A Universal Online Caching Algorithm Based on
Pattern Matching

Gopal Pandurangan Wojciech Szpankowski
Department of Computer Science
Purdue University
West Lafayette, IN 47907, USA
Email: {gopal,spa }@cs.purdue.edu

Abstract—We present a universal algorithm for the classical to know for (each pair of) pages and ¢ the probability
online problem of caching or demand paging We consider the that p will next be requested before. It is also remarked
caching problem when the page request sequence is drawn from 1,4t “even if the algorithm can determine the probabilities

an unknown probability distribution and the goal is to devise an imatelv. it Id b d titi H
efficient algorithm whose performance is close to theoptimal approximately, it wou e ensured competiveness. However,

online algorithm which has full knowledge of the underlying it is not clear how to compute these probabilities efficiently
distribution. Most previous works have devised such algorithms and sufficiently accurately when we have very little knowledge
for specific classes of distributions with the assumption that of the distribution or the class it belongs to (e.g., how to
the algorithm has full knowledge of the source. In this paper, nqy the order of Markov process). In this paper, we present
we present auniversal and simple algorithm based on pattern . . : .
matching for mixing sources (includes Markov sources). The & unl\_/e_rsal and S'mP'e aIg_onthm based on pattern matching
expected performance of our algorithm is within 4 + o(1) times ~ for mixing sources (including Markov sources). We show that
the optimal online algorithm (which has full knowledge of the our universal algorithm gives an expected performance that
input model and can use unbounded resources). is within 4 4 o(1) times the optimal online algorithm (which
has full knowledge of the input model and can use unbounded
resources). We should point out that our novel approach can
We present a universal algorithm for the classical onlirtge also used for other caching strategies.
problem ofcachingor (demand) paging3]. In our setting the  Caching is related tgrefetchingproblem, and the latter
page request sequence is drawn fromuaknownprobability is essentially the same as thpediction problem studied
distribution (i.e., mixing source) and our goal is to devise axtensively in information theory. In both problems, we have
efficient algorithm whose performance is close to tiéimal a collection’{ of pages in memory and a cache of size
online algorithm which hadull knowledgeof the underlying (typically & < |H|). Given a page request (frof), if the
distribution. Most previous works have devised such alggage is not in the cache we incur a page fault, otherwise we
rithms for specific classes of distributions with the assumptiaon’t, and in both problems, we are interested in minimizing
that the algorithm has full knowledge of the source. Fdhe number of page faults. However, in prefetching, we are
example, Karlin, Phillips, and Raghavan [10] present efficieatiowed to prefetchk items to the cache prior to each page
algorithms (that run in time polynomial in the cache sizepquest, while in caching, we are not allowed to prefetch pages
when the request sequence is generated by a Markov sowand pages are fetched ondyn demand
under the assumption that the online algorithm has completeBoth these problems can be formulated as online decision
knowledge of the Markov chain. The authors of [10] assungroblems (e.g., [2], [12], [18]) as follows. We are given a
that the Markov chain can be “learned” from looking at &mporal sequence of observations (in other words, a request
very long input. (Similarly, Franaszek and Wagner [6] give asequence)z} = xz1,z2,...,2,, for which corresponding
optimal algorithm for memoryless sources.) Although this iactionsby, bo, ..., b, result in instantaneous lossé$,, =),
possible in principle when you know the class of the modé&r each time instant, 1 < ¢ < n, wherel(.,.) denotes a non-
(say memoryless, Markov Chain), it is not clear how in generakgative loss function. The actidn, for all ¢, is a function
the errors in learning will affect the performance of the onlinef the previous observationg—! only; hence the sequence of
algorithm. The problem becomes more complicated when waetions can be considered as an online algorithm or strategy.

I. INTRODUCTION

don’t have knowledge of the class (cf. [12], [13]). A normalized loss

This paper is motivated by the work of Lund et al. [11] 1
on caching strategy and universal prediction based on pattern L=— Z I(bs, z¢) 1)
matching due to Jacquet et al. [9]. The authors of [11] t=1

propose an efficient randomized 4-competitive online cachiagcumulates instantaneous loss contributions from each action-
algorithm that works forany distribution D but it needs observation pair and the objective of the online strategy is to



minimize this loss function. Prediction and prefetching can b®t in cache and it is added evicting someone else, afdfis
thought of as sequential decision problems with memorylese eviction was needed. Notice that it is allowed not to evict
loss functions i.e., the loss does not depend on previous actiemen when there is a page-fault, but then the infinite loss takes
request pairs. On the other hand, in caching, the loss functicare of that. Thus, a loss is a function of all previous requests
is not memoryless and this is one reason why designiagd all previous actions. This is defined as a loss function with
optimal online strategies for caching is more complicated memory in [13] where it is proved that there exists a universal
general than prefetching or prediction (discussed more belaagorithm for individual sequence with respect to an expert set
see also [13]). (e.g., FSMs).

One can study such online decision problems in two set-In the theoretical computer science literature, however, the
tings: a probabilistic framework in which the sequence of online caching problem has received a lot of attention and,
requests is viewed as a sample of a random process;ioffact, was one of the first problems to be analyzed under
using anindividual sequence approache., comparingthe the framework oftompetitive analysigshere the performance
performance of the online strategy for arbitrary sequence of the online algorithm is compared with theest offline
with certain classes of competirgffline strategies — such algorithm [14]. For online caching (or demand paging) the
as in thesequential decision approade.g.,[8], [12]) (where well known LRU (Least Recently Used) has a competitive ratio
the online strategy is compared with the beshstant offline of £ [14], wherek is the cache size, while the randomized
algorithm which has full knowledge of the given sequence ®MIARKER algorithm is O(log k) competitive [5]. In fact, it
observations), or witliinite state machinege.qg., [4]). is known that any deterministic algorithm for caching has a

In the probabilistic setting, universal algorithms have beammpetitive ratio of at least and any randomized algorithm
well-studied for prefetching and prediction problems. Fdias a competitive ratio of2(logk). We note, that for the
example, Vitter and Krishnan [17] considered a model whepgoblem of prefetching, competitive analysis is meaningless as
the sequence of page requests is assumed to be generateghdyptimal offline algorithm will always prefetch the correct
a Markov source They show that the fault rate of a Ziv-item and hence incurs no cost.

Lempel based ( [19]) prefetching algorithm approaches theln this paper, we take the probabilistic approach, and
fault rate of the best prefetcher (which has full knowledge @bllowing the work of Lund et al. [11], we compare the
the Markov source) for the given Markov source as the pagerformance of our algorithm to the optimatline algorithm
request sequence length— oo. In fact, a general result in a (henceforth called a§&) N) which has full knowledge of the
probabilistic setting was shown by Algoet [2]: if the requeshput distribution. The optimal online caching strategy (assum-
sequence is generated by a stationary ergodic process thengtfull knowledge of the underlying distribution) is known

is shown that the optimum strategy is to select an action tifat memoryless sources ([1], [6]) and for Markov sourcks (
minimizes the conditional expected loss given the currenty¢der Markov) [3]. While the best online strategy is easy for
available information at each step and this strategy is showiemoryless sources (simply keep the- 1 pages with the

to be asymptotically optimal in the sense of the strong law @ighest probabilities in the cache), the best strategy for higher
large numbers. In the individual sequence approach, we refetler sources (in particular, even when the request sequence
to the work of Feder et al. [4] on predicting binary sequencés generated by a Markov chain) is nontrivial, and involves
(corresponding to prefetching in a universe of two pages wilbmputing the optimal policy in a Markov decision process
cache of size 1). (MDP) [10]. (In particular, many “natural” online strategtes

Thus while there has been a lot of work on universauch as LAS¥, MAX-REACH-TIME? perform poorly even
algorithms for prefetching (and prediction) — both in then Markov chains [10].) However known methods for com-
probabilistic setting and in the individual sequences approaghting this optimal online strategy takes time exponential in
(see e.g., [12] for a survey), there has not been much work ferand this has motivated work on computimgar-optimal
the more difficult problem of online caching except perhapsnline strategies (which closely approximate the performance
the recent work of Merhav et al. [13] on sequential strategie$ O N') which take time polynomial it ([10], [11]); however,
for loss function with memory that we discuss in some detathese results, as mentioned earlier, assume full knowledge of
below. the Markov source, and hence not universal. In this paper, we

In [13] the authors assume that the loss function depengi®pose a universal caching algorithm for mixing sources (this
also on the past action-observation pairs. In particular, at tirfizludes Markov sources) that is within a constant factor of
t the loss functionl(b;_1,b;, z¢) depends on the current andthe optimal online algorithm.
previous decisions. Per Weinberger [private correspondencejn the probabilistic setting, one can also compare the
April 2004] this limited memory loss function approach caperformance of universal algorithms withffline strategies
be set up in terms of the caching problem we discuss here as
follows: Before each observatian;, one takes an actiob, 1On the other hand, for prefetching, the optimal universal strategies (e.g.,
consisting of adding a page to the cache and evicting eittsee Algoet [2]) are somewhat more “natural” and intuitive.

; it Ay 20n a fault, evict the page that has the highest probability of being the last
pagel, 2, ...,k or not to evict any page (call it: evict page 0).of the & pages in the cache to be requested.

_The cost at ti_me is infinity if th_e aqlded page iS_ NOL—1 OF  30n a fault for pager, evict that page whose expected time to be reached
if ;1 is not in cache and nothing is evicted. Itlisf ;1 iS  from r is maximum.



e.g., with the optimal offline algorithm (that has access to thixed constant.
request string output by the source, and serves it optimall¥f).z,, is not in the cach& and C is full do:
We remark that the performance OfNV will typically have a
higher expected cost than the optimal offline algorithm, arid Find the largest suffix af] whose copy appears somewhere
in the worst case() N has a cost which is a factor of at mosin the stringz}. Call this themaximal suffixand let its length
O(log k) of the optimal offline algorithm, and this immediatelybe D,,.
implies that our universal algorithm gives a performance that Take ana fraction of the maximal suffix of length,, =
is O(log k) times the optimal offline algorithm. [aD,], i.e., the suffixz,_g +1...2,. Each occurrence of
this suffix in the stringze? is called amarker Let L,, > 2 be
] ) ) ] . the number of occurrences of the markerzih

To motivate our algorithm we first briefly describe they For every pair of elements b in C, estimate the probability
DOMinating-distribution (DOM) algorithm of Lund et al. p(, p) thata will occur beforeb after the marker position as
([11], [3]). DOM assumesthat for a given distributionD,  follows: Let Y;(a,b) be the indicator r.v. for the event that
one can compute (efficiently) for all distinct paggsand qccyrs before in the substring that starts after tjigh marker,
r the probability p(¢q,r) that  will be requested beforg < j < L,. Then the estimator is
(such a distribution is calledairwise-predictive A pairwise-
predictive distributionD and an online paging algorithtdLG N Zf;l Y;(a,b)
naturally induce aveighted tournameras follows. A weighted P(a,b) = - L,
tournamentT’(S, p) is a set of statess and a (probability) o ) L .
weight functionp : S x S — [0, 1] satisfying the property that 4, Qompute a dls_trlbutlorp(x) (caI_I this adomlr_latlng dl_stn-

bution parameterized by) by solving a LP as in Equation 2

p(q,7)+p(r,q) =1 for all » # ¢ in .S andp(r,r) = 0 for all , ; o
r € S. Given a pairwise predictive distributioh and paging (S€ction Ill) such that for each pagein C, if b is chosen

algorithm ALG, the weight functionp is determined byp according top, then E[P(a,b)] < , for somez € [0,1]
(e.g., just before each new request), @havill be the set of (who;e value will be dgtermlned in the p.roof). Choose a page
ALG's pages in the cache. Aominating distributiony for a 10 €vict fromC according to the distributiop(z).

tournamentZ’(S, p) is a probability functionp : S — [0, 1] The algorithm can be naturally implemented by maintain-
such that for every € S, if u € S is chosen with probability ing a suffix tree [7]. The longest suffix, markers, the delay
p(u) then Efp(q,u)] < 1/2 (this expectation is taken with sequences and the estimates (Steps 1-3), can be computed
respect to bottD andp). Lund et al. show the following key efficiently from a suffix tree. The suffix tree afi, . .., z, is
lemma on dominating distributions: atrie (i.e., a digital tree) built from all suffixes afy,...,z,$

Lemma 1 ([11]): Every weighted tournament(S,w) has where § is a special symbol that does not belong to the
a weighted distribution and such a distribution can be foungphabet?. External nodes of such a suffix tree contain
by solving a linear program consisting Sfvariables. information about the the suffix positions in the original string

Now we can state the DOM algorithm: L&t be a pairwise- and the substring itself that leads to this node. In addition,
predictive input distribution and let = 21, 2o, . . . be a request We keep pointers to those external nodes that contain suffixes
sequence. On thih requests, if z; is a page fault (otherwise €nding with the special symbél (since one of them will be
do nothing), then (as determined 1) construct a weighted the longest suffix that we are looking for; in fact, the one
tournamenﬂ"t (S’ p) on thek pages presenﬂy in the CacheWith the |OngeSt path) Itis very easy to find all markers once
Evict pageq with probabilityj; (¢) whereg, is the dominating the suffix tree is built. Indeed, they are located in the subtree
distribution for the tournamerif, (S, p). that can be reached following the IgstD,,| symbols of the

The following theorem gives the performance of DOM. longest suffix.

Theorem 1 ([11]): For all request sequencesrom D, the Given a suffix tree om nodes, the worst case time to do
following holds E[DOM (z)] < 4-ON(z), and the complexity these operations i€)(n) (cf. [7]), but on average will take
per page fault is bounded by assumingthat for all distinct only O(n'~*) (for somea > 1/2) since there are only so
pairs of pageg andr, we have precomputeglq, r). many markers whp ([9]) and the delay @log®n) whp (cf.
Section Ill). Moreover, it is easy to update the suffix tree when

® new symbotlz,, 1 is added. The only nodes that we must
1Bok at are the ones with to which we keep pointers. In the
worst case, we need to inspe@{n) nodes, but on average
%Iy O(n'=) [9]. Step 4 can be implemented by solving a

P (cf. Theorem 2) and hence is polynomial in the size of the
che.

From the algorithmic complexity point of view, the above
algorithm has the drawback of constructing a suffix tree after
Universal Caching Algorithm: each eviction. In order to rectify it, one can propose fired
Let zq1, 25 ... be the request sequence. lgR < o« < 1 be a database caching algorithrfil5] in which we are given a

II. ALGORITHM

We now propose a new universal caching algorithm that u
the idea of Sampled Pattern Matching (SPM) [9] to obtain
good estimate of the probability that pageoccurs before
pageq (Steps 1-3 below). We then apply the caching strate
of [11] to evict a page upon a fault (Step 4). We will sho
that the expected page fault rate of our algorithm will be
most4 + o(1) times ON, the optimal online algorithm. First
we state our algorithm below.



database (training sequence) that is utilized to compute fireed constant. We first bound the probability that a particular
estimatorP(a, b). It is assumed that the request sequensymbol (saya) in C will not occur in the above subsequence.
and the database sequence are independent and identid@distitioning this subsequence into blocks of slzgn and
distributed. Clearly, now we need only to construct a suffix traesing the mixing property the above probability is bounded
of a given database sequence. This approach will be elaboratgd1 + ¢(logn)))¢°&" (p, )™ < 1/n?, for a suitably large

in the full version of the paper. constantc, where p, is the (unconditional) probability of
occurrence symbal in the sequence. (Since we consider a
finite alphabet and the source is stationary and ergodgiés
Throughout, we assume that the request sequenggne positive constant independent:of Applying the union

IIl. M AIN RESULTS AND ANALYSIS

X1, Xy, ..., Xy is generated by a stationary (strongly) mixingyound, we have that all symbols i@l occur in X}i:+clog2n
source over a finite alphabet (the cache size is < |A[) (cf.  with probability 1 — 1/ for some suitably large constant
[15]). Thus the delay for this marker i9(log” ) with probability

Definition 1 (MX - (Strongly)})-Mixing Source):Let 7, at leastl — 1/n. We appeal to the marker separation property
be ac-field generated byX;" = X, Xppi1... X, for m < and the fact that are at most— markers whp to conclude

n. The source is callednixing if there exists a boundedthat whp that the delay i©(log? n) after every marker. ®
function ¢(g) such that for allm,g > 1 and any two

eventsA € F" and B € F;7,, the following holds:(1 — In _the next lemma we prove that our estimaf®fa,b) is
¢(g)) Pr(A) Pr(B) < Pr(AB) < (1 + ¢(g)) Pr(A)Pr(B). consistent.
If, in addition, lim,_., ¢(g) = 0, then the source is called
strongly mixing

Strongly mixing sources includmemorylessources (mix-
ing with ¢(g) = 0) andMarkov sourcever a finite alphabet

(mixing with ¢(g) = O(7) for some~ < 1) [15]. For proof sketch: The main idea of the proof is to show that
our analysis below, we assume that themixing coefficient that the estimator random variabla§(a,b), 1 < j < L,
satisfieslim,, .o nl_a¢'(n€) = 0 for any arbitrary small (computed in Step 3) are almost independent. We need the
€ > 0. Our main result is formulated next. concept of aavorite string. Fixe > 0. Leti; be the position

Theorem 2:Let A, and OPT, denote the number of &fter the last symbol of markef, 1 < j < L,. Define a
page faults incurred by our algorithm and the optimal onlif@vorite string as one for which any modification of ahy’|

algorithm respectively after requests from a strongly mixing SYmPols following a marker does not change the p025ition of
source. Then any markerand the delayL; after any marker igD(log” n).

The marker separation properties and Lemma 2 imply that
E[A,] < (4+0(1))E[OPT,] whp any string is a favorite. Define the set of favorite strings:
F, = {X} : X}"is a favorite string. Consider thedelay

n 2 . .
subsequenceX 718" 1 < j < L., (cis a suitably

We ngw prove Theorem 2. We need the following resulqarge constant),]i.e., the subsequence consistir@(ﬂxfg2 n)
from [9]: _ _ symbols after every marker. Using Lemma 2 and the two
1. Marker separation propertyThere exists: > 0 such that maqer properties (which guarantees that whp that the markers

for o > 1/2 with high probability (whp} asn — oo tWo 46 siaple and the delays after are separated<bipr some
consecutive markers in the strin§;’ cannot be closer than 0) we show that the delay subsequence is mixing if

n® positions. A consequence of the separation property is tl)@% € F, (cf. Lemma 7 in [9]). This implies that for favorite

the number of markers is'~* whp. strings, the probability distribution of the estimatbj’s are
2. Marker stability property There existse > 0 such that \iihin factor of (1£O(¢(n<)))En from an ii.d. sequence. Let

whp no modification of any of thén“| symbols following a P(a,b) be the true estimate. Thus, using a Chernoff bound for
marker will transform the string(y" into another stringX{" ¢y, e (0,1)

with a new set of markers.
Let L denote the maximundelay before we see all the Pr (|15(a b) — P(a,b)| < n-e)
symbols in the (current) cach@ after any marker, i.e.l = 7 T

mazxi<;<r,L; whereL; the delay before we all symbols after - . ,
the jth marker. < (14+0(gp(n)))e” 5% +Pr(X7 ¢ F,,) = O(1/n").

Lemma 3:Let § € (0,1) be a suitably small positive
constant. The estimator®(a,b) for every pair of symbols
a andb in cache are withirl /n? of the true estimates whp.

asn — o0.

Lemma 2: L = O(log® n) whp. "

Proof. Let Xk be the first Symbol after the end of a marker Fina”y’ we are ready to prove our main result.
and consider the nextlog? n symbols starting from¥y, i.e.,
distribution p(x) can be chosen in Step 4 such that<
4i.e., with probability at least — 1/n” for some constant > 0. 1/2 + 1/n? whp. We use the approach in [11]. Consider the



following LP: [16]
minimize z subject to [17]
> Plap) < @ (WeC), @ g
aeC
ZP(G) = 1, pla)>0, (VaeC) [19]
acC

For the purpose of analysis, appealing to Lemma 3, we
rewrite the first constraint as:

> P(ba)p(u) <z +0(1/n) (WbeC)

aeC
where P(b,a) is the true estimate anél is a suitably small
positive constant. By considering the dual LP, we can show
that the solution of the LP is at mogy/2 + O(1/n%). By
Lemma 3, this holds with probability at least— 1/n" for
somer > 0. When our algorithm has a page fault and must
evict a page, lep be a random variable denoting the page that
is evicted. Now the following property holds: for every page
in C, the probability that; is next requested no later tharis
atleastl /2—0O(1/n?) —O(1/n"). By Lemma 2.5 in [11], we
conclude that the expected number of page faults is at most
4+ o(1) times the optimal online algorithm as— co. B

IV. ACKNOWLEDGMENT

We thank Dr. M. Weinberger for a useful discussion regard-
ing sequential strategies with memory loss function.

REFERENCES
(1]
2
(3]
[4

A. Aho, P. Denning, and J.D. Ullman. Principles of Optimal Page
ReplacementJACM 18(1), 1971, 80-93.

P. Algoet, Universal Schemes for Prediction, Gambling and Portfolio
Selection,Annals of Probability 20(2), 1992, 901-941.

R. El Yaniv and A. Borodin.Online Computation and Competitive
Analysis Cambridge University Press, 1998.

M. Feder, N. Merhav and M. Gutman, Universal Prediction of Individual
SequencedEEE Transactions on Information Theqr38, 1992, 1258-
1270.

A. Fiat, R.M. Karp, M. Luby, L. A. McGeoch, D.D. Sleator and N.E.
Young, On Competitive Algorithms for Paging Problendsurnal of
Algorithms 12, 1991, 685-699.

P.A. Franaszek and T.J. Wagner. Some Distribution-free Aspects of
Paging Performancedpurnal of the ACM21, 1974, 31-39.

D. Gusfield. Algorithms on Strings, Trees, and Sequencgambridge
University Press, 1997.

J.F. Hannan. Approximation to Bayes risk in repeated play€;antri-
butions to the Theory of Games, Vol. 3, Annals of Mathematics Studies
Princeton, NJ, 1957, 97-139.

P. Jacquet, W. Szpankowski, and I. Apostol. A Universal Predictor Based
on Pattern MatchinglEEE Transaction on Information Theqr¢8(6),
2002, 1462-1472.

A.R. Karlin, S.J. Phillips and P. Raghavan. Markov PagiSgAM
Journal on Computing30(3), 906-922, 2000.

C. Lund, S. Phillips, and N. Reingold. Paging against a Distribution and
IP Networking, Journal of Computer and System Science 1999,
222-231.

N. Merhav and M. Feder. Universal PredictidBEE Trans. Information
Theory 44, 2124-2147, 1998.

N. Merhav, E. Ordentlich, G. Seroussi, and M. J. Weinberger. On Se-
quential Strategies for Loss Functions With MemdBEE Transactions

on Information Theory48(7), 1947-1958, 2002.

D.D. Sleator and R.E. Tarjan. Amortized Efficiency of List Update and
Paging RulesCommunications of the AC\28(2), 1985, 202-208.

[15] W. SzpankowskiAverage Case Analysis of Algorithms on Sequences
John Wiley, 2001.

(5]

(6]
(7]
(8]

(9]

[20]

(11]

(12]

(23]

[14]

W. Szpankowski. A Generalized Suffix Tree and Its (Un)Expected
Asymptotic BehaviorsSIAM J. Computing22, 1176-1198, 1993.

J.S. Vitter and P. Krishnan. Optimal Prefetching Via Data Compression,
Journal of the ACM43(5), 1996, 771-793.

M. Weinberger and E. Ordentlich. On-line decision making for a class
of loss functions via Lempel-Ziv Parsing, IProc. of the IEEE Data
Compression Conferenc2000, 163-172.

J. Ziv and A. Lempel, Compression of Individual Sequences via Variable
Rate Coding,JEEE Transactions on Information Theor24(5), 1978,
530-536.



