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Abstract—We show that the Lempel Ziv’78 redundancy rate
tends to a Gaussian distribution for memoryless sources. We
accomplish it by extending findings from our 1995 paper [3]. We
present a new simplified proof of the Central Limit Theorem
for the number of phrases in the LZ’78 algorithm. As in our
1995 paper, here we first analyze the asymptotic behavior of the
total path length in a digital search tree (a DST) built from
independent sequences. Then we present simplified proofs and
extend our analysis of LZ’78 algorithm to include new results
on the convergence of moments, moderate and large deviations,
and redundancy analysis.

I. I NTRODUCTION

The Lempel-Ziv compression algorithm [12] is a universal
compression scheme. It partitions the text to be compressed
into consecutive phrases such that the next phrase is the unique
largest prefix of the uncompressed text not seen before in the
compressed text. The compression code for a wordw over the
alphabetA we denote asC(w). It is known that for a large
class of sources the average compression rateρ(w) = |C(w)|

|w|

tends to the source entropy rateh when |w| → ∞. Our goal
is to prove that the redundancy rater(w) = ρ(w) − h tends
in probability and in moments to a normal distribution. In
particular, we prove that

E(r(w)) = O

(

1

logn

)

, Var(r(w)) = O

(

1

n

)

when |w| → ∞.
It is convenient to organize the phrases (dictionary) of the

Lempel-Ziv scheme in adigital search tree(DST) [6], [11]
which is really a parsing tree. The root represents an empty
phrase. The first phrase is the first symbol, say “a” which is
stored in a node appended to the root. The next phrase is either
“aa” stored in another node that branches out from the node
containing the first phrase “a” or a new symbol that is stored
in a node attached to the root. This process repeats recursively
until the text is parsed into full phrases (last incomplete phrase
is ignored). A detailed description can be found in [3], [11].

Let a text w be generated over an alphabetA, and let
T (w) be the associated digital search tree constructed by the
algorithm. Each node inT (w) corresponds to a phrase in the
parsing algorithm. LetL(w) be the (total) path length inT (w),
that is, the sum of all paths from the root to all nodes. We
should haveL(w) = |w| (if all phrases are full). If we know
the order of nodes creation in the treeT (w), then we can
reconstruct the original textw.

The compression codeC(w) is a description ofT (w), node
by node in the order of creation; each node being identified
by a pointer to its parent node in the tree and the symbol
that labels the edge linking it to the parent node. The pointer
to the kth node requires at most⌈log k⌉ nats, and the next
symbol costs⌈log |A|⌉ nats. We just assume that the total cost
is ⌈log(k|A|)⌉. The compressed code length is

|C(w)| =
M(w)
∑

k=1

⌈log(k|A|)⌉, (1)

whereM(w) is the number of full phrases needed to parsew.
Clearly,M(w) is also the number of nodes in the associated
treeT (w). Notice that the code is self-consistent and does not
needa priori knowledge of the text length, since the length is
a simple function of the nodes sequence. We conclude from
(1) that

|C(w)| ≤ M(w) (log(M(w)) + ⌈log(|A|)⌉) . (2)

In fact, different implementation may addO(M(w) to the
code length. Throughout, we shall assume that|C(w)| =
M(w) (log(M(w)) + log(|A|)).

In this paper we study the limiting distribution, large devi-
ations, and moments of the number of phrasesM(w) and the
redundancy when the text of length|w| = n is generated by
a memoryless source. We prove the Central Limit Theorem
(CLT) for the number of phrases and establish the LZ’78
code redundancy (excess of the code length over the optimal
length). The former result was already proved in our 1995
paper [3] while the latter was presented in [5]. However, the
proof of the CLT in our 1995 paper was quite complicated; it
involves a generalized analytic depoissonization over convex
cones in the complex plane. In this paper we simplified and
generalized it to present new comprehensive large deviations
results. It should be pointed out that since our 1995 paper
[3] no simpler, in fact, no new proof of CLT was presented
except the one by Neininger and Ruschendorf [8] but only
for unbiasedmemoryless sources (as in [1]). The proof of [8]
applies the so calledcontraction methodand should generalize
to biased memoryless sources.

II. M AIN RESULTS

Let n be a nonnegative integer. We denote byMn the
number of phrasesM(w) when the original textw is of fixed
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lengthn. We shall assume throughout that the text is generated
by a memoryless source overA such that the entropy rate is
h = −∑a∈A pa log pa > 0 where pa is the probability of
symbola. We also defineh2 =

∑

a∈A pa(log pa)
2 and

η = −
∑

k≥2

∑

a∈A pka log pa

1−
∑

a∈A pka
. (3)

Finally, we introduce two functions

β(m) =
h2

2h
+ γ − 1− η +∆1(logm)

+
1

m

(

logm+
h2

2h
+ γ − η −

∑

a∈A

log pa −
1

2

)

v(m) =
m

h

(

(
h2

h2
− 1) logm+ c2 +∆2(logm)

)

We prove the following theorem which improves our pre-
vious result from [3] by adding the convergence of moments.

Theorem 1. Consider the LZ’78 algorithm over a sequence
of lengthn generated by a memoryless source. Let

ℓ(m) =
m

h
(logm+ β(m)) .

The number of phrasesMn has meanE[Mn] and variance
Var(Mn) satisfying for all 12 < δ < 1

E(Mn) = ℓ−1(n) +O(nδ) (4)

=
nh

log ℓ−1(n) + β(ℓ−1(n))
+O(nδ) ∼ nh

logn
,

Var(Mn) ∼ v(ℓ−1(n))

(ℓ′(ℓ−1(n)))2
∼ (h2 − h2)n

log2 n
. (5)

Furthermore, the normalized number of phrases converges
in distribution and moments to the the standard normal
distributionN(0, 1). More precisely, for any given realx:

lim
n→∞

P (Mn < E(Mn) + x
√

Var(Mn)) = Φ(x), (6)

where

Φ(x) =
1√
2π

∫ x

−∞

e−t2/2dt.

In addition, for all nonnegativek

lim
n→∞

E





(

Mn −E(Mn)
√

Var(Mn)

)k


 = µk (7)

whereµk = 0 for k is odd, andµk = k!
2k/2( k

2 )!
for k even.

We also have large and moderate deviations results. To the
best of our knowledge these results are new (see also [3], [7]).

Theorem 2. Consider the LZ’78 algorithm over a sequence
of lengthn generated by a memoryless source.
(i) [Large Deviations]. For all 1

2 < δ < 1 there existε > 0,
B > 0 and β > 0 such that for ally > 0

P (|Mn−E(Mn)| > ynδ) ≤ A exp(−βnε y

(1 + n−εy)δ
). (8)

(ii) [ Moderate Deviation]. Letδ < 1
6 andA > 0. There exists

B > 0 such that for all non-negative real numberx < Anδ:

P (|Mn −E(Mn)| ≥ x
√

Var(Mn)) ≤ Be−
x2

2 .

As direct consequence of these large deviations result,
we conclude that the average compression rate converges
to the entropy rate. Furthermore, our large deviation results
allow us also to estimate the average redundancyE[rn] =
E[C(w)]/|w| − h and its limiting distribution when|w| = n.

Corollary 1. The redundancy ratern for sequences of length
n satisfies for all12 < δ < 1:

E(rn) =
E(Mn logMn +Mn log(|A|))

n
− h

= h
log(|A|)− β(ℓ−1(n))

log ℓ−1(n) + β(ℓ−1(n))
+O(nδ−1)

∼ h
log(|A|) − β

(

h n
log n

)

logn
,

and

Var(rn) ∼
(h2 − h2)

n
.

Furthermore, the limiting distributionrn−E(rn)√
Var(rn)

converges in

distribution and moments toN(0, 1).

The redundancy average estimate was first proved in [5],
[10] but we provide a new proof. The limiting distribution of
the redundancy is new.

III. F ROM LEMPEL-ZIV TO DIGITAL SEARCH TREE

In this section we make a connection between the Lempel-
Ziv algorithm and digital search trees using a renewal argu-
ment [2].

Our goal is to derive an estimate on the probability distri-
bution of Mn. We assume that our original text is a prefix
of an infinite sequenceX generated by a memoryless source
over the alphabetA. We build a Digital Search Tree (DST) by
parsing the infinite sequenceX up to themth phrase. Thus
the DST is constructed overm strings (phrases).

Let Lm be the total path length in the associated DST after
insertingm (independent) strings. The quantityMn is exactly
the number of strings needed to be inserted to increase the path
length of the associated DST ton. This observation leads to
the following identity valid for all integersn andm:

P (Mn > m) = P (Lm < n) . (9)

We now use generating functions to find a functional
equation for the distribution ofLm. Let Lm(u) = E(uLm)
be the moment generating function ofLm. In the following,k
is a tuple inN|A| andka for a ∈ A is the component ofk for
symbola. Since inserted strings are independent, we conclude
that

Lm+1(u) = um
∑

k∈N|A|

(

m

k

)

∏

a∈A

pka
a Lka(u), (10)



where
(

m
k

)

= m!∏
a∈A ka!

. Next, we introduce the exponential

generating functionL(z, u) =
∑

m
zm

m!Lm(u) leading to

∂

∂z
L(z, u) =

∏

a∈A

L(pauz, u) . (11)

It is clear from the construction thatL(z, 1) = ez, since
Lm(1) = 1 for all integerm. Via the cumulant formula, we
also know that for all integersm and fort complex sufficiently
small for whichlog(Lm(et) exists, we have

log(Lm(et)) = tE(Lm) +
t2

2
Var(Lm) +O(t3) . (12)

Notice that the termO(t3) is not uniform inm. In passing
we remark thatE(Lm) = L′

m(1) and Var(Lm) = L′′
m(1) +

L′
m(1)− (L′

m(1))2.
In [3] we proved the following result that we adopt here.

Theorem 3. Consider a digital search tree built overm
independent strings. Then

E(Lm) = ℓ(m) +O(1), Var(Lm) = v(m).

We are aiming at showing that the limiting distribution of
the path length is normal form → ∞. In order to accomplish
it, we need one technical result presented next to be proved
only in the final version of this paper.

Theorem 4. For all δ > 0 and for all δ′ < δ there exists
ε > 0 such that for|t| ≤ ε: logLm(etm

−δ

) exists, and

logLm(etm
−δ

) = O(m),

logLm(etm
−δ

) =
t

mδ
E(Lm)+

t2

2m2δ
Var(Lm)+t3O(m1−3δ′ ) .

Provided Theorem 4 is true, we are ready to prove our main
results concerning the path lengthLm.

Theorem 5. Consider a digital search tree built overm
sequences generated by a memoryless source. The random
variable Lm−E(Lm)√

VarLm

tends to a normal distribution with mean

0 and variance1 in probability and in moments. More pre-
cisely, for any given real numberx:

lim
m→∞

P (Lm < E(Lm) + x
√

Var(Lm)) = Φ(x), (13)

and for all nonnegative integerk and ε > 0

E

(

(

Lm − E(Lm)√
VarLm

)k
)

= µk +O(m− 1
2+ε) (14)

whereµk = 0 for k odd andµk = k!
2k/2( k

2 )!
for k even.

Proof: We apply Levy’s continuity theorem or equiva-
lently Goncharov’s result [11] asserting thatLm−E(Lm)√

VarLm

tends

to the standard normal distribution if for complexτ

Lm

(

exp

(

τ
√

Var(Lm)

))

e−τE(Lm)/
√

Var(Lm) → eτ
2/2.

(15)

To prove it we apply several times our main technical result
Theorem 4 witht = τmδ√

VarLm

= O(εm−δ). For some1
2 <

δ < 1 andδ′ > δ such that1− 3δ′ < 0, we obtain

logLm

(

exp

(

τ
√

Var(Lm)

))

=
τE[Lm]√

VarLm

+
τ2

2
+O(m− 1

2+ε′)

(16)
for someε′ > 0. Thus by (15) the normality result follows.

To establish the convergence in moments, we use (16) in
the Cauchy formula applied on a circle of radiusR encircling
the origin, that is,

E

(

(

Lm −E(Lm)√
VarLm

)k
)

=
1

2iπ

∮

dτ

τk+1
Lm(exp(

τ
√

Var(Lm)
))e−τ/

√
Var(Lm)

=
1

2iπ

∮

dτ

τk+1
exp(

τ2

2
)(1 +O(m− 1

2+ε′)

= µk +O(R−k exp(
R2

2
)m− 1

2+ε′).

This completes the proof.
We also have large deviation results for the path length

presented next.

Theorem 6. Consider a digital search tree built overm
sequences generated by a memoryless source.
(i) [Large deviation]. Let 1

2 < δ < 1. Then there existε > 0,
B > 0, andβ > 0 such that for allx ≥ 0:

P (|Lm − E(Lm)| > xmδ) ≤ B exp(−βmεx). (17)

(ii) [ Moderate deviation]. Let δ < 1
6 andA > 0. Then there

existsB > 0 such that for non-negative real numberx < Anδ:

P (|Lm −E(Lm)| ≥ x
√

Var(Lm)) ≤ Be−
x2

2 (18)

asm → ∞.

Proof: We apply the Chernov bound. We taket as being
a non negative real number. We have the identity:

P
(

Lm > E(Lm) + xmδ
)

= P
(

etLm > e(E(Lm)+xmδ)t
)

.

(19)
Using Markov’s inequality we find

P (etLm > e(E(Lm)+xmδ)t) ≤ E(etLm)

e(E(Lm)+xmδ)t

= Lm(et) exp(−tE(Lm)− xmδt) .

Here we takeδ′ = δ+1/2
2 andε = δ′ − 1

2 . Let fix t = βm−δ′

such that the estimatelogLm(et) = tE(Lm) +O(t2m1+ε) is
valid. Therefore we have

logLm(et)− tE[Lm] = O(m−ε), (20)

which tends to zero. We complete the proof by noticing that
tmδx = βmεx.



To obtain an upper bound we follow the same route only
considering−t instead oft. Indeed,

P
(

Lm < E(Lm)− xmδ
)

= P
(

e−tLm > e−(E(Lm)−xmδ)t
)

≤ Lm(e−t) exp(tE(Lm)− xmδt).

To prove part (ii) ofmoderate deviation, we apply again
Theorem 4 witht = xmδ√

VarLm

leading to

logLm

(

exp(
x

√

Var(Lm)

)

−E(Lm)
x

√

Var(Lm)
=

x2

2
+o(1).

(21)
Indeed, from Theorem 4 withδ < 1

6 andδ′ < δ

logLm(exp(
x

√

Var(Lm)
)) = logLm(etm

−δ

)

= E(Lm)
x

√

Var(Lm)
+

x2

2Var(Lm)
Var(Lm)

+
x3m3δ

(Var(Lm))
3
2

O(m1−3δ′ ).

Observe that the error term is at most
O(m1− 3

2+3δ−3δ′(logm)−3) = o(1), as needed. Therefore, by
Markov inequality for allt > 0,

P (Lm < E(Lm) + x
√

Var(Lm)) ≤

≤ exp(logLm(et)− tE(Lm)− xt
√

Var(Lm)).

Taking t as above and applying the estimate (21), we find

P (Lm < E(Lm) + x
√

Var(Lm)) ≤
exp(logLm(et)− tE(Lm)− xt

√

Var(Lm))

= exp

(

x2

2
+ o(1)− xt

√

Var(Lm)

)

∼ exp(−x2

2
) .

This completes the proof.

IV. PROOFS OFMAIN THEOREMS1 AND 2

In this section we prove our main results, namely Theo-
rems 1 and 2. We start with the large deviation results.

A. Proof of Theorem 2

We start with Theorem 2(i). By (9) we have

P (Mn > ℓ−1(n) + ynδ) = P (Mn > ⌊ℓ−1(n) + ynδ⌋)
= P (L⌊ℓ−1(n)+ynδ⌋ < n) .

Observe thatE(Lm) = ℓ(m) +O(1), hence

E(L⌊ℓ−1(n)+ynδ⌋) = ℓ(ℓ−1(n) + ynδ) +O(1). (22)

Since the functionℓ(.) is convex andℓ(0) = 0, we have for
all real numbersa > 0 andb > 0

ℓ(a+ b) ≥ ℓ(a) +
ℓ(a)

a
b, (23)

ℓ(a− b) ≤ ℓ(a)− ℓ(a)

a
b. (24)

Applying inequality (23) toa = ℓ−1(n) andb = ynδ we arrive
at

n−E(L⌊ℓ−1(n)+ynδ⌋) ≤ −y
n

ℓ−1(n)
nδ +O(1). (25)

Thus

P (L⌊ℓ−1(n)+ynδ⌋ < n) ≤ P (Lm−E(Lm) < −xmδ+O(1)) ,
(26)

by identifying

m = ⌊ℓ−1(n) + ynδ⌋, x =
n

ℓ−1(n)

nδ

mδ
y.

We now apply several times Theorem 6 from the previous
section regarding the path lengthLm. That is, for allx > 0
and for allm, there existε > 0 andA such that

P (Lm −E(Lm) < xmδ) < Ae−βxmε

. (27)

In other words,

P (Lm−E(Lm) < xmδ+O(1)) ≤ Ae−βxmε+O(nε−δ)) ≤ A′e−βxmε

for someA′ > A we find

P (Mn > ℓ−1(n) + ynδ) ≤ A′ exp(−βxmε). (28)

We know that ℓ−1(n) = Ω( n
logn ). Thus x =

O((log n)1−δ) y
(1+nδ−1 logny)δ ≤ β′ nε′y

(1+yn−ε′ )δ
for some

0 < ε′ < ε andβ′ > 0.
In a similar fashion, we have

P (Mn < ℓ−1(n)− ynδ) = P (L⌊ℓ−1(n)−ynδ⌋ > n) (29)

and

E(L⌊ℓ−1(n)−ynδ⌋) = ℓ(ℓ−1(n)− ynδ) +O(1). (30)

Using inequality (24) we obtain

n−E(L⌊ℓ−1(n)−ynδ⌋) ≥ y
n

ℓ−1(n)
nδ +O(1). (31)

In conclusion,

P (L⌊ℓ−1(n)−ynδ⌋ > n) ≤ P (Lm −E(Lm) > xmδ +O(1)) ,

by identifying

m = ⌊ℓ−1(n)− ynδ⌋, x =
n

ℓ−1(n)

nδ

mδ
y.

Observe that this case is easier since we have nowm < ℓ−1(n)
and we don’t need the correcting term(1 + ynε)−δ.

Now we can turn our attention tomoderate deviation
expressed in Theorem 2(ii). It is essentially the same proof
except that we considery sn

ℓ′(ℓ−1(n)) with sn =
√

v(ℓ−1(n))

instead ofynδ, and we assumey = O(nδ′ ) for someδ′ < 1
6 .

Thusy sn
ℓ′(ℓ−1(n)) = O(n

1
2+δ) = o(n). If y > 0, then

P (Mn > ℓ−1(n) + y
sn

ℓ′(ℓ−1(n))
) = P (Lm < n) (32)

with m = ⌊ℓ−1(n) + y sn
ℓ′(ℓ−1(n))⌋. We use the estimate

ℓ(a+ b) = ℓ(a) + ℓ′(a)b+ o(1)



whenb = o(a) whena → ∞. Thus

ℓ(ℓ−1(n) + y
sn

ℓ′(ℓ−1(n))
) = n+ ysn + o(1) . (33)

Since
√

v(m) = sn+O(1) we haven = E(Lm)−y
√

v(m)+
o(1). Referring again to Theorem 6: we know that

P (Lm < E(Lm)− y
√

v(m) +O(1)) ≤ A exp(−y2

2
),

where the termO(1) inducing a termexp(O( y2

v(m) )) =

exp(o(1)) that is absorbed byA. The proof fory < 0 follows
a similar path.

B. Proof of Theorem 1

We first show that for all1 > δ > 1
2

E(Mn) = ℓ−1(n) +O(nδ).

Indeed, noticing that for any random variableX : |E(X)| ≤
E(|X |) =

∫∞

0
P (|X | > y)dy, we setX = Mn − ℓ−1(n) to

find from Theorem 2(i)

|E(Mn)− ℓ−1(n)| ≤

≤ nδ + nδ

∫ ∞

1

P (|Mn − ℓ−1(n)| > ynδ)dy = O(nδ).

Let us now move our attention tolarge deviations results.
For a giveny, we have

P (Mn > ℓ−1(n) + y
sn

ℓ′(ℓ−1(n))
) =

P (L⌊ℓ−1(n)+y sn
ℓ′(ℓ−1(n))

⌋ < n).

Let m = ⌊ℓ−1(n) + y sn
ℓ′(ℓ−1(n))⌋. We know that

n− E(Lm) = ysn +O(1)

and
sn =

√

v(ℓ−1(n)) =
√

Var(Lm) + o(1).

Therefore

P

(

Mn > ℓ−1(n) + y
sn

ℓ′(ℓ−1(n))

)

=

P
(

Lm < E(Lm) + y
√

Var(Lm) +O(1)
)

.

Assume that the|O(1)| ≤ A

P

(

Lm < E(Lm) + (y +
A

√

Var(Lm)
)
√

Var(Lm)

)

≥

P

(

Mn > ℓ−1 + y
sn

ℓ′(ℓ−1(n))

)

since for ally′ limm→∞ P
(

Lm < E(Lm) + y′
√

Var(Lm)
)

=

Φ(y′) and therefore by continuity ofΦ(x)

lim
m→∞

P

(

Lm < E(Lm) + (y ± A
√

Var(Lm)

√

Var(Lm)

)

= Φ(y) .

Therefore

lim
m→∞

P

(

Mn > ℓ−1(n) + y
sn

ℓ′(ℓ−1(n))

)

= 1− Φ(y)

and following the same footsteps we also establish the match-
ing lower bound

lim
m→∞

P (Mn < ℓ−1(n)− y
sn

ℓ′(ℓ−1(n))
) = Φ(y)

This proves two things: first that

(Mn − ℓ−1(n))
ℓ′(ℓ(−1(n))

sn
tends to the normal distribution in probability. Second, since
by the moderate deviation result the normalized random vari-
able(Mn−ℓ−1(n)) ℓ

′(ℓ(−1(n))
sn

has bounded moments, and then
by the virtue of the dominated convergence:

lim
n→∞

E

(

(Mn − ℓ−1(n))
ℓ′(ℓ(−1(n))

sn
)

)

= 0,

lim
n→∞

E

(

(

(Mn − ℓ−1(n))
ℓ′(ℓ(−1(n))

sn
)

)2
)

= 1.

In other words,

Var(Mn) ∼
v(ℓ−1(n))

(ℓ′(ℓ−1(n)))2
.

This completes the proof of our main result Theorem 1.
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