
A Universal Online Caching Algorithm Based on
Pattern Matching

Gopal Pandurangan Wojciech Szpankowski
Department of Computer Science

Purdue University
West Lafayette, IN 47907, USA

Email:{gopal,spa }@cs.purdue.edu

Abstract— We present a universal algorithm for the classical
online problem of caching or demand paging. We consider the
caching problem when the page request sequence is drawn from
an unknown probability distribution and the goal is to devise an
efficient algorithm whose performance is close to theoptimal
online algorithm which has full knowledge of the underlying
distribution. Most previous works have devised such algorithms
for specific classes of distributions with the assumption that
the algorithm has full knowledge of the source. In this paper,
we present auniversal and simple algorithm based on pattern
matching for mixing sources (includes Markov sources). The
expected performance of our algorithm is within 4 + o(1) times
the optimal online algorithm (which has full knowledge of the
input model and can use unbounded resources).

I. I NTRODUCTION

We present a universal algorithm for the classical online
problem ofcachingor (demand) paging[3]. In our setting the
page request sequence is drawn from anunknownprobability
distribution (i.e., mixing source) and our goal is to devise an
efficient algorithm whose performance is close to theoptimal
online algorithm which hasfull knowledgeof the underlying
distribution. Most previous works have devised such algo-
rithms for specific classes of distributions with the assumption
that the algorithm has full knowledge of the source. For
example, Karlin, Phillips, and Raghavan [10] present efficient
algorithms (that run in time polynomial in the cache size)
when the request sequence is generated by a Markov source
under the assumption that the online algorithm has complete
knowledge of the Markov chain. The authors of [10] assume
that the Markov chain can be “learned” from looking at a
very long input. (Similarly, Franaszek and Wagner [6] give an
optimal algorithm for memoryless sources.) Although this is
possible in principle when you know the class of the model
(say memoryless, Markov Chain), it is not clear how in general
the errors in learning will affect the performance of the online
algorithm. The problem becomes more complicated when we
don’t have knowledge of the class (cf. [12], [13]).

This paper is motivated by the work of Lund et al. [11]
on caching strategy and universal prediction based on pattern
matching due to Jacquet et al. [9]. The authors of [11]
propose an efficient randomized 4-competitive online caching
algorithm that works forany distribution D but it needs

to know for (each pair of) pagesp and q the probability
that p will next be requested beforeq. It is also remarked
that even if the algorithm can determine the probabilities
approximately, it would be ensured competitiveness. However,
it is not clear how to compute these probabilities efficiently
and sufficiently accurately when we have very little knowledge
of the distribution or the class it belongs to (e.g., how to
know the order of Markov process). In this paper, we present
a universaland simple algorithm based on pattern matching
for mixing sources (including Markov sources). We show that
our universal algorithm gives an expected performance that
is within 4 + o(1) times the optimal online algorithm (which
has full knowledge of the input model and can use unbounded
resources). We should point out that our novel approach can
be also used for other caching strategies.

Caching is related toprefetchingproblem, and the latter
is essentially the same as theprediction problem, studied
extensively in information theory. In both problems, we have
a collectionH of pages in memory and a cache of sizek
(typically k � |H|). Given a page request (fromH), if the
page is not in the cache we incur a page fault, otherwise we
don’t, and in both problems, we are interested in minimizing
the number of page faults. However, in prefetching, we are
allowed toprefetchk items to the cache prior to each page
request, while in caching, we are not allowed to prefetch pages
and pages are fetched onlyon demand.

Both these problems can be formulated as online decision
problems (e.g., [2], [12], [18]) as follows. We are given a
temporal sequence of observations (in other words, a request
sequence)xn

1 = x1, x2, . . . , xn, for which corresponding
actionsb1, b2, . . . , bn result in instantaneous lossesl(bt, xt),
for each time instantt, 1 ≤ t ≤ n, wherel(., .) denotes a non-
negative loss function. The actionbt, for all t, is a function
of the previous observationsxt−1 only; hence the sequence of
actions can be considered as an online algorithm or strategy.
A normalized loss

L =
1
n

n∑
t=1

l(bt, xt) (1)

accumulates instantaneous loss contributions from each action-
observation pair and the objective of the online strategy is to

minimize this loss function. Prediction and prefetching can be
thought of as sequential decision problems with memoryless
loss functions i.e., the loss does not depend on previous action-
request pairs. On the other hand, in caching, the loss function
is not memoryless and this is one reason why designing
optimal online strategies for caching is more complicated in
general than prefetching or prediction (discussed more below;
see also [13]).

One can study such online decision problems in two set-
tings: a probabilistic framework, in which the sequence of
requests is viewed as a sample of a random process; or
using an individual sequence approachi.e., comparing the
performance of the online strategy for anarbitrary sequence
with certain classes of competingoffline strategies — such
as in thesequential decision approach(e.g.,[8], [12]) (where
the online strategy is compared with the bestconstant offline
algorithm which has full knowledge of the given sequence of
observations), or withfinite state machines(e.g., [4]).

In the probabilistic setting, universal algorithms have been
well-studied for prefetching and prediction problems. For
example, Vitter and Krishnan [17] considered a model where
the sequence of page requests is assumed to be generated by
a Markov source. They show that the fault rate of a Ziv-
Lempel based ([19]) prefetching algorithm approaches the
fault rate of the best prefetcher (which has full knowledge of
the Markov source) for the given Markov source as the page
request sequence lengthn →∞. In fact, a general result in a
probabilistic setting was shown by Algoet [2]: if the request
sequence is generated by a stationary ergodic process then it
is shown that the optimum strategy is to select an action that
minimizes the conditional expected loss given the currently
available information at each step and this strategy is shown
to be asymptotically optimal in the sense of the strong law of
large numbers. In the individual sequence approach, we refer
to the work of Feder et al. [4] on predicting binary sequences
(corresponding to prefetching in a universe of two pages with
cache of size 1).

Thus while there has been a lot of work on universal
algorithms for prefetching (and prediction) — both in the
probabilistic setting and in the individual sequences approach
(see e.g., [12] for a survey), there has not been much work for
the more difficult problem of online caching except perhaps
the recent work of Merhav et al. [13] on sequential strategies
for loss function with memory that we discuss in some detail
below.

In [13] the authors assume that the loss function depends
also on the past action-observation pairs. In particular, at time
t the loss functionl(bt−1, bt, xt) depends on the current and
previous decisions. Per Weinberger [private correspondence,
April 2004] this limited memory loss function approach can
be set up in terms of the caching problem we discuss here as
follows: Before each observationxi, one takes an actionbi,
consisting of adding a page to the cache and evicting either
page1, 2, . . . , k or not to evict any page (call it: evict page 0).
The cost at timei is infinity if the added page is notxi−1 or
if xi−1 is not in cache and nothing is evicted. It is1 if xi−1 is

not in cache and it is added evicting someone else, and is0 if
no eviction was needed. Notice that it is allowed not to evict
even when there is a page-fault, but then the infinite loss takes
care of that. Thus, a loss is a function of all previous requests
and all previous actions. This is defined as a loss function with
memory in [13] where it is proved that there exists a universal
algorithm for individual sequence with respect to an expert set
(e.g., FSMs).

In the theoretical computer science literature, however, the
online caching problem has received a lot of attention and,
in fact, was one of the first problems to be analyzed under
the framework ofcompetitive analysiswhere the performance
of the online algorithm is compared with thebest offline
algorithm [14]. For online caching (or demand paging) the
well known LRU (Least Recently Used) has a competitive ratio
of k [14], wherek is the cache size, while the randomized
MARKER algorithm is O(log k) competitive [5]. In fact, it
is known that any deterministic algorithm for caching has a
competitive ratio of at leastk and any randomized algorithm
has a competitive ratio ofΩ(log k). We note, that for the
problem of prefetching, competitive analysis is meaningless as
the optimal offline algorithm will always prefetch the correct
item and hence incurs no cost.

In this paper, we take the probabilistic approach, and
following the work of Lund et al. [11], we compare the
performance of our algorithm to the optimalonline algorithm
(henceforth called asON) which has full knowledge of the
input distribution. The optimal online caching strategy (assum-
ing full knowledge of the underlying distribution) is known
for memoryless sources ([1], [6]) and for Markov sources (l-
order Markov) [3]. While the best online strategy is easy for
memoryless sources (simply keep thek − 1 pages with the
highest probabilities in the cache), the best strategy for higher
order sources (in particular, even when the request sequence
is generated by a Markov chain) is nontrivial, and involves
computing the optimal policy in a Markov decision process
(MDP) [10]. (In particular, many “natural” online strategies1

such as LAST2, MAX-REACH-TIME3 perform poorly even
on Markov chains [10].) However known methods for com-
puting this optimal online strategy takes time exponential in
k and this has motivated work on computingnear-optimal
online strategies (which closely approximate the performance
of ON) which take time polynomial ink ([10], [11]); however,
these results, as mentioned earlier, assume full knowledge of
the Markov source, and hence not universal. In this paper, we
propose a universal caching algorithm for mixing sources (this
includes Markov sources) that is within a constant factor of
the optimal online algorithm.

In the probabilistic setting, one can also compare the
performance of universal algorithms withoffline strategies,

1On the other hand, for prefetching, the optimal universal strategies (e.g.,
see Algoet [2]) are somewhat more “natural” and intuitive.

2On a fault, evict the page that has the highest probability of being the last
of the k pages in the cache to be requested.

3On a fault for pager, evict that page whose expected time to be reached
from r is maximum.

e.g., with the optimal offline algorithm (that has access to the
request string output by the source, and serves it optimally).
We remark that the performance ofON will typically have a
higher expected cost than the optimal offline algorithm, and
in the worst case,ON has a cost which is a factor of at most
Θ(log k) of the optimal offline algorithm, and this immediately
implies that our universal algorithm gives a performance that
is O(log k) times the optimal offline algorithm.

II. A LGORITHM

To motivate our algorithm we first briefly describe the
DOMinating-distribution (DOM) algorithm of Lund et al.
([11], [3]). DOM assumesthat for a given distributionD,
one can compute (efficiently) for all distinct pagesq and
r the probability p(q, r) that r will be requested beforeq
(such a distribution is calledpairwise-predictive). A pairwise-
predictive distributionD and an online paging algorithmALG
naturally induce aweighted tournamentas follows. A weighted
tournamentT (S, p) is a set of statesS and a (probability)
weight functionp : S×S → [0, 1] satisfying the property that
p(q, r) + p(r, q) = 1 for all r 6= q in S andp(r, r) = 0 for all
r ∈ S. Given a pairwise predictive distributionD and paging
algorithm ALG, the weight functionp is determined byD
(e.g., just before each new request), andS will be the set of
ALG’s pages in the cache. Adominating distributionp̃ for a
tournamentT (S, p) is a probability functionp̃ : S → [0, 1]
such that for everyq ∈ S, if u ∈ S is chosen with probability
p̃(u) then E[p(q, u)] ≤ 1/2 (this expectation is taken with
respect to bothD and p̃). Lund et al. show the following key
lemma on dominating distributions:

Lemma 1 ([11]): Every weighted tournamentT (S, w) has
a weighted distribution and such a distribution can be found
by solving a linear program consisting ofS variables.

Now we can state the DOM algorithm: LetD be a pairwise-
predictive input distribution and letx = x1, x2, . . . be a request
sequence. On thetth requestxt, if xt is a page fault (otherwise
do nothing), then (as determined byD) construct a weighted
tournamentTt(S, p) on the k pages presently in the cache.
Evict pageq with probability p̃t(q) wherep̃t is the dominating
distribution for the tournamentTt(S, p).

The following theorem gives the performance of DOM.
Theorem 1 ([11]): For all request sequencesx from D, the

following holdsE[DOM(x)] ≤ 4·ON(x), and the complexity
per page fault is bounded byk assumingthat for all distinct
pairs of pagesq andr, we have precomputedp(q, r).

We now propose a new universal caching algorithm that uses
the idea of Sampled Pattern Matching (SPM) [9] to obtain a
good estimate of the probability that pagep occurs before
pageq (Steps 1-3 below). We then apply the caching strategy
of [11] to evict a page upon a fault (Step 4). We will show
that the expected page fault rate of our algorithm will be at
most 4 + o(1) times ON, the optimal online algorithm. First
we state our algorithm below.

Universal Caching Algorithm:
Let x1, x2 . . . be the request sequence. Let1/2 < α < 1 be a

fixed constant.
If xn is not in the cacheC andC is full do:

1. Find the largest suffix ofxn
1 whose copy appears somewhere

in the stringxn
1 . Call this themaximal suffixand let its length

be Dn.
2. Take anα fraction of the maximal suffix of lengthkn =
dαDne, i.e., the suffixxn−kn+1 . . . xn. Each occurrence of
this suffix in the stringxn

1 is called amarker. Let Ln ≥ 2 be
the number of occurrences of the marker inxn

1 .
3. For every pair of elementsa, b in C, estimate the probability
P (a, b) thata will occur beforeb after the marker position as
follows: Let Yj(a, b) be the indicator r.v. for the event thata
occurs beforeb in the substring that starts after thejth marker,
1 ≤ j ≤ Ln. Then the estimator is

P̃ (a, b) =

∑Ln

j=1 Yj(a, b)
Ln

.

4. Compute a distributionp(x) (call this adominating distri-
bution parameterized byx) by solving a LP as in Equation 2
(Section III) such that for each pagea in C, if b is chosen
according top, then E[P̃ (a, b)] ≤ x, for somex ∈ [0, 1]
(whose value will be determined in the proof). Choose a page
to evict fromC according to the distributionp(x).

The algorithm can be naturally implemented by maintain-
ing a suffix tree [7]. The longest suffix, markers, the delay
sequences and the estimates (Steps 1-3), can be computed
efficiently from a suffix tree. The suffix tree ofx1, . . . , xn is
a trie (i.e., a digital tree) built from all suffixes ofx1, . . . , xn$
where $ is a special symbol that does not belong to the
alphabetH. External nodes of such a suffix tree contain
information about the the suffix positions in the original string
and the substring itself that leads to this node. In addition,
we keep pointers to those external nodes that contain suffixes
ending with the special symbol$ (since one of them will be
the longest suffix that we are looking for; in fact, the one
with the longest path). It is very easy to find all markers once
the suffix tree is built. Indeed, they are located in the subtree
that can be reached following the lastdαDne symbols of the
longest suffix.

Given a suffix tree onn nodes, the worst case time to do
these operations isO(n) (cf. [7]), but on average will take
only O(n1−α) (for someα > 1/2) since there are only so
many markers whp ([9]) and the delay isO(log2 n) whp (cf.
Section III). Moreover, it is easy to update the suffix tree when
the new symbolxn+1 is added. The only nodes that we must
look at are the ones with$ to which we keep pointers. In the
worst case, we need to inspectO(n) nodes, but on average
only O(n1−α) [9]. Step 4 can be implemented by solving a
LP (cf. Theorem 2) and hence is polynomial in the size of the
cache.

From the algorithmic complexity point of view, the above
algorithm has the drawback of constructing a suffix tree after
each eviction. In order to rectify it, one can propose thefixed
database caching algorithm[15] in which we are given a

database (training sequence) that is utilized to compute the
estimator P̃ (a, b). It is assumed that the request sequence
and the database sequence are independent and identically
distributed. Clearly, now we need only to construct a suffix tree
of a given database sequence. This approach will be elaborated
in the full version of the paper.

III. M AIN RESULTS AND ANALYSIS

Throughout, we assume that the request sequence
X1, X2, . . . , Xn is generated by a stationary (strongly) mixing
source over a finite alphabetA (the cache size isk < |A|) (cf.
[15]).

Definition 1 (MX - (Strongly)φ-Mixing Source):Let Fn
m

be aσ-field generated byXm
n = XmXm+1 . . . Xn for m ≤

n. The source is calledmixing, if there exists a bounded
function φ(g) such that for all m, g ≥ 1 and any two
eventsA ∈ Fm

1 and B ∈ F∞m+g the following holds:(1 −
φ(g)) Pr(A) Pr(B) ≤ Pr(AB) ≤ (1 + φ(g)) Pr(A) Pr(B).
If, in addition, limg→∞ φ(g) = 0, then the source is called
strongly mixing.

Strongly mixing sources includememorylesssources (mix-
ing with φ(g) = 0) andMarkov sourcesover a finite alphabet
(mixing with φ(g) = O(γg) for some γ < 1) [15]. For
our analysis below, we assume that theφ mixing coefficient
satisfies limn→∞ n1−αφ(nε) = 0 for any arbitrary small
ε > 0. Our main result is formulated next.

Theorem 2:Let An and OPTn denote the number of
page faults incurred by our algorithm and the optimal online
algorithm respectively aftern requests from a strongly mixing
source. Then

E[An] ≤ (4 + o(1))E[OPTn]

asn →∞.

We now prove Theorem 2. We need the following results
from [9]:
1. Marker separation property: There existsε > 0 such that
for α > 1/2 with high probability (whp)4 as n → ∞ two
consecutive markers in the stringXn

1 cannot be closer than
nε positions. A consequence of the separation property is that
the number of markers isn1−α whp.
2. Marker stability property: There existsε > 0 such that
whp no modification of any of thednεe symbols following a
marker will transform the stringXn

1 into another stringX̃n
1

with a new set of markers.
Let L denote the maximumdelay before we see all the

symbols in the (current) cacheC after any marker, i.e.,L =
max1≤j≤Ln

Lj whereLj the delay before we all symbols after
the jth marker.

Lemma 2:L = O(log2 n) whp.

Proof. Let Xk be the first symbol after the end of a marker
and consider the nextc log2 n symbols starting fromXk, i.e.,
the subsequenceXk+c log2 n

k wherec > 0 is a suitably large

4i.e., with probability at least1− 1/nν for some constantν > 0.

fixed constant. We first bound the probability that a particular
symbol (saya) in C will not occur in the above subsequence.
Partitioning this subsequence into blocks of sizelog n and
using the mixing property the above probability is bounded
by (1 + φ(log n)))c log n(pa)log n ≤ 1/n2, for a suitably large
constantc, where pa is the (unconditional) probability of
occurrence symbola in the sequence. (Since we consider a
finite alphabet and the source is stationary and ergodic,pa is
some positive constant independent ofn.) Applying the union
bound, we have that all symbols inC occur in Xk+c log2 n

k

with probability 1 − 1/n for some suitably large constantc.
Thus the delay for this marker isO(log2 n) with probability
at least1− 1/n. We appeal to the marker separation property
and the fact that are at mostn1−α markers whp to conclude
that whp that the delay isO(log2 n) after every marker.

In the next lemma we prove that our estimatorP̃ (a, b) is
consistent.

Lemma 3:Let θ ∈ (0, 1) be a suitably small positive
constant. The estimators̃P (a, b) for every pair of symbols
a andb in cache are within1/nθ of the true estimates whp.

Proof sketch: The main idea of the proof is to show that
that the estimator random variablesYj(a, b), 1 ≤ j ≤ Ln

(computed in Step 3) are almost independent. We need the
concept of afavorite string. Fix ε > 0. Let ij be the position
after the last symbol of markerj, 1 ≤ j ≤ Ln. Define a
favorite string as one for which any modification of anydnεe
symbols following a marker does not change the position of
any markerand the delayLj after any marker isO(log2 n).
The marker separation properties and Lemma 2 imply that
whp any string is a favorite. Define the set of favorite strings:
Fn = {Xn

1 : Xn
1 is a favorite string}. Consider thedelay

subsequence: X
ij+c log2 n
ij

, 1 ≤ j ≤ Ln, (c is a suitably
large constant), i.e., the subsequence consisting ofO(log2 n)
symbols after every marker. Using Lemma 2 and the two
marker properties (which guarantees that whp that the markers
are stable and the delays after are separated bynε for some
ε > 0) we show that the delay subsequence is mixing if
Xn

1 ∈ Fn (cf. Lemma 7 in [9]). This implies that for favorite
strings, the probability distribution of the estimatorYj ’s are
within factor of(1±O(φ(nε)))Ln from an i.i.d. sequence. Let
P (a, b) be the true estimate. Thus, using a Chernoff bound for
someν ∈ (0, 1)

Pr
(
|P̃ (a, b)− P (a, b)| ≤ n−θ

)
≤ (1+O(φ(nε)))e−

1
3 LnP (a,b)n−2θ

+Pr(Xn
1 /∈ Fn) = O(1/nν).

Finally, we are ready to prove our main result.

Proof of Theorem 2. We first show that the dominating
distribution p(x) can be chosen in Step 4 such thatx ≤
1/2 + 1/nθ whp. We use the approach in [11]. Consider the

following LP:
minimize x subject to∑

a∈C

P̃ (b, a)p(u) ≤ x (∀b ∈ C), (2)∑
a∈C

p(a) = 1, p(a) ≥ 0, (∀a ∈ C)

For the purpose of analysis, appealing to Lemma 3, we
rewrite the first constraint as:∑

a∈C

P (b, a)p(u) ≤ x + O(1/nθ) (∀b ∈ C)

whereP (b, a) is the true estimate andθ is a suitably small
positive constant. By considering the dual LP, we can show
that the solution of the LP is at most1/2 + O(1/nθ). By
Lemma 3, this holds with probability at least1 − 1/nν for
someν > 0. When our algorithm has a page fault and must
evict a page, letp be a random variable denoting the page that
is evicted. Now the following property holds: for every pageq
in C, the probability thatq is next requested no later thanp is
at least1/2−O(1/nθ)−O(1/nν). By Lemma 2.5 in [11], we
conclude that the expected number of page faults is at most
4 + o(1) times the optimal online algorithm asn →∞.

IV. A CKNOWLEDGMENT

We thank Dr. M. Weinberger for a useful discussion regard-
ing sequential strategies with memory loss function.

REFERENCES

[1] A. Aho, P. Denning, and J.D. Ullman. Principles of Optimal Page
Replacement,JACM, 18(1), 1971, 80-93.

[2] P. Algoet, Universal Schemes for Prediction, Gambling and Portfolio
Selection,Annals of Probability, 20(2), 1992, 901-941.

[3] R. El Yaniv and A. Borodin.Online Computation and Competitive
Analysis, Cambridge University Press, 1998.

[4] M. Feder, N. Merhav and M. Gutman, Universal Prediction of Individual
Sequences,IEEE Transactions on Information Theory, 38, 1992, 1258-
1270.

[5] A. Fiat, R.M. Karp, M. Luby, L. A. McGeoch, D.D. Sleator and N.E.
Young, On Competitive Algorithms for Paging Problems,Journal of
Algorithms, 12, 1991, 685-699.

[6] P.A. Franaszek and T.J. Wagner. Some Distribution-free Aspects of
Paging Performance,Journal of the ACM, 21, 1974, 31-39.

[7] D. Gusfield.Algorithms on Strings, Trees, and Sequences, Cambridge
University Press, 1997.

[8] J.F. Hannan. Approximation to Bayes risk in repeated plays, inContri-
butions to the Theory of Games, Vol. 3, Annals of Mathematics Studies,
Princeton, NJ, 1957, 97-139.

[9] P. Jacquet, W. Szpankowski, and I. Apostol. A Universal Predictor Based
on Pattern Matching,IEEE Transaction on Information Theory, 48(6),
2002, 1462-1472.

[10] A.R. Karlin, S.J. Phillips and P. Raghavan. Markov Paging,SIAM
Journal on Computing, 30(3), 906-922, 2000.

[11] C. Lund, S. Phillips, and N. Reingold. Paging against a Distribution and
IP Networking,Journal of Computer and System Sciences, 58, 1999,
222-231.

[12] N. Merhav and M. Feder. Universal Prediction,IEEE Trans. Information
Theory, 44, 2124-2147, 1998.

[13] N. Merhav, E. Ordentlich, G. Seroussi, and M. J. Weinberger. On Se-
quential Strategies for Loss Functions With Memory,IEEE Transactions
on Information Theory, 48(7), 1947-1958, 2002.

[14] D.D. Sleator and R.E. Tarjan. Amortized Efficiency of List Update and
Paging Rules,Communications of the ACM, 28(2), 1985, 202-208.

[15] W. Szpankowski.Average Case Analysis of Algorithms on Sequences,
John Wiley, 2001.

[16] W. Szpankowski. A Generalized Suffix Tree and Its (Un)Expected
Asymptotic Behaviors,SIAM J. Computing, 22, 1176–1198, 1993.

[17] J.S. Vitter and P. Krishnan. Optimal Prefetching Via Data Compression,
Journal of the ACM, 43(5), 1996, 771-793.

[18] M. Weinberger and E. Ordentlich. On-line decision making for a class
of loss functions via Lempel-Ziv Parsing, InProc. of the IEEE Data
Compression Conference, 2000, 163-172.

[19] J. Ziv and A. Lempel, Compression of Individual Sequences via Variable
Rate Coding,IEEE Transactions on Information Theory, 24(5), 1978,
530-536.

