
Compression of Graphical Structures
Yongwook Choi and Wojciech Szpankowski

Department of Computer Science
Purdue University

W. Lafayette, IN 47907, U.S.A.
Email: ywchoi@purdue.edu, spa@cs.purdue.edu

Abstract— F. Brooks argues in [3] there is “no theory that gives
us a metric for information embodied in structure”. Shannon
himself alluded to it fifty years earlier in his little known 1 953
paper [14]. Indeed, in the past information theory dealt mostly
with “conventional data”, be it textual data, image or video data.
However, databases of various sorts have come into existence
in recent years for storing “unconventional data” including
biological data, web data, topographical maps, and medicaldata.
In compressing such data structures, one must consider two types
of information: the information conveyed by the structure itself,
and then the information conveyed by the data labels implanted
in the structure. In this paper, we attempt to address the former
problem by studying information of graphical structures (i .e.,
unlabeled graphs). In particular, we consider Erd̈os-Ŕenyi graphs
G(n, p) over n vertices in which edges are added randomly with
probability p. We prove that the structural entropyof G(n, p)
is

`

n

2

´

h(p) − log n! + o(1) =
`

n

2

´

h(p) − n log n + O(n), where
h(p) = −p log p − (1 − p) log(1 − p) is the entropy rate of a
conventional memoryless binary source. Then, we design a two-
stage encoding that optimally compress unlabeled graphs upto
the first two leading terms of the structural entropy.

I. I NTRODUCTION

In 1948 Shannon introduced a metric for information
launching the field of information theory. However, as ob-
served by Brooks [3] and others [12], [17], there is no theory
that gives us a metric for information embodied in structure.
Shannon himself in his 1953 little known paper [14] argued for
an extension of information theory to “non-conventional data”
(i.e., lattices). Indeed, data is increasingly available in various
forms (e.g., sequences, expressions, interactions, structures)
and in exponentially increasing amounts. For example, in
biology large amounts of data are now in public domain on
gene regulation, protein interactions, and metabolic pathways.
Most of such data is multidimensional and context dependent.
Therefore, it necessitates novel theory and efficient algorithms
to extract meaningful information from non-conventional data
structures. Typically, a data file of this new type (e.g., bi-
ological data, topographical maps, medical data, volumetric
data) is a “data structure” conveying a “shape” and consisting
of labels implanted in the structure. In understanding such
data structures, one must take into account two types of
information: the information conveyed by the structure itself
and the data labels implanted in the structure. In this paper,
we address the former problem by studying information of
graphical structures.

As the first step to understanding information in structure,
we restrict our attention to structures on graphs. More specif-

ically, we study unlabeled graphs generated by a memoryless
source known as the Erdös-Rényi model [2] in which edges
are added randomly with probabilityp. This model induces
a probability distribution on structures from which Shannon
entropy can be computed giving us a fundamental limit on
lossless unlabeled graph compression. We prove that this
structural entropyis

(

n

2

)

h(p) − log n! + o(1) =

(

n

2

)

h(p) − n log n + O(n),

wheren is the number of vertices andh(p) = −p log p− (1−
p) log(1−p) is the entropy rate of a conventional memoryless
binary source. Then, we design and analyze an asymptotically
optimal encoding algorithm that achieves the compression rate

(

n

2

)

h(p) − n logn + O(n)

that matches on average the lower bound up to the first two
leading terms. Our algorithm is a two-stage scheme. First,
it encodes a structure into two binary strings that are next
compressed using an arithmetic encoder. Experimental results
on real data networks confirm efficiency and utility of our
algorithm.

Literature on graphical structure compression is scarce. The
problem of succinct representation of general unlabeled graphs
was introduced more than twenty years ago by Turan [18].
Naor [10] provided such a representation when all unlabeled
graphs (or structures) are equally probable. There also have
been some heuristic methods for real-world graphs compres-
sion including Adler and Mitzenmacher [1], who proposed
an encoding technique for web graphs, and similar idea has
been used in [15] for compressing sparse graphs. Recently,
attention has been paid to grammar compression for some data
structures: Peshkin [11] proposed an algorithm for a graphical
extension of the one-dimensional SEQUITUR compression
method. However, SEQUITUR is known not to be asymp-
totically optimal [13]. Therefore, the Peshkin method already
lacks asymptotic optimality in the 1D case. To the best of our
knowledge our algorithm is the first provable asymptotically
optimal compression scheme for graphical structures.

II. ENTROPY OF ARANDOM STRUCTURE

In a random graph modelG, the vertex setV consists ofn
distinguishable vertices and edges between vertices are added

at random. In this setting, the graph entropyHG is defined as

HG = E[− logP (G)] = −
∑

G∈G

P (G) log P (G),

whereP (G) is the probability of a graphG. Throughout the
paper, the base of the logarithm is 2.

In this study, we investigate graphical structural entropy. For
this purpose, it is convenient to introduce the unlabeled version
of a random graph model that we shall call arandom structure
model. In such a model, graphs are generated in the same
manner as inG, but they are thought of as unlabeled graphs
and those having “the same structure” are considered to be
indistinguishable even if their labeled versions are different. A
set of all structures will be denoted byS. For a given structure
(or an unlabeled graph)S ∈ S, the probability ofS can be
computed asP (S) =

∑

G∼=S,G∈G P (G). HereG ∼= S means
thatG andS have the same structure, that is,S is isomorphic
to G (two labeled graphsG1 andG2 are called isomorphic if
and only if there is a one-to-one map fromV (G1) ontoV (G2)
that preserves the adjacency.) If all isomorphic labeled graphs
have the same probability, then for any labeled graphG ∼= S

P (S) = N(S) · P (G), (1)

where N(S) is the number of different labeled graphs that
have the same structure asS. Thestructural entropyHS of a
random structureS can be defined then as

HS = E[− log P (S)] = −
∑

S∈S

P (S) log P (S),

where the summation is over all distinct structures.
Example: In Figure 1(left), we have all different graphs built
on three vertices. In Figure 1(right), we have all different
structures that can be generated byS with N(S1) = N(S4) =
1 andN(S2) = N(S3) = 3.

1 1 1 1

1 1 1 1

2 2 2 2

2 2 2 2

3 3 3 3

3 3 3 3

G1 G2 G3 G4

G5 G6 G7 G8

S1 S2

S3 S4

Fig. 1. All different graphs and structures with three vertices

In order to compute the probability of a given structure
S, one needs to estimateN(S), representing the number of
ways to construct a given structureS. For this, we need
to consider the symmetries or automorphisms of a graph.
An automorphismof a graphG is an adjacency preserving
permutation of vertices ofG. The collectionAut(G) of all
automorphisms ofG is calledthe automorphism groupof G.
In group theory, it is well known that [7]

N(S) =
n!

|Aut(S)|
. (2)

We also easily observe that1 ≤ |Aut(S)| ≤ n!.
Example: In Figure 2, the graphG on the left has exactly four
automorphisms, that is, in the usual cyclic permutation rep-
resentation:(v1)(v2)(v3)(v4), (v1)(v4)(v2v3), (v1v4)(v2)(v3),

and (v1v4)(v2v3). For example,(v1)(v4)(v2v3) stands for a
permutationπ such thatπ(v1) = v1, π(v4) = v4, π(v2) = v3,
and π(v3) = v2. Thus, by (2),G has 4!/4 = 6 different
labelings as shown on the right.

v3 v4

v1 v2 1 1 1 1 1 12

3 4

3

2 4

2

4 3

4

2 3

3

4 2

4

3 2
Fig. 2. The six different labelings of a graph

With these preliminary definitions, we are now in the
position to present a relationship betweenHG andHS .

Lemma 1: If all isomorphic graphs have the same proba-
bility, then

HS = HG − log n! +
∑

S∈S

P (S) log |Aut(S)|.

Proof. Observe that for anyG andS the entropyHG becomes

−
∑

S∈S

∑

G ∼= S,
G ∈ G

P (S)

N(S)
log

P (S)

N(S)
= −

∑

S∈S

P (S) log
P (S)

N(S)

= HS + log n! −
∑

S∈S

P (S) log |Aut(S)|.

This proves the lemma.

III. M AIN RESULTS

In order to develop further the idea of information in a
random structure, we focus on the binomial random graph
model due to Erdös and Rényi [2]. In this modelG(n, p),
given a real numberp (0 ≤ p ≤ 1), graphs are generated
randomly on the vertex setV = {1, 2, · · · , n} with edges
chosen independently with probabilityp. If a graph G in
G(n, p) hask edges, thenP (G) = pkq(

n
2)−k whereq = 1−p.

Let S(n, p) be the random structure model corresponding to
G(n, p), that is, the unlabeled version ofG(n, p). By (1) if
S ∈ S(n, p) hask edges, thenP (S) = N(S) · pkq(

n
2)−k.

A. Structural Entropy

To proceed we need to observe some important property of
S(n, p) (or equivalently,G(n, p)) - asymmetry. A graph is said
to beasymmetricif its automorphism group does not contain
any permutation other than the identity (i.e.,(v1)(v2) · · · (vn));
otherwise it is calledsymmetric. It is known that almost every
graph fromG(n, p) is asymmetric [6], [9]. In the sequel, we
write X ≪ Y to meanX = o(Y) whenn → ∞.

Lemma 2 (Kim, Sudakov, and Vu, 2002):For all p satisfy-
ing ln n

n ≪ p and 1 − p ≫ ln n
n (i.e., both the graph

and its complement graph are connected graphs with high
probability.), a random graphG ∈ G(n, p) is symmetric with
probabilityO (n−w) for any positive constantw > 1.

Using this property, we are in the position to present our
first main result, namely the structural entropy ofG(n, p).

Theorem 1:Let HS be the entropy ofS(n, p), that is, the
structural entropy ofG(n, p). Then, for largen and all p
satisfying lnn

n ≪ p and1 − p ≫ ln n
n ,

HS =

(

n

2

)

h − log n! + O

(

log n

nα

)

, α > 0,

whereh := h(p) = −p log p − (1 − p) log (1 − p).
Proof. Let us first compute the entropyHG of G(n, p). In
G(n, p), m =

(

n
2

)

distinct edges are independently selected
with probability p, and thus there are2m different labeled
graphs. That is, each graph instance can be considered as a
binary sequenceX of lengthm. Thus,

HG = −E[logP (Xm
1)] = −mE[logP (X1)] =

(

n

2

)

h.

Let A =
∑

S∈S P (S) log |Aut(S)|. Since |Aut(S)| = 1 for
all asymmetricS,

A =
∑

S∈S(n,p) andS is symmetric

P (S) log |Aut(S)|

≤
∑

S ∈ S(n, p),
S is symmetric

P (S) · n logn (∵ |Aut(S)| ≤ n! ≤ nn)

= O

(

log n

nw−1

)

for any constantw > 1 (by Lemma 2).

Lemma 1 completes the proof.
By Shannon’s source coding theorem, we conclude that the

entropy computed in Theorem 1 is the fundamental limit on the
lossless compression of structuresS(n, p). In the next section,
we design an asymptotically optimal compression algorithm
matching the first two leading terms of the structural entropy.

B. Asymptotically Optimal Compression Algorithm

In this section, we present our algorithm that encodes struc-
tures (or unlabeled graphs). For a given unlabeled graphG,
our algorithm encodesG first into two binary sequences and
then compress them by an arithmetic encoder. We shall show
in Theorem 2 that the proposed algorithm is asymptotically
optimal up to the first two leading terms.

To describe the algorithm precisely, we need some defi-
nitions and notations. Anordered partitionof a setX is a
sequence of nonempty subsets ofX such that every element
in X is in exactly one of these subsets. For example, one
ordered partition of{a, b, c, d, e} is {a, b}, {e}, {c, d} that is
denoted byab/e/cd. It is equivalent toba/e/dc, but distinct
from e/ab/cd. Given an ordered partitionP of a setX , we
also define an order on the elements ofX as follows:a < b
in P if the subset containinga precedes the subset containing
b in P . For example,a < c and e < c in P = ab/e/cd,
but e 6< a. An ordered partitionP1 of a setX is calledfiner
than ordered partitionP2 of X if the following two conditions
hold: (1) every element (i.e., subset ofX) of P1 is a subset of
some element ofP2, and (2) for alla, b ∈ X , a < b in P1 if
a < b in P2. For example, botha/b/e/cd and ab/e/d/c are
finer thanab/e/cd. Finally, a subtraction of an element from
an ordered partition gives us another ordered partition (e.g.,
for P = ab/e/cd we find thatP − c and P − e are ab/e/d
andab/cd, respectively).

Now we describe in details the proposed algorithm. It runs
in n steps. During the course of the algorithm, one ordered
partition P of a subset ofV (G) is maintained. LetPi be the
ordered partition after thei-th step. At the beginning,P0 =

V (G). In thei-th step, one vertexv is removed randomly from
the first subset inPi−1. Then, for each subsetU in Pi−1 − v
(in its order), we encode thenumber of neighborsof v in U
using⌈log(|U |+1)⌉ bits. After that,Pi−1−v becomes a finer
partition Pi such that for each subsetU in Pi−1 − v, U is
divided into two smaller subsetsU1 andU2, andU1 precedes
U2 in Pi whereU1 is the set of all neighbors ofv in U and
U2 is the set of all non-neighbors ofv in U . These steps are
repeated untilP becomes empty.

While the algorithm is running, the binary encodings of
the number of neighbors are concatenated in the order they
are generated. In the course of the algorithm, we separately
maintain two types of encodings - those of length more than
one bits (i.e., for subsets|U | > 1) and those of exactly one bit
(i.e., for subsets|U | = 1). The former type of encodings are
appended to a binary sequenceB1. Similarly, the latter type
of encodings form a binary sequenceB2.
Example: Figure 3 shows the details of our encoding algo-
rithm step by step. In the table,k denotes the step number,
and v denotes the randomly chosen vertex in each step. All
encodings whose length is bigger than one (denoted byitalic
font) are appended toB1. The other encodings are appended
to B2. After ten steps,B1 andB2 are0100110100001110101
and 1001011000000101, respectively.

i j

b

c

f

h
g

d

a

e

k v Pk−1 − v encoding Pk

0 abcdefghij
1 i abcdefghj 0100 dfgj/abceh
2 f dgj/abceh 11, 010 dgj/bc/aeh
3 d gj/bc/aeh 00, 01, 11 gj/c/b/aeh
4 j g/c/b/aeh 1, 0, 0,01 g/c/b/h/ae
5 g c/b/h/ae 1, 0, 1,01 c/b/h/e/a
6 c b/h/e/a 1, 0, 0, 0 b/h/e/a
7 b h/e/a 0, 0, 0 h/e/a
8 h e/a 1, 0 e/a
9 e a 1 a
10 a

Fig. 3. An example for our encoding algorithm, given the graph on the left

We can easily observe thatB2 is nothing but a binary
sequence generated by a binary memoryless source(p) with
p being the probability of generating ’1’ if the input graph is
generated byS(n, p).

At the end of our encoding algorithm,B1 and B2 are
compressed tôB1 and B̂2 by an adaptive binary arithmetic
encoder [4]. The algorithm also needs the number of vertices
n. As easy to see, the computational complexity isO(n2).

Now we describe ourdecoding algorithmwhich fromn, B̂1,
and B̂2 constructs a graph isomorphic to the original graph.
First we restoreB1 and B2 by decompressingB̂1 and B̂2.
Then, we create a graphG havingn vertices and no edges. The
general framework of our decoding algorithm is very similar
to that of our encoding algorithm. Again, one ordered partition
P of a subset ofV (G) is maintained. LetPi be the ordered
partition afteri-th step. At the beginning,P0 = V (G). In i-th
step, we remove any vertexv from the first subset inPi−1.
Then, for each subsetU in Pi−1 − v (in its order), we extract
the first ℓ = ⌈log (|U | + 1)⌉ bits from eitherB1 (if |U | > 1)
or B2 (if |U | = 1). Let k be the number thatℓ bits represent.

TABLE I

THE AVERAGE LENGTH OF ENCODINGS(IN BITS)

Networks # of nodes # of edges our algorithm adjacency matrix,
`

n

2

´

adjacency list,e⌈log n⌉ arithmetic coding

R
ea

l-w
or

ld

US Airports 332 2,126 8,118 54,946 19,134 12,991
Protein interaction (Yeast) 2,361 6,646 46,912 2,785,980 79,752 67,488
Collaboration (Geometry) 6,167 21,535 115,365 19,012,861 279,955 241,811
Collaboration (Erdös) 6,935 11,857 62,617 24,043,645 154,141 147,377
Genetic interaction (Human) 8,605 26,066 221,199 37,018,710 364,924 310,569
Internet (AS level) 25,881 52,407 301,148 334,900,140 786,105 396,060

R
an

do
m S(n, p) 1,000 p = 0.001 2,353 499,500 5,000 5,717

S(n, p) 1,000 p = 0.01 34,431 499,500 50,019 40,414
S(n, p) 1,000 p = 0.1 227,077 499,500 499,367 234,231
S(n, p) 1,000 p = 0.3 432,654 499,500 1,498,467 440,210

Then we select anyk vertices inU and make an edge between
v and each of thosek vertices. After that,Pi−1−v becomes a
finer partitionPi in the same way as our encoding algorithm.
These steps are repeated untilP becomes empty.

To measure the performance of our algorithm, letL(S) be
the length of the encoding generated by our algorithm, that is,
|B̂1| + |B̂2|. In Section IV we sketch a proof thatEG [L(S)]
matches the first two terms in the structural entropy ofG(n, p).

Theorem 2:The average lengthEG [L(S)] of the com-
pressed sequence does not exceed

(

n

2

)

h − n logn + (c + Φ(log n))n + O
(

n1−η
)

,

where h := h(p), c is an explicitly computable constant,
Φ(log n) is a fluctuating function with a small amplitude, and
η is some positive constant.

C. Experimental Results

In order to test our graphical structure compression algo-
rithm on real data, we apply it to both random and real-
world networks including biological, social, and technological
networks. Table I summarizes the results. For comparison, in
the table we list the lengths of three other encodings of graphs,
namely, the usual implementations of adjacency matrix of

(

n
2

)

bits, and adjacency list ofat least e⌈log n⌉ bits (normally,
2e⌈logn⌉ bits) wheren is the number of vertices ande is the
number of edges. Finally, in the last column of the table we
apply the arithmetic encoder to the adjacency matrix.

For “collaboration graphs” of Table I our algorithm achieves
more than twice better compression than the standard arith-
metic encoder. This seems to be a consequence of a small
value ofp for these graphs, even if the “collaboration graphs”
are not in G(n, p) but rather generated by apower law
distribution (we still expect our analysis applies to this model
of graph generations). Consider again the structural entropy
HS of the G(n, p) model whenp → 0 satisfying conditions
of Theorem 1. Letp ∼ ω(n)(log n/n) for slowly growing
ω(n) → ∞ asn → ∞. In this case

h(p) ∼ ω(n)
log2 n

n
,

and therefore the structural entropy becomes

HS ∼
1

2
(n − 1)ω(n) log2 n − n logn + O(n).

Clearly, the second leading termn log n plays significant role
in the compression of such graphs.

IV. A NALYSIS

In this section, we analyze the performance of our compres-
sion algorithm by first computing the expected lengths ofB1

andB2, and ultimately proving Theorem 2.
In order to analyze our algorithm, we conveniently introduce

a binary tree that better captures the progress of the algorithm.
Given a graphG on n vertices, the binary treeTn is built as
follows. At the beginning, the root node contains alln graph
vertices,V (G), that one can also visualize asn balls. Then
one graph vertex (ball)v is randomly removed fromn graph
vertices of the root node. The othern−1 graph vertices move
down to the left or right depending whether they are adjacent
vertices inG to v or not; adjacent vertices go to the left child
node and the others go to the right child. We create a new
child node inTn if there is at least one graph vertex in that
node. At this point, the tree is of height 1 withn− 1 vertices
in the nodes at level 1. Similarly, in thei-th step, we randomly
remove one graph vertex (ball)v from the leftmost node at
level i− 1. The other graph vertices at leveli− 1 move down
to the left or right depending whether they are adjacent tov
or not. We repeat these steps until all vertices are removed.

i j

b

c

f

h
g

d

a

e

a

e

h

b

c

g

j

d

f

i

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

{a, b, c, d, e, f, g, h, j}

{a, b, c, e, h}{d, g, j}

{a, e, h}{b, c}{g, j}

{a, e, h}{b}{c}{g}

{a, e}{h}{b}{c}

{b} {h} {e} {a}

{h} {e} {a}

{e} {a}

{a}

Fig. 4. A graph and one of its corresponding binary trees

The construction of the tree and the progress of the al-
gorithm is presented in Figure 4. In Figure 4(right), selected
graph vertices are shown on the left. At each level, the subsets
of graph vertices, after removing the chosen vertex, are shown

next to the nodes. In this example, the same vertex are selected
as in Figure 3. We observe that the subsets of graph vertices
at each level (from the left to the right) are the same as the
subsets in each step of our algorithm in Figure 3.

Let Nx denote the number of graph vertices (balls) that
pass through nodex (excluding the vertex that is removed at
x, if any.) We observe that our algorithm needs to encode the
number of neighbors of a graph vertex amongNx vertices for
each nodex in Tn. This requires⌈log(Nx +1)⌉ bits. Then by
the construction

|B1| =
∑

x∈Tn andNx>1

⌈log(Nx + 1)⌉,

and

|B2| =
∑

x∈Tn andNx=1

⌈log(Nx + 1)⌉ =
∑

x∈Tn andNx=1

1.

In Figure 4(right) the summations for|B1| and |B2| are over
all circle-shaped nodes and over all square-shaped nodes,
respectively.

We first evaluateE[|B1|]. We shall prove in the journal
version of this paper that

E[|B1|] ≤ xn

wherexn satisfiesx0 = x1 = 0 and forn ≥ 2

xn = ⌈log (n + 1)⌉ +

n
∑

k=0

(

n

k

)

pkqn−k(xk + xn−k).

The above recurrence can be solved using analytic techniques
such as generating functions, Mellin transform, and Pois-
sonization [16]. This will lead to the following bound on|B1|.

Theorem 3:For largen,

E[|B1|] ≤
1

h
(β + Φ(log n)) n + O

(

n1−η
)

,

whereh := h(p), η is a positive constant,

β = log e ·
∑

b≥2

⌈log (b + 1)⌉

b(b − 1)
= 3.760 · · · ,

andΦ(log n) is a fluctuating function forlog p/ log q rational
with small amplitude and zero otherwise.

Now we estimate the average of|B2|. We shall first prove
that

E[|B2|] =
n(n − 1)

2
− bn

for somebn. Then we observe thatbn ≥ yn − n for someyn

satisfyingy0 = 0 and forn ≥ 0

yn+1 = n +

n
∑

k=0

(

n

k

)

pkqn−k(yk + yn−k).

In fact, yn represents the expected path length in a digital
search tree overn strings [8], and we adopt here the solution
from [8]. In conclusion, we arrive at the following result.

Theorem 4:For largen,

E[|B2|] ≤
n(n − 1)

2
−

n

h
log n

+
n

h

(

h −
h2

h
− γ + 1 + α − δo(log n)

)

−
1

h
log n + O(1),

whereh := h(p), γ = 0.577 · · · is the Euler constant,h2 =
p log2 p + q log2 q,

α = −
∞
∑

k=1

pk+1 log p + qk+1 log q

1 − pk+1 − qk+1
,

andδo(log n) is a fluctuating function forlog p/ log q rational
with small amplitude and zero otherwise.

Finally, we compute the total expected length of the encod-
ing by observing that the arithmetic coder can compress on
average a file of sizem up to [4], [5] mh + 1

2 log m + O(1),
whereh is the entropy rate of the binary source.

ACKNOWLEDGMENT

This work was supported in part by the NSF Grants CCF-
0513636, DMS-0503742, DMS-0800568, and CCF-0830140,
NIH Grant R01 GM068959-01, NSA Grant H98230-08-1-
0092, EU Project No. 224218 through Poznan University of
Technology, and the AFOSR Grant FA8655-08-1-3018.

REFERENCES

[1] M. Adler and M. Mitzenmacher, Towards compressing web graphs,In
Proc. of the IEEE Data Compression Conference, 203–212, 2001.

[2] B. Bollobas,Random Graphs, Cambridge University Press, Cambridge,
2001.

[3] F.P. Brooks Jr, Three great challenges for half-century-old computer
science,Journal of the ACM, 50(1), 25–26, 2003.

[4] T.M. Cover and J.A. Thomas,Elements of Information Theory, John
Wiley & Sons, New York, 2006.

[5] M. Drmota, H.-K. Hwang, and W. Szpankowski, Precise average re-
dundancy of an idealized arithmetic coding,Proc. Data Compression
Conference, 222-231, 2002.

[6] P. Erdös and A. Rényi, Asymmetric graphs,Acta Math. Acad. Sci.
Hungar. 14, 295–315, 1963.

[7] F. Harary and E.M. Palmer,Graphical Enumeration, Academic Press,
1973.

[8] P. Jacquet and W. Szpankowski, Asymptotic behavior of the Lempel-Ziv
parsing scheme and digital search trees,Theoretical Computer Science,
144(1&2), 161–197, 1995.

[9] J.H. Kim, B. Sudakov, and V.H. Vu, On the asymmetry of random
regular graphs and random graphs,Random Structures and Algorithms,
21(3-4), 216–224, 2002.

[10] M. Naor, Succinct representation of general unlabeledgraphs,Discrete
Applied Mathematics, 28(3), 303–307, 1990.

[11] L. Peshkin, Structure induction by lossless graph compression,In Proc.
of the IEEE Data Compression Conference, 53–62, 2007.

[12] N. Rashevsky. Life, information theory, and topology.Bull. Math.
Biophysics, 17:229–235, 1955.

[13] S.A. Savari, Compression of words over a partially commutative alpha-
bet, IEEE Trans. on Information Theory, 50, 1425-1441, 2004.

[14] C. Shannon. The lattice theory of information.IEEE Transaction on
Information Theory, 1:105–107, 1953.

[15] J. Sun, E.M. Bollt, and D. Ben-Avraham, Graph compression–save
information by exploiting redundancy,Journal of Statistical Mechanics:
Theory and Experiment, P06001, 2008.

[16] W. Szpankowski,Average Case Analysis of Algorithms on Sequences,
John Wiley & Sons, New York, 2001.

[17] E. Trucco. A note on the information content of graphs.Bull. Math.
Biophysics, 18:129–135, 1956.

[18] Gy. Turan, On the succinct representation of graphs,Discrete Applied
Mathematics, 8(3), 289–294, 1984.

