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Abstract—We show that the Lempel Ziv'78 redundancy rate The compression codg(w) is a description off (w), node
tends to a Gaussian distribution for memoryless sources. We py node in the order of creation; each node being identified
accomplish it by extending findings from our 1995 paper [3]. V& by a pointer to its parent node in the tree and the symbol

present a new simplified proof of the Central Limit Theorem S .
for the number of phrases in the LZ'78 algorithm. As in our that labels the edge linking it to the parent node. The pointe

1995 paper, here we first analyze the asymptotic behavior ohe  t0 the kth node requires at mogtog k| nats, and the next
total path length in a digital search tree (a DST) built from symbol costglog |.A|] nats. We just assume that the total cost

independent sequences. Then we present simplified proofs @én jg [log(k|.A|)]. The compressed code length is
extend our analysis of LZ'78 algorithm to include new resuls

on the convergence of moments, moderate and large deviatisn M(w)
and redundancy analysis. |C(w)| = Z Mog(k|.A|)], (1)

I. INTRODUCTION k=1

The Lempel-Ziv compression algorithm [12] is a universafnereM (w) is the number of full phrases needed to parse
compression scheme. It partitions the text to be compreség@arly; M(w) is also the number of nodes in the associated
into consecutive phrases such that the next phrase is thaanitfe7 (w). Notice that the code is self-consistent and does not
largest prefix of the uncompressed text not seen before in f#g€da priori knowledge of the text length, since the length is
compressed text. The compression code for a worver the & simple function of the nodes sequence. We conclude from
alphabet4 we denote ag’(w). It is known that for a large (1) that

i _ [Cw)]
class of sources the average compression gatg = = |C(w)| < M(w) (log(M(w)) + [log(lA])]) . @)
tends to the source entropy rdiewhen |w| — co. Our goal _ _ _
is to prove that the redundancy ratew) = p(w) — h tends In fact, different implementation may ad@ (M (w) to the
in probability and in moments to a normal distribution. Irfode length. Throughout, we shall assume tfG{w)| =

particular, we prove that M (w) (log(M (w)) + log(|A[)).
1 1 In this paper we study the limiting distribution, large devi
E(r(w)) = O ( > , Var(r(w)) =0 (_) ations, and moments of the number of phra&&gv) and the
logn n redundancy when the text of lengtty| = n is generated by
when |w| — 0. a memoryless source. We prove the Central Limit Theorem

It is convenient to organize the phrases (dictionary) of tHELT) for the number of phrases and establish the LZ'78
Lempel-Ziv scheme in aligital search tree(DST) [6], [11] code redundancy (excess of the code length over the optimal
which is really a parsing tree. The root represents an empéngth). The former result was already proved in our 1995
phrase. The first phrase is the first symbol, sayWhich is paper [3] while the latter was presented in [5]. However, the
stored in a node appended to the root. The next phrase is eitof of the CLT in our 1995 paper was quite complicated; it
“aa” stored in another node that branches out from the nodwolves a generalized analytic depoissonization oververn
containing the first phrase:” or a new symbol that is stored cones in the complex plane. In this paper we simplified and
in a node attached to the root. This process repeats reelyrsigeneralized it to present new comprehensive large dewigtio
until the text is parsed into full phrases (last incompldieage results. It should be pointed out that since our 1995 paper
is ignored). A detailed description can be found in [3], [11][3] no simpler, in fact, no new proof of CLT was presented

Let a textw be generated over an alphahdt and let except the one by Neininger and Ruschendorf [8] but only
T (w) be the associated digital search tree constructed by fioe unbiasednemoryless sources (as in [1]). The proof of [8]
algorithm. Each node iff (w) corresponds to a phrase in theapplies the so calledontraction metho@nd should generalize
parsing algorithm. Lef (w) be the (total) path length i (w), to biased memoryless sources.
that is, the sum of all paths from the root to all nodes. We
should havel (w) = |w| (if all phrases are full). If we know
the order of nodes creation in the trgw), then we can  Let n be a nonnegative integer. We denote bf;, the
reconstruct the original text. number of phrased/(w) when the original textv is of fixed

II. MAIN RESULTS



lengthn. We shall assume throughout that the text is generatél [ Moderate Deviation]. Letd < % and A > 0. There exists
by a memoryless source over such that the entropy rate isB > 0 such that for all non-negative real number< An°:

h = =% ,caPalogps > 0 wherep, is the probability of L2
symbola. V%lé also definei, = 3", 4 pa(logp,)? and P(|M,, — E(M,)| > x/Var(M,)) < Be =
o ZaGApZ logpa
= _Z 1—> _.pk ®) As direct consequence of these large deviations result,
k22 aeA T we conclude that the average compression rate converges
Finally, we introduce two functions to the entropy rate. Furthermore, our large deviation tesul
hy allow us also to estimate the average redundaBgy,| =
Blm) = oo +7—1=n+Ai(logm) E[C(w)]/|w| — h and its limiting distribution wherw| = n.

1 ho 1 Corollary 1. The redundancy rate,, for sequences of length
ey logm + o T TN Z log pa — BY n satisfies for alli < § < 1:

acA
E(M, log M,, + M, log(].A|))
h p—
v(m) = % <(h_; —1)logm + ¢y + Ag(logm)) E(r,) = o —h
. . B log(|A]) — B(£=1(n)) O(n-1
We prove the following theorem which improves our pre- = Megt 1)+ B () +0(n°™)

vious result from [3] by adding the convergence of moments.

LoD - 5 (b )

Theorem 1. Consider the LZ'78 algorithm over a sequence ~ ,
of lengthn generated by a memoryless source. Let logn
m and b p2
tm) = 7 (logm + B(m)).. var(r,) ~ (2= 1)
n

The number of phrased/,, has meanE[)M,,] and variance

L . . n—E(r,) .
Var(M,,) satisfying for all} < & < 1 Furthermore, the limiting d|str|but|o\/nr\/aﬁ converges in
s distribution and moments t&7(0, 1).
E(M,) = (7' (n)+0(n°) (4) . . .
nh s nh The redundancy average estimate was first proved in [5],
= log £~1(n) + B(E-1(n)) +0(n?) ~ @, [10] but we provide a new proof. The limiting distribution of

o(0-1(n)) (hs — h2)n the redundancy is new.

(0'(0=1(n)))? ~ 10g2n : (®) Ill. FROM LEMPEL-ZIV TO DIGITAL SEARCH TREE

Furthermore, the normalized number of phrases converg sIn this section we make a connection between the Lempel-

in distribution and moments to the the standard norm&tY algorithm and digital search trees using a renewal argu-

distribution N'(0, 1). M isely, f i . mentf2]. - . . o
istribution (0, 1). More precisely, for any given real Our goal is to derive an estimate on the probability distri-

lim P(M, < E(M,)+ z/Var(M,)) = ®(x), (6) bution of M,,. We assume that our original text is a prefix

Var(M,,)

nee of an infinite sequenc& generated by a memoryless source
where 1 » over the alphabe#l. We build a Digital Search Tree (DST) by
O(x) = —/ ey parsing the infinite sequencE up to themth phrase. Thus
V21 ) the DST is constructed oven strings (phrases).
In addition, for all nonnegative: Let ,,, be the total path length in the associated DST after
. insertingm (independent) strings. The quantity,, is exactly
) M, — E(M,,) the number of strings needed to be inserted to increase the pa
Jm B ((W) ) = Hk 7 length of the associated DST ta This observation leads to
" the following identity valid for all integers andm:
where i, = 0 for k is odd, andu, = Wf—ég)' for k even. P(M, >m) = P(Ly <n) . 9)

We also have large and moderate deviations results. To theve now use generating functions to find a functional
best of our knowledge these results are new (see also [3], [Bquation for the distribution of.,,. Let L,,(u) = E(ul™)
ge the moment generating function bf,. In the following, k
is a tuple inN ! andk, for a € A is the component ok for
symbola. Since inserted strings are independent, we conclude
that

Theorem 2. Consider the LZ'78 algorithm over a sequenc
of lengthn generated by a memoryless source.

(i) [Large Deviations]. For all % < § < 1 there existe > 0,
B >0 and g > 0 such that for ally > 0

: ma1(u) = u™ " koL (u), (10
P(|M,—E(M,)| > yn’) < Aexp(—Bn (1+37*5y>5)' ®) L y1(u) kEZN:A <k) ae]_gpa Ly,(u),  (10)



where (’l’{‘) = ﬁ/"ka, Next, we introduce the exponentialTo prove it we apply several times our main technical result

: m?’ —
generating functiorL(z,u) = 3°, %+ L,,(u) leading to Theorem 4 with? = Nar. O(em™°). For- some; <
d < 1andd > § such thatl — 36" < 0, we obtain

0
&L(z,u) = H L(pauz,u) . (11) )
acA log L., | exp T = 7ElLm] +T—+O(m_%+a/)
It is clear from the construction thak(z,1) = e*, since var(Liy,) vvarL,, 2

L,,(1) = 1 for all integerm. Via the cumulant formula, we (16)

also know that for all integers: and fort complex sufficiently for somes’ > 0. Thus by (15) the normality result follows.
small for whichlog(L,, (e!) exists, we have To establish the convergence in moments, we use (16) in

) the Cauchy formula applied on a circle of radiiencircling
log(Lin(¢")) = tB(Lp) + SVar(Ly) + O() . (12) the origin, that is

k

Notice that the termO(¢3) is not uniform inm. In passing E <Lm - E(Lm)>
we remark that€(L,,) = L/,(1) and VafL,,) = L (1) + vvarLy,
L, (1) = (L, (1))*. Loy

In [3] we proved the following result that we adopt here. N ?{ _TLm(eXp(;))e—r/vVar(Lm)

. . . 2im | TRl Var(L,)
Theorem 3. Consider a digital search tree built ovemn
. ; 5
independent strings. Then _ %7{ i:l exp(%)(l n O(m_%ﬁ )
E(Ly,) ={(m)+0(1),  Var(Ly) =v(m). T
2

We are aiming at showing that the limiting distributio_n of = pp +O(R™F exp(%)mf%ﬁ’).
the path length is normal fon — co. In order to accomplish
it, we need one technical result presented next to be provEtis completes the proof. [
only in the final version of this paper. We also have large deviation results for the path length

Theorem 4. For all § > 0 and for all ' < § there exists presented next.

e > 0 such that for|t| < &: log L, (e!™ ) exists, and Theorem 6. Consider a digital search tree built ovem
sequences generated by a memoryless source.

(i) [Large deviation]. Let% < § < 1. Then there exist > 0,
12 B > 0, and 8 > 0 such that for allz > 0:

— t ,
1Ong(etm 6) = WE(Lm)+mvar(Lm)+t30(m1736 ) .

log Ly (™ ") = O(m),

P(|Lm — B(Ly)| > 2m®) < Bexp(—pm®z).  (17)

) - .
Provided Theorem 4 is true, we are ready to prove our maiH [Moderate deviation]. Letd < g and A > 0. Then there

. 5.
results concerning the path lengkh,. existsB > 0 such that for non-negative real numberx: An°:

22
Theorem 5. Consider a digital search tree built ovem P(|Ly, — E(Ly,)| > zy/Var(L,,)) < Be™ = (18)
sequences generated by a memoryless source. The random
variable %ﬁf’”) tends to a normal distribution with mean®s "™ —* °°-
0 and varfancel in probability and in moments. More pre-  Proof: We apply the Chernov bound. We takes being
cisely, for any given real numbaer. a non negative real number. We have the identity:
1131 P(L,, < E(L,,) + z+/Var(L,,)) = ®(x), 13) pr (Lm > E(Ly,) + xm5) =P (eth > e(E(Lm)eré)t) )
(19)

and for all nonnegative integet ande > 0 Using Markov's inequality we find

" <Lm\/_ E(Lm)>k = g + O(m™3+9) (14) tL (E(Lm)+am?)t E(e't)
varlm Pletm > e S G e
5
wherey, = 0 for k odd andyuy, = W%E), for k even. = Lp(e") exp(—tE(Ly,) — xm’t) .
Y

’

Proof: We apply Levy’s continuity theorem or equiva-Here we takey’ = S22 ande = ¢ — 4. Let fix t = fm~°

lently Goncharov's result [11] asserting thiz—Em) tends such that the estimateg L, (e') = tE(Ly,) + O(t*m'**) is
valid. Therefore we have

log Lm(et) - tE[Lm] = O(m76)7 (20)

to the standard normal distribution if for compleiﬂ

L, <exp (;)) e~ TE(Lm)/VVaAN(Ly) _y 7°/2

Var(L,,) which tends to zero. We complete the proof by noticing that

(15) tmlx = Bm .



To obtain an upper bound we follow the same route onipplying inequality (23) tax = ¢~*(n) andb = yn’ we arrive

considering—t instead oft. Indeed, at
P (L < E(Ly) —2m®) = P (e*th > e*<E<Lm>*zm‘5>t) n = E(L | -1(n)4yns)) < —yé_n(n) n®+0(1).  (25)
< Ly (™) exp(tE(Ly,) — 2mt). Thus
To prove pgrt (i) ofmcgderate (_jeviation we apply again P(L|s-1(n)4yns| <Nn) < P(Ly—E(Ly) < —zm®+0(1)) ,
Theorem 4 witht = \/\ngm leading to by idenifying (26)
log L, (exp<m> —E(Lm)m = %2+o(1). m=t1n)+yn’|, z= g_le)Z_iy
(21)

We now apply several times Theorem 6 from the previous
section regarding the path length,,. That is, for allz > 0
and for allm, there exist: > 0 and A such that

Indeed, from Theorem 4 with < % andd’ <6

10g Ly (exp(—meeez)) = log Ly (™ ")

var(Ly,) ) P(Ly — E(Ly,) < zm®) < Ae=P2m" (27)
x X
=E(L,, + Var(L,,
(Lm) Vario) " var(Ly) (Lm) In other words, .
U i) P(Ln~E(Lp) < am’+0(1)) < Ae Pem™+00) < yro=fam
——=O0(m 7°%).
(Var(L,,))? for someA’ > A we find
Observe that the error term is at most P(M,, > 07 (n) +yn’) < A exp(—Bxm?).  (28)

O(m!~ 21393 (log m)=3) = o(1), as needed. Therefore, by B )
Markov inequality for all¢ > 0, We know that (7'(n) = Q(logn)-/ Thus =z =
/ n) O((logn)' i < Bl
P(L,, <E(L,) + Var(L,,)) < (14n°~1 log ny) (14yn—<")%
( (L) + (L)) < 0<e' <eandp > 0.
< exp(log L, (e") — tE(L,,) — zt\/Var(L,,)). In a similar fashion, we have

for some

Taking ¢ as above and applying the estimate (21), we find ~ F(Mn < {7 (n) — yn®) = P(Lj=1(ny—yns| >n)  (29)

P(Lp, < BE(Ly,) + 2v/Var(L,,)) < and
exp(log L (') — tE(Ly,) — zt\/Var(L,,)) E(Lp-1(n)—yns)) = £ (n) —yn®) + O(1).  (30)
2 2 . . . .
— exp (% +o(1) — at Var(Lm)) - eXp(_%) ' Using inequality (24) we obtain
n
—E(L -1 (n)—yms|) = y——n° + O(1). 31
This completes the proof. (] n = Bl m—ynry) Yrimy" W) (31)

In conclusion,
IV. PROOFS OFMAIN THEOREMS1 AND 2

5
In this section we prove our main results, namely Thed? (L=t (m)—yns) > 1) < P(Ly — E(Lp) > am® + 0(1)) ,

rems 1 and 2. We start with the large deviation results.  py identifying

)

A. Proof of Theorem 2 m= [0~ (n) — yn], e

- — Y-
We start with Theorem 2(i). By (9) we have t=1(n) m?
Observe that this case is easier since we havernow /! (n)

—1 5y -1 s
P(My > 7 (n) +yn?) = P(My > [£7(n) +yn)) and we don’t need the correcting tefth+ yn®) 2.
= P(Lj-1(nytyns) <7) . Now we can turn our attention tonoderate deviation
Observe thaE (L) = £(m) + O(1), hence giggeststidtm Theore_r(;w 2(||).Snlt is e_sientla!y the gizalme proof
pt that we considey ;25 With s, = v~ (n))

E(L¢-1(n)+yns)) = £(L7 (n) + yn®) + O(1). (22) instead ofyn’, and we assumg = O(n?") for somed’ < .

Sn — l"1‘6 —
Since the functior/(.) is convex and(0) = 0, we have for 1NUSYzigyy = O(n=™°) = o(n). If y >0, then

all real numbers: > 0 andb > 0 " P(M, > 0~ (n) + yﬁ’(;ﬁ) =P(Lm<n) (32
a n
lla+b) = la)+ Fba (23)  ith m — 1071 (n) + Y77y |- We use the estimate
lla=b) < {a)- %b- (24) f(a+b) = £(a) + £'(a)b + o(1)



whenb = o(a) whena — oco. Thus

ﬁ(éfl(n)—l-ym) =n-+ys, +o(l) . (33)

Sincey/v(m) = s, +0(1) we haven = E(L,,) —y+/v(m)+

o(1). Referring again to Theorem 6: we know that

2
—yy/v(m)+0(1

<Aexp(—%),
where the termO(1) inducing a termexp(O(#i))) =

exp(o(1)) that is absorbed byl. The proof fory < 0 follows
a similar path.

P(L, < BE(L

B. Proof of Theorem 1
We first show that for alll > § > 1
E(M,) = (7(n) + O(n°).

Indeed noticing that for any random variahle |[E(X)| <
E(IX|) = [,° P(IX| > y)dy, we setX = M, —(~*(n) to
find from Theorem 2(i)

[E(M,) — £~ (n)] <

<nd+ n5/ P(|M,, —¢71(n)| > yn®)dy = O(n®).
1

Let us now move our attention farge deviationsresults.
For a giveny, we have

Sn

ty— ) =
T
Letm = [£71(n) + ygt5y7])- We know that

P(M, > !

P(LV’I(")WWJ

n— E(Ly) = ys, + O(1)

and
= Vo(t=1(n)) = \/Var(L,,) + o(1).
Therefore
P(Mn>€ '(n )+yﬁ> -

P (Lm < E(L

m) +yV/Var(Ly) +0(1))

Assume that theO(1)| < A

P (Lm < E(Lm)+ (y+ m

P(M > ¢! +yﬁ>

since for ally’ lim,;, 00 P ( Ly, < E(Ly,) + y’\/Var(Lm)) =
®(y’) and therefore by continuity ob(x)

A

lim P —_—
Var(L,,)

m—r o0

(Lm < E(Lp)+ (y+ Var(Lm)> = ®(

y) -

Therefore

. _1 Sn —1_

"}E)HOOP (Mn >0 (n) + yig/(gl(n))) 1—®(y)

and following the same footsteps we also establish the match
ing lower bound

Sn

. —1 _ _
This proves two things: first that

—'(n)
tends to the normal distribution in probability. Secondcsi
by the moderate deviation result the normalized random vari
able (M, ¢~ (n)) L)

(M, — 0~

") has bounded moments, and then
by the V|rtue of the dominated convergence:

(0, - o)) -
i -1 n 2
n13§oE<((Mn—f ( ))W(Sn( ”)) ) -1
In other words,
Ea0)
VarMn) ~ ety

This completes the proof of our main result Theorem 1.
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