly conserved in the interactome of a pair of species. For

this purpose, we develop a framework that formally defines the pairwise local alignment problem for

PPI networks, model the problem as a graph optimization problem, and present fast algorithms for

this problem. In order to capture the underlying biologicalprocesses accurately, we base our frame-

work on duplication/divergence models that focus on understanding the evolution of PPI networks.

Detailed experimental results from an implementation of the proposed framework show that our al-

gorithm is able to discover conserved interaction patternsvery effectively, both in terms of accuracies

and computational cost.

1 Introduction

Increasing availability of experimental data relating to biological sequences, coupled with efficient tools

such as BLAST and CLUSTAL have contributed to fundamental understanding of a variety of biolog-

ical processes [1, 32]. These tools are used for discoveringcommon subsequences and motifs, which

convey functional, structural, and evolutionary information. Recent developments in molecular biology

have resulted in a new generation of experimental data that bear relationships and interactions between
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biomolecules [16]. An important class of molecular interaction data is in the form of protein-protein

interaction (PPI) networks. These networks provide the experimental basis for understanding modular

organization of cells, as well as useful information for predicting the biological function of individual

proteins [33]. High throughput screening methods such as two-hybrid analysis [18], mass spectrome-

try [13], and TAP [9] provide large amounts of data on these networks.

As revealed by recent studies, PPI networks evolve at a modular level [39] and consequently, under-

standing conserved substructures through alignment of these networks can provide basic insights into

a variety of biochemical processes. However, although vastamounts of high-quality data is becoming

available, efficient network analysis counterparts to BLAST and CLUSTAL are not readily available for

such abstractions. As is the case with sequences, key problems on graphs derived from biomolecular

interactions include aligning multiple graphs [34], finding frequently occurring subgraphs in a collection

of graphs [22], discovering highly conserved subgraphs in apair of graphs, and finding good matches

for a subgraph in a database of graphs [20]. In this paper, we specifically focus on discovering highly

conserved subnets in a pair of PPI networks. With the expectation that conserved subnets will be parts of

pathways, complexes, or modules, we base our model on the discovery of two subsets of proteins from

each PPI network such that the induced subnets are highly conserved.

Based on the understanding of the structure of PPI networks that are available for several species,

theoretical models that focus on understanding the evolution of protein interactions have been devel-

oped. Among these, the duplication/divergence model has been shown to be successful in explaining the

power-law nature of PPI networks [36]. In order to capture the underlying biological processes accu-

rately, we base our framework on duplication/divergence models by defining duplications, matches, and

mismatches in a graph-theoretic framework. We then reduce the resulting alignment problem to a graph

optimization problem and propose efficient heuristics to solve this problem. Experimental results based
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on an implementation of our framework show that the proposedalgorithm is able to discover conserved

interaction patterns very effectively. The proposed algorithm can be also adapted to finding matches for

a subnet query in a database of PPI networks.

The rest of this paper is organized as follows: we start with abrief overview of duplication/divergence

models for the evolution of PPI networks in Section 2. In Section 3, we define the alignment problem

based on these models of evolution, formulate the problem asa graph optimization problem, and pro-

pose efficient heuristics for the solution of the problem. Weillustrate the effectiveness of the proposed

framework on comprehensive pairwise alignment of the PPI networks for three eukaryotic species in Sec-

tion 4. We then discuss existing literature on network alignment and compare the proposed framework

with existing methods in Section 5. We conclude our discussion in Section 6.

2 Theoretical Models for Evolution of PPI Networks

There have been a number of studies aimed at understanding the general structure of PPI networks.

These studies suggest that PPI networks can generally be modeled by power-law graphs,i.e., the relative

frequency of proteins that interact withk proteins is roughly proportional tok−γ, whereγ is a network-

specific parameter [5]. In order to explain this power-law nature, Barábasi and Albert have proposed [5] a

network growth model based on preferential attachment, which is able to generate networks with degree

distribution similar to PPI networks. According to this model, networks expand continuously by addition

of new nodes and these new nodes prefer to attach to well-connected nodes when joining the network.

Observing that older proteins are better connected, Eisenberg and Levanon [8] explain the evolutionary

mechanisms behind such preference by the strength of selective pressure on maintaining connectivity of

strongly connected proteins and creating proteins to interact with them. Furthermore, in a relevant study,
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it is observed that the interactions between groups of proteins that are temporally close in the course of

evolution are likely to be conserved, suggesting synergistic selection during network evolution [27].

A common model of evolution that explains preferential attachment is the duplication/divergence

model, which is based on gene duplications [25, 36, 37, 38]. According to this model, when a gene is

duplicated in the genome, the node corresponding to the product of this gene is also duplicated together

with its interactions. An example of protein duplication isshown in Figure 1. A protein loses many

aspects of its functions rapidly after being duplicated. This translates to divergence of duplicated (par-

alogous) proteins in the interactome through elimination and emergence of interactions. Elimination of

an interaction in a PPI network implies the loss of an interaction between two proteins due to structural

and/or functional changes. Similarly, emergence of an interaction in a PPI network implies the introduc-

tion of a new interaction between two non-interacting proteins, caused by mutations that change protein

surfaces. Examples of elimination and emergence of interactions are also illustrated in Figure 1. If an

elimination or emergence is related to a recently duplicated protein, it is said to be correlated; otherwise,

it is uncorrelated [25]. Since newly duplicated proteins are more tolerant to interaction loss because of

redundancy, correlated elimination is generally more probable than emergence and uncorrelated elimina-

tion [36]. It is also theoretically shown that network growth models based on node duplications generate

power-law distributions [6].

Since the elimination of interactions is related to sequence-level mutations, one can expect a positive

correlation between similarity of interaction profiles andsequence similarity for paralogous proteins [37].

Indeed, the interaction profiles of duplicated proteins tend to almost totally diverge in about 200 million

years, as estimated on the yeast interactome. On the other hand, the correlation between interaction

profiles of duplicated proteins is significant for up to 150 million years after duplication, with more than

half of interactions being conserved for proteins that are duplicated less than 50 million years back [37].
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Consequently, when we consider the PPI networks that belongto two separate species, the in-paralogs

will be likely to have more common interactions than out-paralogs. Here, we use the terms in-paralog and

out-paralog for proteins that are duplicated before and after speciation, respectively. While comparatively

analyzing the proteome and interactome, it is important to distinguish in-paralogs from out-paralogs

since the former are more likely to be functionally related.This, however, is a difficult task since out-

paralogs also show sequence similarity.

In order to accurately identify and interpret conservationof interactions, complexes, and modules

across species, we base our framework for the local alignment of PPI networks on duplication/divergence

models. While searching for highly conserved groups of interactions, we evaluate mismatched interac-

tions and paralogous proteins in light of the duplication/divergence model. Introducing the concepts of

match (conservation), mismatch (emergence or elimination) and duplication, which are in accordance

with widely accepted models of evolution, we are able to discover alignments that also allow speculation

about the structure of the network in the common ancestor.

3 Pairwise Local Alignment of PPI Networks

In light of the theoretical models of evolution of PPI networks, we develop a framework for the compar-

ison of PPI networks in two different species. We formally define a computational problem that captures

the underlying biological phenomena using matches, mismatches, and duplications. We then formulate

PPI network alignment as a graph optimization problem and propose efficient heuristics to effectively

solve this problem.
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3.1 The PPI Network Alignment Problem

A PPI network is conveniently modeled by an undirected graphG(U, E), whereU denotes the set of

proteins anduu′ ∈ E denotes an interaction between proteinsu ∈ U andu′ ∈ U . For pairwise alignment

of PPI networks, we are given two PPI networks belonging to two different species, denoted byG(U, E)

andH(V, F ). The homology between a pair of proteins is quantified by a similarity measure that is

defined as a functionS : (U ∪V )× (U ∪V )→ ℜ. For anyu, v ∈ U ∪V , S(u, v) measures the degree of

confidence inu andv being orthologous, where0 ≤ S(u, v) ≤ 1. If u andv belong to the same species,

thenS(u, v) quantifies the likelihood that the two proteins are in-paralogs. S is expected to be sparse,

i.e., each protein is expected to have only a few potential orthologs. We discuss the methodology for

deriving similarity scores from sequence alignments in Section 3.1.3.

For PPI networksG(U, E) and H(V, F ), a protein subset pairP = {Ũ , Ṽ } is defined as a pair

of protein subsets̃U ⊆ U and Ṽ ⊆ V . Any protein subset pairP induces a local alignment

A(G, H, S, P ) = {M,N ,D} of G andH with respect toS, characterized by a set of duplications

D, a set of matchesM, and a set of mismatchesN . The biological analog of aduplicationis the dupli-

cation of a gene in the course of evolution. Each duplicationis associated with a score that reflects the

divergence of function between the two proteins, estimatedusing their similarity. Amatchcorresponds

to a conserved interaction between two orthologous proteinpairs, which is rewarded by a match score

that reflects our confidence in both protein pairs being orthologous. Amismatch, on the other hand, is

the lack of an interaction in the PPI network of one organism between a pair of proteins whose orthologs

interact in the other organism. A mismatch may correspond tothe emergence of a new interaction or the

elimination of a previously existing interaction in one of the species after the split, or an experimental

error. Thus, mismatches are penalized to account for the divergence from the common ancestor. We

provide formal definitions for these three concepts to construct a basis for the formulation of local align-
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ment as an optimization problem. Note that although PPI networks are undirected graphs, interactions

are regarded as ordered pairs in the following definitions for convenience,i.e., for an interactionuu′ ∈ E,

there is also an interactionu′u ∈ E, which is essentially the same interaction.

Definition 1 Local Alignment of PPI networks.

Given protein interaction networksG(U, E), H(V, F ), let functions∆G(u, u′) and∆H(v, v′) denote the

distance between two corresponding proteins in the interaction graphsG andH, respectively. Given a

pairwise similarity functionS defined over the union of their protein setsU ∪ V , and a distance cutoff

∆̄, any protein subset pairP = (Ũ , Ṽ ) induces a local alignmentA(G, V, S, P ) = {M,N ,D}, where

M = { u, u′ ∈ Ũ , v, v′ ∈ Ṽ : S(u, v) > 0, S(u′, v′) > 0,

((uu′ ∈ E ∧∆H(v, v′) ≤ ∆̄) ∨ (vv′ ∈ F ∧∆G(u, u′) ≤ ∆̄)) }

(1)

N = { u, u′ ∈ Ũ , v, v′ ∈ Ṽ : S(u, v) > 0, S(u′, v′) > 0,

((uu′ ∈ E ∧∆H(v, v′) > ∆̄) ∨ (vv′ ∈ F ∧∆G(u, u′) > ∆̄)) }

(2)

D = { u, u′ ∈ Ũ : S(u, u′) > 0 } ∪ { v, v′ ∈ Ṽ : S(v, v′) > 0 } (3)

Each matchM ∈ M, mismatchN ∈ N , and duplicationD ∈ D are associated with scoresµ(M),

ν(N) andδ(D), respectively.

Following the definition of match and mismatch, while assessing the conservation of interactions, we

take into account not only direct but also indirect interactions. If two proteins directly interact with each

other in one organism, and their orthologs are reachable from each other via at most̄∆ interactions in

the other, we consider this a match. Conversely, a mismatch corresponds to the situation in which two

proteins cannot reach each other via∆̄ interactions in one network while their orthologs directlyinteract

in the other. This approach is motivated by two observations. First, proteins that are linked by a short

alternate path are more likely to tolerate losing their interaction because of relaxation of evolutionary
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pressure. Second, high-throughput methods such as TAP [9] identify complexes that are associated with

a single central protein and these complexes are recorded inthe interaction database as star networks

with the central protein serving as a hub. Therefore, all proteins that are part of a particular complex can

be viewed as interacting by settinḡ∆ = 2.

3.1.1 Scoring Match, Mismatch, and Duplications

For scoring matches and mismatches, we define the similaritybetween two protein pairs as follows:

S(uu′, vv′) = S(u, v)S(u′, v′) (4)

S(uu′, vv′) quantifies the likelihood that the interactions betweenu andv, andu′ andv′ are orthologous.

Consequently, a match that corresponds to a conserved pair of orthologous interactions is rewarded as

follows:

µ(uu′, vv′) = µ̄S(uu′, vv′) (5)

Here,µ̄ is the match coefficient that is used to tune the relative weight of matches against mismatches

and duplications, based on the evolutionary distance between the species that are being compared.

A mismatch may correspond to the functional divergence of either interacting partner after speciation.

It might also be due to a false positive or negative in one of the networks that is caused by incompleteness

of data or experimental error [33]. However, considering indirect interactions as matches compensates

for the second case to a certain extent. In most cases, interacting partners that are part of a common

functional module are linked by short alternative paths. Therefore, even if an existing direct interaction

is not observed, it is likely that a short alternate path linking them will exist in the data. Based on these

observations, we penalize mismatches for possible divergence in function as follows:

ν(uu′, vv′) = −ν̄S(uu′, vv′) (6)
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As for match score, mismatch penalty is also normalized by a coefficientν̄ that determines the relative

weight of mismatches w.r.t. matches and duplications.

While aligning PPI networks, the motivation is to identify conserved patterns of interactions between

orthologous proteins. For assessing the likelihood of orthology between proteins, the similarity score

defined above relies on sequence homology. However, out-paralogs, which are proteins that are dupli-

cated before the species split hence cannot be considered orthologs, often show sequence similarities

as well [28]. Since duplicated proteins rapidly lose their interactions, it is more likely that in-paralogs,

i.e., the proteins that are duplicated after a split, will share more interacting partners than out-paralogs

do [37]. Therefore, penalizing mismatches implicitly favors realorthologs by penalizing the out-paralogs

for each interaction that is lost after duplication. Furthermore, we employ sequence similarity as a means

for distinguishing in-paralogs from out-paralogs. This isbased on the observation that sequence simi-

larity provides a crude approximation for the age of duplication [38]. With the expectation that recently

duplicated proteins, which are more likely to be in-paralogs, show more significant sequence similarity

than older paralogs, we define duplication score as follows:

δ(u, u′) = δ̄(S(u, u′)− d̄) (7)

Hered̄ is the cut-off for being considered in-paralogs. IfS(u, u′) > d̄, suggesting thatu andu′ are likely

to be in-paralogs, the duplication is rewarded by a positivescore. IfS(u, u′) < d̄, on the other hand, the

proteins are considered out-paralogs, therefore the duplication is penalized.

3.1.2 Alignment Score and the Optimization Problem

The above formulation of match, mismatch, and duplication translates the problem of distinguishing

orthologs and in-paralogs from out-paralogs to an optimization problem that accounts for the trade-off

between conservation of sequences and interactions. This enables accurate identification of conserved
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interactions between ortholog protein pairs, while allowing us to define the pairwise local alignment for

inter-species comparison of PPI networks as an optimization problem.

Definition 2 Alignment Score and PPI Network Alignment Problem.

Given PPI networksG andH, the score of alignmentA(G, H, S, P ) = {M,N ,D} is defined as:

σ(A) =
∑

M∈M

µ(M) +
∑

N∈N

ν(N) +
∑

D∈D

δ(D). (8)

The PPI network alignment problem is one of finding all maximal protein subset pairsP such that

σ(A(G, H, S, P )) is locally maximal,i.e. the alignment score cannot be improved by adding individual

proteins to or removing proteins fromP .

We aim to find local alignments with locally maximal score (drawing an analogy to sequence align-

ment [31],high-scoring subgraph pairs).

We illustrate the concepts of match, mismatch, and duplication using a simple example. Consider

the two interaction networksG andH shown in Figure 2(a). The alignment induced by the protein

subset pair̃U = {u1, u2, u3, u4} and Ṽ = {v1, v2, v3} is shown in Figure 2(b), where we set∆̄ = 1.

The only duplication in this alignment is(u1, u2). If this alignment is chosen to be a “good” one, then,

based on the existence of this duplication in the alignment,if S(u2, v1) < S(u1, v1), we can speculate

that u1 and v1 have evolved from the same gene in the common ancestor, whileu2 is an in-paralog

that emerged from duplication ofu1 after split. The match set consists of interaction pairs(u1u1, v1v1),

(u1u2, v1v1), (u1u3, v1v3), and(u2u4, v1v2). Observe thatv1 is mapped to bothu1 andu2 in the context

of different interactions. This is associated with the functional divergence ofu1 andu2 after duplication.

Furthermore, the self-interaction ofv2 in H is mapped to an interaction between paralogous proteins in

G.
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The mismatch set is composed of(u1u4, v1v2), (u2u2, v1v1), (u2u3, v1v3), and (u3u4, v3v2). The

interactionu3u4 in G is left unmatched by this alignment, since the only possiblepair of proteins inṼ

that are orthologous to these two proteins arev3 andv2, which do not interact inH. One conclusion

that can be derived from this alignment is the elimination oremergence of this interaction in one of

the species after the split. The indirect path betweenv3 andv2 throughv1 may also serve as a basis

for the tolerance to the loss of this interaction. Indeed, ifwe set∆̄ = 2, then this pair of a direct and

an indirect interaction would be considered a match. However, if we includev4 in Ṽ as well, then the

induced alignment is able to matchu3u4 andv3v4. This strengthens the likelihood that this interaction

existed in the common ancestor. However,v4 comes with another duplication since it is paralogous tov2.

Hence, ifS(v2, v4) > d̄, the alignment that includesv4 will be favored over the present one. However,

if S(v2, v4) < d̄, thenv4 must compensate for the duplication penalty with the strength of its matching

interactions in order to be included in the alignment.

3.1.3 Estimation of Similarity Scores

The similarity scoreS(u, v) quantifies the likelihood that proteinsu and v are orthologous. We can

approximate this likelihood using the BLAST [1]E-value for the alignment ofu andv, E(u, v). Given

anE-value cutoffx andOuv representing the event thatu andv are orthologous,P (E(u, v) > x|Ouv)

denotes the fraction of orthologs withE-values worse than (greater than)x. If we assume that the

probability of a protein pair being orthologous is a monotonically decreasing function of theE-value,

this quantity is a measure of the likelihood that two proteins with E-value x are orthologous. This

monotonicity assumption is intuitive and we validate this using COG as well.
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3.2 Alignment Graph and the Maximum-Weight Induced Subgraph Problem

It is possible to represent information regarding matches and mismatches between two PPI networks

using a single alignment graph. This graph is a modified version of the graph Cartesian product that

takes orthology into account. Assigning appropriate weights to the edges of the alignment graph, the

local alignment problem defined in the previous section can be reduced to an optimization problem on

this alignment graph. We define the following alignment graph:

Definition 3 Alignment Graph.

For a pair of PPI networksG(U, E), H(V, F ), and protein similarity functionS, the corresponding

weighted alignment graphG(V,E) is computed as follows:

V = {v = {u, v} : u ∈ U, v ∈ V andS(u, v) > 0}. (9)

In other words, we have a node in the alignment graph for each pair of ortholog proteins. Each edge

vv
′ ∈ E, wherev = {u, v} andv

′ = {u′, v′}, is assigned weight

w(vv
′) = µ(uu′, vv′) + ν(uu′, vv′) + δ(u, u′) + δ(v, v′). (10)

Here,µ(uu′, vv′) = 0 if (uu′, vv′) /∈M, and similarly for mismatches and duplications.

Consider the PPI networks in Figure 2(a). To construct the corresponding alignment graph, we first

compute the product of these two PPI networks to obtain five nodes that correspond to five ortholog

protein pairs. We then insert an edge between two nodes of this graph if the corresponding proteins

interact in both networks (match edge), interact in only one of the networks (mismatch edge), or at

least one of them is paralogous (duplication edge), resulting in the alignment graph of Figure 3(a).

Note that the weights assigned to these edges, which are shown in the figure, are not constant, but are

functions of their incident nodes. Observe that the edge between{u1, v1} and{u2, v1} acts a match and
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duplication edge at the same time, allowing analysis of the conservation of self-interactions of duplicated

proteins. This construction of the alignment graph allows us to formulate the alignment problem as a

graph optimization problem defined below.

Definition 4 Maximum Weight Induced Subgraph Problem (MAWISH). Given graphG(V,E) and

a constantǫ, find a subset of nodes,̃V ∈ V such that the sum of the weights of the edges in the subgraph

induced byṼ is at leastǫ, i.e., W (Ṽ) =
∑

v,v′∈Ṽ
w(vv

′) ≥ ǫ.

Not surprisingly, this problem is equivalent to the decision version of the local alignment problem

defined in the previous section, as formally stated in the following theorem:

Theorem 1 Given PPI networksG, H, and a protein similarity functionS, let G(V,E, w) be the cor-

responding alignment graph. If̃V is a solution to the maximum weight induced subgraph problem

on G(V,E, w), thenP = {Ũ , Ṽ } induces an alignmentA(G, H, S, P ) with σ(A) = W (Ṽ), where

Ũ = {u ∈ U : ∃v ∈ V s.t.{u, v} ∈ Ṽ} andṼ = {v ∈ V : ∃u ∈ U s.t.{u, v} ∈ Ṽ}.

Proof. Follows directly from the construction of alignment graph.

The induced subgraph that corresponds to the local alignment in Figure 2(b) is shown in Figure 3(b).

It can be shown that MAWISH is NP-complete by reduction from maximum-clique, by assigning

unit weight to edges and−∞ to non-edges. This problem is closely related to the maximumedge sub-

graph [14] and maximum dispersion problems [17], which are also NP-complete. However, the positive

weight restriction on these problems limits the application of existing algorithms to the maximum weight

induced subgraph problem. Nevertheless, the local PPI network alignment problem aims to find all lo-

cally maximal alignments, consequently, locally optimal solutions of MAWISH are sufficient. Observ-

ing the similarity between min-cut graph partitioning and MAWISH, we develop fast heuristics based
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on common graph partitioning algorithms to identify locally maximal heavy subgraphs in the alignment

graph.

3.3 Algorithms for Local Alignment of PPI Networks

In terms of protein-protein interactions, functional modules are likely to be densely connected while be-

ing separable from other modules,i.e., a protein in a particular module interacts with most proteins in

the same module either directly or through a common module hub, while it is only loosely connected

to the rest of the network [35]. Since analysis of conserved motifs reveals that proteins in highly con-

nected motifs are more likely to be conserved, suggesting that such dense motifs are parts of functional

modules [39], high-scoring local alignments are likely to correspond to functional modules. Therefore,

in the alignment graph, we can expect that proteins that belong to a conserved module will induce heavy

subgraphs, while being loosely connected to other parts of the graph. This observation motivates the

process of greedily growing a subgraph seeded at heavy nodes. This approach is shown to perform well

in discovering conserved [29] or dense [4] subnets in PPI networks.

For min-cut graph partitioning, the most commonly applied heuristics are based on starting with a

seed partition and repeatedly moving or swapping nodes withmaximum gain on the objective func-

tion [21]. The key point here is that the move is performed even if it is associated with a negative gain

in order to climb over poor local optima. Observe that minimizing the total weight of the cut edges

(min-cut) in graph partitioning is equivalent maximizing the total weight of internal edges. This is very

similar to the objective function of MAWISH. The difference is that the total weight of only one part is

considered in MAWISH, and node balance is not an issue. Therefore, we apply this iterative improve-

ment based heuristic to MAWISH in order to find locally maximal heavy subgraphs. The initialheavy

subgraph is constructed by selecting the node with maximum number of matched interactions (i.e., a
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conserved hub) and adding all nodes that share a match edge with this node tothe subgraph.

A sketch of this iterative improvement based algorithm for finding a single conserved subgraph on

the alignment graph is shown in Figure 4. Each pass (i.e., the loop between lines 3-13) of this algorithm

works in linear time. In practice, we also limit the number ofcontiguous moves with negative gain. This

allows us to tune the locality of identified patterns.

To find all non-redundant heavy subgraphs, we start with the entire alignment graph and find a max-

imally heavy subgraph. If this subgraph is statistically significant, we record the alignment that cor-

responds to this subgraph and mark its nodes. We repeat this process by considering only unmarked

nodes. Once a new heavy subgraph is identified, we add the previously marked nodes that are positively

connected to this subgraph. This approach allows identification of overlapping alignments while avoid-

ing redundancy. Finally, we rank all subgraphs based on their significance and report the corresponding

alignments.

3.4 Statistical Significance

To evaluate the statistical significance of discovered high-scoring alignments, we compare them with a

reference model generated by a random source. In the reference model, it is assumed that the interac-

tion networks that belong to the two organisms are independent from each other as well as the protein

sequences. To accurately capture the power-law nature of PPI networks, we assume that the interactions

are generated randomly from a distribution characterized by a given degree sequence. (Note that the

power law nature of the graphs is not critical to our algorithm. The degree distribution can be com-

puted explicitly from the database of interactions). Ifu andu′ are interacting withdu anddu′ proteins,

respectively, then the probabilityquu′ of observing an interaction betweenu andu′ can be estimated as

quu′ = dudu′/
∑

v∈U dv [7]. We assume that the sequences are generated by a memoryless source, such
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thatu ∈ U andv ∈ V are orthologous with probabilityp. Similarly,u, u′ ∈ U andv, v′ ∈ V are paral-

ogous with probabilitypU andpV , respectively. Since the similarity function provides a measure of the

probability of true homology between a given pair of proteins, we estimatep by
P

u∈U,v∈V S(u,v)

|U ||V |
. Hence,

E[S(u, v)] = p for u ∈ U, v ∈ V . The probabilities of paralogy are estimated similarly.

Recall that the weight of a subgraph of the alignment graph isequal to the score of the corresponding

alignment. Hence, in the reference model, the expected value of the score of an alignment induced by

Ṽ ⊆ V is E[W (Ṽ)] =
∑

v,v′∈Ṽ
E[w(vv

′)], where

E[w(vv
′)] = µ̄p2quu′qvv′ − ν̄p2(quu′(1− qvv′) + (1− quu′)qvv′)

+δ̄(pU(pU − d̄) + pV (pV − d̄))

(11)

is the expected weight of an edge in the alignment graph. Withthe simplifying assumption of inde-

pendence of interactions, we haveV ar[W (Ṽ)] =
∑

v,v′∈Ṽ
V ar[w(vv

′)], enabling us to compute the

z-score to evaluate the statistical significance of each discovered high-scoring alignment, under the nor-

mal approximation that we assume.

While the approach described above enables quick calculation of significance without repeated sim-

ulations or extensive numerical computations, it has a few shortcomings. First, the significance of an

identified pattern is estimated for the proteins involved inthat conserved subgraph, rather than comput-

ing the probability of the existence of the pattern anywherein the networks. Second, the model does not

take into account the variability in the distribution of orthologs. These cause low variability of align-

ment score in the reference model, leading to overestimatedz-scores, since the observed variances in

alignment score are fairly high, which indeed is statistically significant. While these shortcomings can

be addressed explicitly, the cost associated with the computation of significance scores also increases

accordingly.
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3.5 Extensions to the Model

The proposed model can be extended to account for data quality as well as algorithm parameters.

3.5.1 Accounting for Experimental Error.

PPI networks obtained from high-throughput screening are prone to errors in terms of both false nega-

tives and positives [33]. While the proposed framework can be used to detect experimental errors through

cross-species comparison to a certain extent, experimental noise can also degrade the performance of

the alignment algorithm. In other words, mismatches shouldbe penalized for lost interactions during

evolution, not for experimental false negatives. To account for such errors while analyzing interaction

networks, several methods have been developed to quantify the likelihood of an interaction or complex

co-membership between proteins [2, 15, 19]. Given the priorprobability distribution for protein interac-

tions and a set of observed interactions, these methods compute the posterior probability of interactions

based on Bayesian models. Hence, PPI networks can be modeledby weighted graphs to account for

experimental error more accurately.

While the network alignment framework introduced in Section 3.1 assumes that interactions are

represented by unweighted edges, it can be easily generalized to a weighted graph model as follows.

Assuming that weight̟ uv represents the posterior probability of interaction betweenu andv, we can

define match score and mismatch penalty in terms of their expected values derived from these posterior

probabilities. Therefore, for anyu, u′ ∈ U andv, v′ ∈ V , we have

µ(uu′, vv′) = µ̄S(uu′, vv′)̟uu′̟vv′ (12)

ν(uu′, vv′) = ν̄S(uu′, vv′)(̟uu′(1−̟vv′) + (1−̟uu′)̟vv′). (13)

Note that match and mismatch sets are not necessarily disjoint here in contrast to the unweighted graph

18



model, which is a special case of this model.

3.5.2 Tuning Model Components and Parameters.

Contracting Paralogs.An alternate approach for handling duplications is contracting the proteins in the

same species that are likely to be in-paralogs. This approach fits into the alignment graph model since

in-paralogs are expected to be consistently orthologous tothe same set of proteins in the other organ-

ism. It also reduces the computational complexity since thenumber of nodes will be decreased by node

contraction and the edges that correspond to duplications will be eliminated. Contraction of nodes is

also shown to be effective for multiple alignment of metabolic pathways using graph mining [22]. How-

ever, clustering proteins in the same organism to identify in-paralogs requires preprocessing to solve a

difficult problem. Clustering algorithms that are specifically designed for this purpose, such as INPARA-

NOID [28] serve as a reliable tool. However, the resulting graphs may produce conservative alignments

since the search space is narrowed down by the clustering of proteins [23]. In contrast, accounting for

duplications using duplication edges provides more flexibility and uses conservation of interactions as

additional information to distinguish in-paralogs from out-paralogs, as discussed above.

Shortest-path mismatch model.In the above discussion, while we consider proteins that arelinked

by at most∆̄ interactions as interacting, we do not take into account thedistance while penalizing

mismatches. We can extend this to a shortest-path mismatch model, defined as follows:

ν(uu′, vv′) = ν̄S(uu′, vv′)(max{∆G(u, u′), ∆H(v, v′)} − ∆̄), (14)

While this model may improve the alignment algorithm, it is computationally expensive since it requires

solution of the all pairs shortest path problem on both PPI networks.

Linear duplication model.The alignment graph model forces each duplicate pair in an alignment to be

scored. For example, if an alignment containsn paralogous proteins in one species,
(

n

2

)

duplications are
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scored to account for each duplicate pair. However, in the evolutionary process, each paralogous protein

is the result of a single duplication,i.e., n paralogous proteins are created in onlyn − 1 duplications.

Therefore, we refer to the current model asquadratic duplication model, since the number of scored

duplications is a quadratic function of number of duplicates. While this might be desirable as being

more restrictive on duplications, to be more consistent with the underlying biological processes, it can

be replaced by alinear duplication model. In this model, each duplicate protein is penalized only once,

based on its similarity with the paralog that is most similarto itself. This model can be incorporated into

the alignment graph model of Section 3.3 with a simple modification of the algorithm that dynamically

reassigns weights to edges that correspond to duplications.

4 Experimental Results

4.1 Data & Implementation

We implement the proposed algorithms in the C programming language and test on PPI networks that

belong to three commonly studied eukaryotic organisms. Thesource code of the software is available at

http://www.cs.purdue.edu/homes/koyuturk/mawish/along with detailed alignment re-

sults. The interaction data are downloaded from BIND [3] andDIP [40] molecular interaction databases.

The statistics for the PPI networks of S. Cerevisiae (yeast), C. Elegans (nematode), and D. Melanogaster

(fruit fly) are shown in Table 1.

We align all pairs of these three organisms using a fixed set ofparameters to be able to compare

the results with each other. We set these parameters conservatively in order to obtain a compact set of

illustrative results. For any pair of PPI networks, we set the E-value threshold adaptively based on the

estimated similarity scores so that the minimum similarityscore for any pair of potential orthologs is 0.6.
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In other words, two proteins that belong to two different species are considered potentially orthologous

only if they have a BLASTE-value less than 60% of ortholog pairs in COG. On the other hand, we set

d̄ = 0.9, i.e., two proteins in the same organism are considered potentialin-paralogs only if they have

BLAST E-value less than 90% of protein pairs in this organism that are in the same COG. For potential

out-paralogs, we consider protein pairs that have a BLASTE-value less than 0.1 but greater than 10%

of the ortholog pairs in COG. By setting these cut-off valueson similarity score, we only consider the

homologous protein pairs that have the highest positive or negative contribution on the alignment score.

This eliminates noise to a certain extent while improving the computational efficiency. However, for

more detailed analysis and discovery of loosely visible patterns, it may be necessary to relax and set

these parameters based on the evolutionary distance between the two organisms being compared.

4.2 Results & Discussion

We perform pairwise alignment of the three PPI networks by tuning the alignment parameters toµ̄ = 1.0,

ν̄ = 1.0, andδ̄ = 0.1. Detailed statistics on alignment of the three pairs of eukaryotic PPI networks are

shown in Table 2. In this table, we list the number of nodes in the alignment graph, nodes with at least

one matched edge, matches, mismatches and duplications in both organisms. The number of matches

and the number matched nodes are shown for two values of∆̄, where only direct interactions̄∆ = 1 and

indirect interactions through a single protein∆̄ = 2 are considered as matches. In practice, we eliminate

all nodes that do not have any matching interactions from thealignment graph. As evident in the table,

this improves the computational performance of the algorithm significantly.

Alignment of S. Cerevisiae PPI network with D. MelanogasterPPI network results in identification

of 412 conserved subnets. Eight of the conserved subnets with highest alignment scores are shown in

Table 3. Similarly, sample high-scoring conserved subnetsidentified by the alignment of S. Cerevisiae
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vs C. Elegans and C.Elegans vs D. Melanogaster PPI networks are shown in Tables 4 and 5, respectively.

In total, 83 conserved subnets are identified on S. Cerevisiae and C. Elegans, and 146 are identified on

C. Elegans and D. Melanogaster. For each conserved subnet, we count the biological processes that the

proteins in the subnet take part in, according to GO annotations. We identify the biological process that

is represented by the largest number of proteins in an organism as the dominant biological process for

that organism. The dominant biological processes for the conserved subnets are also shown in the ta-

bles. While most of the conserved subnets are dominated by one particular processes and the dominant

processes are generally consistent across species, there also exist different processes in different organ-

isms that are mapped to each other by the discovered alignments. This illustrates that the comparative

analysis of PPI networks is effective in not only identifying particular functional modules, pathways, and

complexes, but also in discovering relationships between different processes in separate organisms and

crosstalk between known functional modules and pathways.

A selection of interesting conserved subnets is shown in Figure 5. The alignments in the figure

illustrate that the alignment algorithm takes into accountthe conservation of interactions in addition to

sequence similarity while mapping orthologous proteins toeach other. In all of the alignments shown in

the figure, the interactions of proteins that belong to the same orthologous group are highly conserved,

suggesting relatively recent duplications.

Detailed examination of the conserved subnets in S. Cerevisiae and D. Melanogaster shows that many

of them do correspond to some functional modules. There are multiple instances of 20S proteosome

(10,11). All seven of the alpha subunits in the 20S proteosome, a subcomplex of the 26S proteosome

involved in protein degradation, are present in the alignment #10 [11]. In addition, there is a subnet for

the proteosome regulatory particle (6,9) as well as one for calcium induced pathways (2). Interestingly,

proteins that make up the regulatory particle of the 26S proteosome (Rpt1, Rpt2, Rpt3, Rpt4, Rpt5 and
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Rpt6) are also present in the alignment #9 [10]. The method also detected a number of components

involved in calcium-dependent stress-activated signaling pathways (Cmd1, Cna1, Cna2 and Cnb1) as

well as those associated with budgrowth of yeast (Cmd1, Myo2and Myo4) in alignment #2 [12]. Many of

the subnets found for yeast are overlapping, possibly reflecting the fact that drosophila uses a functional

module in various contexts.

In some cases, the self-interaction of a single protein in one organism is aligned with a clique of

interactions between its orthologs that are part of a particular module. For example, in alignment #7, five

proteosome regulatory particle proteins (Rpt1, Rpt3, Rpt4, Rpt5, Rpt6) are mapped to one protein (Rpt4)

in drosophila.

Based on these results, we establish pairwise alignment of PPI networks as a tool for not only identi-

fying conserved modules, but also assessing functional differences and similarities of homologous pro-

teins based on shared and missing interactions. Moreover, alignment results provide a means for dis-

covery of new functional modules in relatively less studiedorganisms through mapping of functions at a

modular level rather than at the level of single protein homologies.

5 Related Work

As partially complete interactomes of several species become available, researchers have explored the

problem of identifying conserved topological motifs in different species [24, 39]. These studies reveal

that many topological motifs are significantly conserved within and across species and proteins that are

organized in cohesive patterns tend to be conserved to a higher degree. A publicly available tool, Path-

BLAST, adopts the ideas in sequence alignment to PPI networks to discover conserved protein pathways

across species [20]. By restricting the alignment to pathways, i.e., linear chains of interacting proteins,
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this algorithm renders the alignment problem tractable, while preserving the biological implication of

discovered patterns. PathBLAST accounts for gaps and mismatches by allowing unrepeated jumps and

matching of non-orthologous proteins, based on the notion that the orthologous counterpart of a pair of

interacting proteins in one species will, likely, be connected via a short path in the other. In [26], Pinter

et al. align metabolic pathways based on subtree homeomorphism, observing that this model not only

leads to tractable solutions, but also can describe the variations in metabolic pathways effectively.

In a recent study, Sharan et al. [29] have proposed probabilistic models and algorithms for identifying

conserved complexes in bacteria and yeast through cross-species network comparison. Their approach

is similar to the framework proposed here in that they construct an orthology graph with nodes that

correspond to pairs of ortholog proteins. The edges of the orthology graph are weighted according to a

probabilistic framework that compares null and conserved complex models based on log-likelihood. In

contrast to their model, our framework is based on concepts of matches, mismatches and duplications and

the edges are weighted in order to reward or penalize these evolutionary events. This allows tuning of the

parameters based on relative divergence of the species being compared and interpretation of discovered

alignments in terms of evolutionary models. One may therefore conclude that their model is designed to

identify conserved complexes while our framework is designed for comparative analysis of PPI networks

that belong to two different species. The idea of constructing product graphs by joining orthologous

nodes is also applied to the comparative analysis of PPI networks that belong to multiple species [30].

6 Conclusion

This paper presents a framework for local alignment of protein interaction networks. The framework is

guided by theoretical models of evolution of these networks. The model is based on discovering sets
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of proteins that induce conserved subnets based on scoring match and mismatch of interactions, and

duplication of proteins. An implementation of the proposedalgorithm reveals that this framework is

successful in uncovering conserved substructures in protein interaction data.

References

[1] S. F. Altschul, T. L. Madden, A. A. Schffer, Z. Zhang J. Zhang, W. Miller, and D. J. Lipman.

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.Nuc.

Acids Res., 25(17):3389–3402, 1997.

[2] S. Ashtana, O. D. King, F. D. Gibbons, and F. P. Roth. Predicting protein complex membership

using probabilistic network reliability.Genome Research, 14:1170–1175, 2004.

[3] G. D. Bader, I. Donalson, C. Wolting, B. F. Quellette, T. Pawson, and C. W. Hogure. BIND-the

Biomolecular Interaction Network Database.Nuc. Acids Res., 29(1):242–245, 2001.

[4] J. S. Bader. Greedily building protein networks with confidence. Bioinformatics, 19:1869–1874,

2003.

[5] A. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509–512,

1999.

[6] F. Chung, L. Lu, T. G. Dewey, and D. J. Galas. Duplication models for biological networks.J

Comp. Bio., 10(5):677–687, 2003.

[7] F. Chung, L. Lu, and V. Vu. Spectra of random graphs with given expected degrees.PNAS,

100(11):6313–6318, 2003.

25



[8] E. Eisenberg and Y. Levanon. Preferential attachment inthe protein network evolution.Phys. Rev.

Let., 91(13):138701, 2003.

[9] A. C. Gavin et al. Functional organization of the yeast proteome by systematic analysis of protein

complexes.Nature, 415(6868):141–147, 2002.

[10] H. Fu et al. Subunit interaction maps for the regulatoryparticle of the 26s proteasome and the cop9

signalosome.EMBO J, 20(24):7096–7107, 2001.

[11] M. Groll et al. Structure of 20s proteasome from yeast at2.4 a resolution.Nature, 386(6624):463–

471, 1997.

[12] M. S. Cyert et al. Genetic analysis of calmodulin and itstargets in saccharomyces cerevisiae.Annu

Rev Genet, 35:647–672, 2001.

[13] Y. Ho et al. Systematic identification of protein complexes in Saccharomyces cerevisae by mass

spectrometry.Nature, 415:180–183, 2002.

[14] U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem.Algorithmica, 29(3):410–421,

2001.

[15] M. A. Gilchrist, L. A. Salter, and A. Wagner. A statistical framework for combining and interpreting

proteomic datasets.Bioinformatics, 20(5):689–700, 2003.

[16] L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray. From molecular to modular cell

biology. Nature, 402:C47–C51, 1999.

[17] R. Hassin, S. Rubinstein, and A. Tamir. Approximation algorithms for maximum dispersion.Oper.

Res. Let., 21:133–137, 1997.

26



[18] T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y.Sakaki. A comprehensive two-hybrid

analysis to explore the yeast protein interactome.PNAS, 98(8):4569–4574, 2001.

[19] R. Jansen, H. Yu, and D. Greenbaum et al. A bayesian networks approach for predicting protein-

protein interactions from genomic data.Science, 302:449–453, 2003.

[20] B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B. R. Stockwell, and T. Ideker. PathBLAST: a tool

for aligment of protein interaction networks.Nuc. Acids Res., 32:W83–W88, 2004.

[21] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.The Bell

System Technical Journal, 49(2):291–307, 1970.

[22] M. Koyutürk, A. Grama, and W. Szpankowski. An efficientalgorithm for detecting frequent

subgraphs in biological networks. InBioinformatics Suppl. 12th Intl. Conf. Intel. Sys. Mol. Bio.

(ISMB’04), pages i200–i207, 2004.

[23] M. Koyutürk, A. Grama, and W. Szpankowski. Pairwise local alignment of protein interaction

networks guided by models of evolution. InS. Miyano (Eds.): RECOMB 2005, Lecture Notes in

Bioinformatics, volume 3500, pages 48–65, 2005.

[24] E. .Y .Lotem, S. Sattath, N. Kashtan, S. Itzkovitz, R. Milo, R. Y. Pinter, U. Alon, and H. Margalit.

Network motifs in integrated cellular networks of transcription-regulation and protein-protein in-

teraction.PNAS, 101(16):5934–5939, 2004.
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Duplication Elimination Emergence

Figure 1: Duplication/divergence model for evolution of PPI networks. Starting with three interactions

between three proteins, proteinu1 is duplicated to addu′
1 into the network together with its interactions

(dashed circle and lines). Then,u1 loses its interaction withu3 (dotted line). Finally, an interaction

betweenu1 andu′
1 is added to the network (dashed line).
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Figure 2: (a) An instance of the pairwise local alignment problem. The proteins that have non-zero

similarity scores (i.e., are potentially orthologous), are colored the same. Note thatS does not necessarily

induce a disjoint grouping of proteins in practice. (b) A local alignment induced by the protein subset

pair {u1, u2, u3, u4} and {v1, v2, v3}. Ortholog and paralog proteins are vertically aligned. Existing

interactions are shown by solid lines, missing interactions that have an existing ortholog counterpart are

shown by dotted lines. Solid interactions between two aligned proteins in separate species correspond to

a match, one solid one dotted interaction between two aligned proteins in separate species correspond to

a mismatch. Proteins in the same species that are on the same vertical line correspond to duplications.
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Figure 3: (a) Alignment graph corresponding to the instanceof Fig. 2(a). Note that match scores, mis-

match and duplication penalties are functions of incident nodes, which is not explicitly shown in the

figure for simplicity. (b) Subgraph induced by node setṼ = {{u1, v1}, {u2, v1}, {u3, v3}, {u4, v2}},

which corresponds to the alignment shown in Fig. 2(b).
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procedure HEAVIESTSUBGRAPH(G)

⊲ Input G(V,E, w): Alignment graph

⊲ Output Ṽ: Subset of nodes that induces a maximally heavy subgraph inG

1 ṽ← argmax
v∈V
|{v′ ∈ V : (v,v′) is a match edge}|

2 Ṽ← {ṽ} ∪ {v ∈ V : (ṽ,v) is a match edge}

3 repeat

4 Q← {v ∈ V : key(v) = −
∑

v′∈Ṽ
w(v,v′) if v ∈ Ṽ, key(v) =

∑

v′∈Ṽ
w(v,v′) else}

5 Wmax ← W (Ṽ)

6 while Q 6= ∅

7 v← EXTRACTMAX (Q)

8 if v ∈ Ṽ then Ṽ← Ṽ \ {v} elseṼ← Ṽ ∪ {v}

9 if W (Ṽ) > Wmax then Wmax ←W (Ṽ), bestmove← v

10 for all v
′ such thatvv

′ ∈ E updatekey(v′)

11 endwhile

12 roll back all moves afterbestmove

13 until bestmove = NULL

14 return Ṽ

Figure 4: Fast heuristic for finding a subset of nodes that induces a subgraph of maximal total weight on

the alignment graph.
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Figure 5: Sample conserved subnets identified by the alignment algorithm. Orthologous and paralogous

proteins are either vertically aligned or connected by bluedotted lines. Existing interactions are shown

by green solid lines, missing interactions that have an orthologous counterpart are shown by red dashed

lines. The rank of each alignment in the set of alignments discovered for the respective pair of organisms

is indicated in its label.
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Table 1: Description of aligned PPI networks.

Organism # Proteins # Interactions

S. Cerevisiae 5157 18192

C. Elegans 3345 5988

D. Melanogaster 8577 28829
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Table 2: Alignment statistics for the three pairs of eukaryotic organisms. For each alignment, the number

of nodes in alignment graphs (# of orthologous pairs), number of nodes with at least one matched edge,

number of matches, number of mismatches and number of duplications for both organisms are shown.

Number of mismatches for̄∆ = 2 can be derived from other statistics.

Organism # Nodes # Matched nodes # Matches # Mismatches # Duplications

pair ∆̄ = 1 ∆̄ = 2 ∆̄ = 1 ∆̄ = 2 ∆̄ = 1 Org. 1 Org. 2

SC vs CE 2746 312 1230 412 3007 40262 6107 6886

SC vs DM 15884 1730 8622 2061 42781 1054241 6107 32670

CE vs DM 11805 491 3391 455 6626 205593 6886 32670
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Table 3: Eight high-scoring conserved subnets identified bythe alignment of S. Cerevisiae and D.

Melanogaster. For each conserved subnet, its rank (R), score (S), number of nodes in alignment graph

and corresponding number of proteins in each organism (#P),number of matches (#M), number of mis-

matches (#N), and number of duplications in each organism (#D) are shown in the corresponding row.

The dominant biological process in which the majority of proteins in the conserved subnet participate is

shown for each organism, in the first and second rows, respectively.

R S #P #M #N #D Dominant Process

1 15.97 18 (16, 5) 28 6 (4, 0) protein amino acid phosphorylation (3)

JAK-STAT cascade (2)

2 13.93 13 (8, 6) 16 6 (3, 1) endocytosis (4)

calcium-mediated signaling (3)

3 12.44 22 (14, 4) 32 10 (3, 0) protein amino acid phosphorylation (4)

protein amino acid phosphorylation (2)

6 8.05 8 (5, 3) 12 2 (0, 1) ubiquitin-dependent protein catabolism (4)

proteolysis and peptidolysis (1)

7 6.96 5 (5, 1) 10 5 (0, 0) ubiquitin-dependent protein catabolism (5)

ubiquitin-dependent protein catabolism (1)

8 6.83 6 (4, 4) 12 6 (0, 1) pseudohyphal growth (3)

polarity specification of anterior/posterior axis (1)

9 6.76 8 (6, 3) 16 9 (0, 1) ubiquitin-dependent protein catabolism (5)

proteolysis and peptidolysis (1)

10 6.75 10 (7, 3) 24 12 (0, 1) ubiquitin-dependent protein catabolism (7)

biological process unknown(2)
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Table 4: Five high-scoring conserved subnets identified by the alignment of S. Cerevisiae and C. Elegans.

R S #P #M #N #D Dominant Process

1 36.14 13 (5, 3) 65 24 (0, 3) ubiquitin-dependent protein catabolism

protein catabolism

2 8.47 20 (11, 5) 19 4 (1, 1) protein amino acid phosphorylation (2)

protein amino acid phosphorylation (2)

3 6.28 8 (6, 3) 21 12 (0, 0) ubiquitin-dependent protein catabolism (6)

ubiquitin-dependent protein catabolism (3)

8 3.23 4 (3, 3) 4 1 (1, 1) mismatch repair (2)

mismatch repair (1)

15 1.70 3(3, 3) 2 0 (0, 0) vesicle-mediated transport (2)

physiological process (2)
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Table 5: Five high-scoring conserved subnets identified by the alignment of C. Elegans and D.

Melanogaster.

R S #P #M #N #D Dominant Process

1 26.75 17 (4, 9) 52 4 (0, 4) thermosensory behavior (1)

regulation of transcription from RNA polymerase II promoter (4)

2 4.65 9 (5, 3) 8 0 (2, 1) translational initiation (2)

translational initiation (1)

3 4.57 7 (5, 4) 9 2 (1, 0) protein amino acid phosphorylation (2)

protein amino acid phosphorylation (2)

6 4.00 6 (4, 6) 8 2 (0, 2) signal transduction (2)

signal transduction (1)

10 3.48 5 (4, 4) 6 3 (1, 0) regulation of transcription, DNA-dependent (2)

regulation of transcription from RNA polymerase II promoter (3)
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