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Abstract—We study the minimax redundancy of universal
coding for large alphabets over memoryless sources and present
two main results: We first complete studies initiated in Orlitsky
and Santhanam [11] deriving precise asymptotics of the minimax
redundancy for all ranges of the alphabet sizes. Second, we
consider the minimax redundancy of a source model in which
some symbol probabilities arefixed. The latter model leads to
an interesting binomial sum asymptotics with super-exponential
growth functions. Our findings could be used to approximate
numerically the minimax redundancy for various ranges of the
sequence length and the alphabet size. These results are obtained
by analytic techniques such as tree-like generating functions and
the saddle point method.

I. I NTRODUCTION

Many applications of universal compression concern
sources such as speech and image whose alphabets are large,
often comparable to the length of the source sequences. Yet
most analyses of universal schemes deal with finite, possibly
binary, alphabets with exception of [1], [8], [10], [12], [11],
[13]. In this work, we study the worst-case minimax redun-
dancy (regret) for unbounded alphabets and present precise
asymptotic results as the size of the alphabet and the lengthof
the source sequence grow to infinity. To recall, the redundancy
of universal codes for a class of sources determines by how
much the actual code length exceeds the optimal code length.
In the minimax scenario one designs the best code for the
source with the worst redundancy. Such minimax redundancy
comes in two flavors: average minimax or worst case minimax.
We investigate here the latter.

A fixed-to-variable codeCn : An → {0, 1}∗ is an injective
mapping from the setAn of all sequences of lengthn over
the finite alphabetA of size m = |A| to the set{0, 1}∗
of all binary sequences. A sourceP generates a sequence
of length n, denoted asxn

1 ∈ An, and we writeL(Cn, xn
1 )

for the code length forxn
1 . The source entropyHn(P ) =

−
∑

xn
1

P (xn
1 ) log P (xn

1 ) is the absolute lower bound on the
expected code length, wherelog := log2 throughout the paper
will denote the binary logarithm. Thepointwise redundancyis

Rn(Cn, P ; xn
1 ) = L(Cn, xn

1 ) + log P (xn
1 ).

In practice, one can only hope to have some knowledge about a
family of sourcesS that generates real data (e.g., memoryless
sourcesM0). Following Davisson [3] and Shtarkov [14] we
define the worst case (maximal) minimax redundancyR∗

n(S)

for family S as follows

R∗
n(S) = min

Cn

sup
P∈S

max
xn
1

[L(Cn, xn
1 ) + log P (xn

1 )] . (1)

Our goal is to derive precise results for the worst case
minimax redundancyR∗

n(M0) for memoryless sourcesM0

when the alphabet sizem varies withn. We also study this
minimax redundancy when some of the parameters arefixed.
Suchconstrainedfamilies of sources arise in applications in
which we do have partial knowledge of the data generating
mechanism and, consequently, we want to pay a redundancy
corresponding to the smallest possible number of parameters
(see, e.g., [17] for another example of a constrained family).

The worst case minimax redundancy,R∗
n(S), for a family

of sourcesS was studied by Shtarkov [14] who found that,
ignoring the integer length constraint (cf. [4]),

R∗
n(S) = log


∑

xn
1

sup
P∈S

P (xn
1 )


 .

ForS = M0, we writedn,m := log Dn,m(M0) for R∗
n(M0),

that is,

dn,m = log Dn,m(M0) = log


∑

xn
1

sup
P∈M0

P (xn
1 )


 .

In this paper, we first consider the minimax redundancy over
the alphabetA ∪ B with |A| = m and |B| = M , where the
symbol probabilities ofB are fixed whilem may be large.
We shall denote such a family of constrained (memoryless)
sources byM̃0.1 We also writedn,m,M = log Dn,m,M , for
such a minimax redundancy, and prove

Dn,m,M =

n∑

k=0

(
n

k

)
pk(1 − p)n−kDk,m (2)

wherep = 1 − P (B) andDk,m = 2dk,m . In order to estimate
it asymptotically we need a quite precise understanding of the
asymptotic behavior ofDn,m for largen andm.

The minimax redundancydn,m for large alphabet sizem
was studied by Orlitsky and Santhanam [11] who established
leading term asymptotics form = o(n) and n = o(m), as

1Note that the families of sourcesM0 andM̃0 are defined over different
alphabets. In addition, the familỹM0 is constrained in that the probabilities
of symbols inB take fixed values.



well as bounds form = Θ(n). In this paper, using techniques
of analytic information theory, in Theorem 1 we first complete
the study of [11] and provide precise asymptotics for all ranges
of m. Then, in Theorem 2, we use this precise asymptotics
to deal with the binomial sum (2) and extract asymptotics of
dn,m,M for largen and unboundedm.

The study of the minimax redundancy overA∪B expressed
in (2) leads to an interesting problem for the so calledbinomial
sumsdefined in general as

Sf (n) =
∑

k

(
n

k

)
pk(1 − p)n−kf(k),

where0<p<1 is a fixed probability andf is a given function.
In general, asymptotics off do not imply an asymptotic expan-
sion forSf (n). In [5], [9], asymptotics ofSf (n) were derived
for the polynomiallygrowing functionf(x) = O(xb). In our
case, whenm grows with n, we encounter sub-exponential,
exponential and super-exponential functionsf ; therefore, we
need more precise information aboutf to extract precise
asymptotics ofSf (n). Our second main result, Theorem 2,
presents asymptotics of (2). Our findings are obtained by
analytic methods of analysis of algorithms [7], [16].

II. M AIN RESULTS

Let us consider the minimax redundancyDn,m,M =

Dn,m,M (M̃0) over the alphabetA ∪ B, where|A| = m and
|B| = M , for a class of constrained (some parameters are
fixed) memoryless sources̃M0. Specifically, the probabilities
of symbols inA, denoted byp1, . . . , pm, are allowed to vary
(unknown), while the probabilitiesq1, . . . , qM of the symbols
in B are fixed (known). Furthermore,q = q1 + · · · + qM and
p = 1− q. We assume that0 < q < 1 is fixed (independent of
n). To simplify our notation, we also writep = (p1, . . . , pm)
andq = (q1, . . . , qM ).

Assume that a memoryless source generates a sequence of
lengthn that, for simplicity, we denote asx := xn

1 ∈ (A∪B)n.
The minimax redundancy relative tõM0 takes the form

Dn,m,M =
∑

x∈(A∪B)n

sup
p

P (x) =
∑

x∈(A∪B)n

P̂n(x), (3)

whereP̂n(x) = sup
p

P (x) is the maximum-likelihood (ML)
estimator ofP (x) overM̃0. Our goal is to derive asymptotics
of Dn,m,M for largen and unboundedm.

Let us simplify (3). Considerx ∈ (A∪B)n and assume that
i symbols are fromB and the remainingn − i from A. We
denote byz ∈ Bi the subsequence ofx consisting ofi symbols
from B. Similarly, y ∈ An−i is a subsequence ofx over A.
For any such pair(y, z), there are

(
n
i

)
ways of interleaving

them, all leading to the same empirical probability. The ML
probability P̂n(x) of x can be proved to be

P̂n(x) = (1 − q)n−iP̂n−i(y)Pi(z),

that is, it is the product of the probability of the subsequence
y under ML parameters times the (given) probabilityPi(z) of

the subsequences in alphabetB. In summary, using (3),

Dn,m,M =
∑

x∈(A∪B)n

P̂n(x)

=

n∑

i=0

(
n

i

) ∑

y∈An−i

∑

z∈Bi

(1 − q)n−iP̂n−i(y)Pi(z)

=

n∑

i=0

(
n

i

)
(1 − q)n−iqi

∑

y∈An−i

P̂n−i(y)

since
∑

z∈Bi Pi(z) = qi. But Dn−i,m =
∑

y∈An−i P̂n−i(y),
which finally leads to Equation (2). This expression is our
starting point to estimateDn,m,M . For this we need a robust
asymptotic expression forDn,m, that is, the minimax redun-
dancy relative toM0 for large m and a wide range ofn,
discussed next.

In view of the above, we focus now on finding asymptotics
of Dn,m(M0) for large m and n → ∞. Recall that this
minimax redundancy is also given by [15], [4]

Dn,m =
∑

k1+···+km=n

(
n

k1, . . . , km

) (
k1

n

)k1

· · ·
(

km

n

)km

,

(4)
whereki is the number of times symboli ∈ A occurs in a
string of lengthn.

It is argued in [15] that such a sum can be analyzed through
the so–calledtree generating function. Let us define

B(z) =

∞∑

k=0

kk

k!
zk =

1

1 − T (z)
, (5)

where T (z) satisfies T (z) = zeT (z) and also T (z) =∑∞
k=1

kk−1

k! zk (cf. [16]). Defining a new tree-like generating
function, namely

Dm(z) =
∞∑

n=0

nn

n!
Dn,mzn,

we notice that (4) and the convolution formula for generating
functions (cf. [16]) immediately implies

Dm(z) = [B(z)]m .

Let [zn]f(z) denote the coefficient ofzn in f(z). Then, we
finally arrive at

Dn,m =
n!

nn
[zn] [B(z)]

m
. (6)

We can re-write it in a simpler form by definingβ(z) =
B(z/e) and applying Stirling’s formula, leading to

Dn,m =
√

2πn
(
1 + O(n−1)

)
[zn] [β(z)]

m (7)

since[zn]β(z) = e−n[zn]B(z).
We first recall the asymptotic expansion ofDn,m(M0) for

fixedm. To extract asymptotics for this case, we observe [2]
that the singular expansion ofB(z) around its singularityz =
e−1 is

B(z) =
1√

2(1 − ez)
+

1

3
−

√
2

24

√
(1 − ez) + +O((1 − ez)).



Then, an application of the Flajolet and Odlyzkosingularity
analysis[7], [16] yields [15] (cf. also [18], [19])

dn,m(M0) := log Dn,m(M0) =
m − 1

2
log

(n

2

)

+ log

( √
π

Γ(m
2 )

)
+

Γ(m
2 )m

3Γ(m
2 − 1

2 )
·
√

2√
n

+ O

(
1

n3/2

)
(8)

for largen and fixedm, whereΓ is the Euler gamma function.
Let us now focus on the asymptotic expansion ofDn,m

when m grows with n. In this case, the singularity analysis
does notapply, and rather one must use thesaddle point
method[7], [16] for (7) since form large the factorβm(z)
grows.

We next summarize our first main findings delaying the
proof until the next section.

Theorem 1:For memoryless sourcesM0 over an m-ary
alphabet the minimax redundancy behaves asymptotically as
follows:
(i) For m = o(n)

dn,m(M0) =
m − 1

2
log

n

m
+

m

2
log e + o(m). (9)

(ii) For m = αn, definez0 as the smallest root of

z0
β′(z0)

β(z0)
=

1

α
. (10)

Then,

dn,m(M0) = n log

(
βα(z0)

z0

)
−1

2
log(αA(z0)+z−2

0 )+O(1/n),

(11)
where

A(z) =

[
β′(z)

β(z)

]′
=

β′′(z)β(z) − [β′(z)]2

β2(z)
.

(iii) For n = o(m)

dn,m(M0) = n log
m

n
− log e + O(1/n). (12)

Remark 1. The leading terms of the asymptotic expansions
for m = o(n) andn = o(m) (i.e., (9) and (12)) were derived
by Orlitsky and Santhanam in [11]. For the casem = αn,
the methodology of [11] allowed only to extract the growth
rate, i.e.,dn,m = Θ(n) but not the constant in front ofn.
Numerical computations reveal that this constant, which is
specified in (10) and (11), is well approximated by1.2α0.6

for 0.1 < α < 10 (e.g.,0.78 for α = 0.5 and1.19 for α = 1).

Remark 2. For the casem = o(n) if we additionally know
that m = o(

√
n), then we can improve (9) to

dn,m(M0) =
m − 1

2
log

n

m
+

m

2
log e − 1

2
+ O

(
m√
n

)
.

Now, we are in a position to discuss the second main topic
of this paper, namely, asymptotic expansion of the minimax
redundancyDn,m,M relative toM̃0, given by Equation (2). As
mentioned, sums like (2) are known as thebinomial sum[5],

[9]. If Dk,m = 2dk,m has a polynomial growth, (i.e.,Dn,m =
2dn,m = O(n(m−1)/2) when m is fixed), then we can use
the asymptotic expansion derived in [5], [9] to conclude that
Dn,m,M ∼ Dnp,m. However, whenm varies withn as in our
study, the problem is much more interesting. In particular,the
polynomial growth ofDn,m,M does not hold any more and we
need to compute asymptotics anew. We summarize our second
main result in the theorem below whose proof is sketched in
the next section.

Theorem 2:Consider a family of memoryless sources̃M0

over the(m+M)-ary alphabetA∪B with fixed probabilities
q1, . . . , qM of the symbols inB, such thatq = q1 + . . . qM is
bounded away from0 and1. Let p = 1−q. Then, the minimax
redundancydn,m,M = log Dn,m,M takes the form
(i0) If m is fixed, then

dn,m,M = dnp,m + O(1/n) (14)

=
m − 1

2
log

(np

2

)
+ log

( √
π

Γ(m
2 )

)
+ O(1/n),

wherednp,m is given by (8) withn replaced bynp.

(i) If mn = O(nδ), where we writemn to explicitly show the
dependence ofm on n, then, for0 < δ < 1/2,

dn,m,M =
mnp − 1

2
log

(
np

mnp

)
+ O

(
log2 n

n1−2δ

)
, (15)

while for 1/2 ≤ δ < 1,

dn,m,M =
mnp

2
log

(
np

mnp

)
+ O

(
n2δ−1 log n

)
. (16)

(ii) If mn = αn, then

dn,m,M = n log

(
βα(z0)(1 − p)

z0
+ p

)
(17)

−1

2
log(αA(z0) + z−2

0 ) + O(1/n)

wherez0 andA(z) are defined in Theorem 1(ii).
(iii) Let n = o(m) and let mk

k ≤ mn

n for all k ≤ n. Then,

dn,m,M = n log
(mn

n

)
+ n log p + O(max{n2/m, 1}) (18)

for largen.
In passing, let us explain intuitively the asymptotics behind

Theorem 2. As discussed above, we deal here with the
binomial sum (2) that in general can be written as

Sf (n) =
∑

k

(
n

k

)
pk(1 − p)n−kf(k)

for a general functionf . In our case,f(k) = Dk,m. Observe
that whenf grows polynomially, the maximum under the sum
occurs aroundk = np, and to find asymptotics we need to sum
only within the range±√

n aroundnp. This basically explains
case (i). Whenm = αn, the growth off(k) = Dk,m = O(Ak)
is exponential, and we need all the terms in order to recover the
asymptotics. Finally, for case (iii) the functionf(k) = Dk,m

grows super-exponentially, and the asymptotics of the binomial
sum are determined by the last term, that is,k = n.



III. A NALYSIS

In this section we prove Theorems 1 and 2 using analytic
tools (Theorem 1) and elementary analysis (Theorem 2).

A. Proof of Theorem 1

We first prove Theorem 1. The starting point is Equation (6),
which we re-write as follows:

Dn,m =
n!

nn
[zn][B(z)]m = en n!

nn
[zn][B(z/e)]m

=
√

2πn(1 + O(1/n))[zn][β(z)]m,

where we used Stirling’s formula an definedβ(z) := B(z/e).
Thus, it suffices to extract the coefficient atzn of βm(z).

In order to find asymptotics of[zn][β(z)]m we apply the
Cauchy coefficient formula [7], [16], that is,

[zn][β(z)]m =
1

2πi

∮
βm(z)

zn+1
dz

=
1

2πi

∮
exp[m lnβ(z) − (n + 1) ln z]dz

=
1

2πi

∮
eh(z)dz,

where
h(z) = m lnβ(z) − (n + 1) ln z.

Sincem is large, we apply the saddle point method [7], [16]
to evaluate asymptotically the integral. Letz0 be the unique
root of h′(z0) = 0, that is,

z0
β′(z0)

β(z0)
=

n + 1

m
. (19)

Observe that Taylor’s expansion ofh(z) is

h(z) = h(z0) +
1

2
(z − z0)

2h′′(z0) + O((z − z0)
3)

where
h′′(z0) = mA(z0) + n + 1/z2

0 ,

and

A(z) =

[
β′(z)

β(z)

]′
.

To evaluate the integral we split it into two parts,I1 and
I2, using the substitutionz = z0 + eiθ:

I(n) =
1

2πi

∮
eh(z)dz =

1

2π

∫ π

−π

eh(z0+eiθ)dθ

=
1

2π

∫ θ0

−θ0

eh(z0+eiθ)dθ +
1

2π

∫

−θ/∈[−θ0,θ0]

eh(z0+eiθ)dθ

= I1(n) + I2(n).

We chooseθ0 = n−2/5. In order to assess the second integral
I2(n) we observe, as in [6], that forθ /∈ [−θ0, θ0]

|β(eiθ)| ≤ |β(eiθ0)|
leading to

I2(n) =
1

2π

∫

−θ/∈[−θ0,θ0]

eh(z0+eiθ)dθ = O
(
I1(n)e−cn1/5

)
.

Thus, we are left with evaluating the integralI1(n). The
standard Laplace’s method and Gaussian integral lead to our
final formula

I1(n) =
√

2πn
1√

2π|h′′(z0)|
exp [m lnβ(z0) − (n + 1) ln z0]

×
(

1 + O

(
1

min(m, n)

))
. (20)

To complete the proof of Theorem 1 we need to estimate
z0 for various ranges ofm andn.

CASE: m = o(n).
In this case, it is easy to see that

z0 = 1 − m

2n + m
(1 − O(

√
m/n))

and

h(z0) =
m

2
log

n

m
+

m

2
log e + o(m)

√
2πn

2πh′′(z0)
=

1√
2n/m(1 + O(m/n))

.

This proves Theorem 1(i) after substituting in (20).

CASE: n = αm.
In this case,z0 is an asymptotic solution of (10), and the

polynomial factor of (20) becomes
√

2πn

2πh′′(z0)
=

1√
αA(z0) + z−2

0

+ O(1/n).

This completes the proof of Theorem 1(ii).

CASE: n = o(m).
In this casez ≈ 0. More precisely,

z0 =
(n + 1)e

m
(1 + O(n/m)),

and then

h(z0) = n log(m/n) + log(m/n) − log e + O(1/n).

Finally, after somewhat long calculations, we arrive at

log
√

n/h′′(z0) = log(n/m) + O(n/m).

Putting everything together, we prove Theorem 1(iii).

B. Sketch of the Proof of Theorem 2

In order to prove Theorem 2 we need to evaluate the
binomial sum

Sf (n) =
∑

k

(
n

k

)
pk(1 − p)n−kf(k) (21)

for f(k) = Dk,mk
that grows faster than any polynomial

for m → ∞. However, for completeness, we first present a
simple derivation of asymptotics for polynomially (and sub-
exponentially) growingf proving Theorem 2(i0) and Theo-
rem 2(i).



CASE: mn = o(n).
For this case, we only sketch the proof. A complete proof for

sub-exponential growth (i.e.,Dn,m = O(eA
√

n)) is available
through depoissonization along the same line of arguments as
in [9].

Let us first assume thatf(n) = Dn,m for fixed m, that is,
f(n) = Cn(m−1)/2(1 + O(1/n)), where in the sequelC is
used to denote arbitrary constants that take appropriate values
in each use. Expandf(x) aroundx = np to find

f(x) = f(np) + (x − np)f ′(np) +
(x − np)2

2
f ′′(np′)

for some0 < p′ < p. Observe now thatSf (n) can be viewed
as Sf (n) = E[f(X)] where X is a binomially distributed
random variable. Thus

Sf (n) = E[f(X)] = f(np) +
Var (X)

2
f ′′(np′)

= f(np) + O(nf ′′(n)) (22)

providednf ′′(n) = o(f(np)). The last condition is obviously
satisfied form fixed, and hence Theorem 2(i0) holds. A more
detailed analysis can be found in [5], [9].

Let us now consider part (i) of Theorem 2, that is we assume
that m = O(nδ) for some0 < δ < 1. Notice thatf(k) =

Dk,mk
= Ck

1−δ
2

(kδ−1)(1 + O(1/n)). Then

f ′′(np) = O

(
f(np)

log2 n

n2(1−δ)

)
,

and Theorem 2(i) follows for0 < δ < 1/2. Assuming now
1/2 < δ < 1, we need a different approach since the error
term O((log2 n)/n1−2δ) dominates. Observe that we always
have

1√
2πn

f(np) ≤ Sf (n) ≤ n max
k

((
n

k

)
pk(1 − p)n−kf(k)

)
.

It is easy, however cumbersome, to compute the maximum of
the right-hand side. Applying Stirling’s formula, we find out
that it is achieved at

k∗ = np + O(nδ log n)

and then the above inequalities become

1√
2πn

f(np) ≤ Sf (n) ≤ C
√

nf(np)O(n2δ−1 log n)

which suffices to prove (16) of Theorem 2(i).

CASE: m = αn.
This case is easy since

f(n) = Dn,mn =

(
βα(z0)

z0

)n √
αA(z0) + z−1

0 (1+O(1/n)).

This directly implies Theorem 2(ii).

CASE: n = o(m).
Actually, in this case the proof is quite simple. Observe that

f(n) = Dn,m = C
(mn

n

)n

(1 + O(1/n)).

Since we requiremk

k ≤ mn

n for all k ≤ n we find

pnDn,mn ≤
n∑

k=1

(
n

k

)
pkqn−kDk,mk

≤ C

n∑

k=1

(
n

k

) (
p
mn

n

)k

qn−k = C
(
p
mn

n
+ q

)n

which completes the proof of Theorem 2(iii).
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