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Abstract

A digital search tree (DST) is a fundamental data structure on words that finds vari-
ous applications from the popular Lempel-Ziv’78 data compression scheme to distributed
hash tables. The profile of a DST measures the number of nodes at the same distance
from the root; it depends on the number of stored strings and the distance from the root.
Most parameters of DST (e.g., depth, height, fillup) can be expressed in terms of the
profile. We study here asymptotics of the average profile in a DST built from sequences
generated independently by a memoryless source. After representing the average pro-
file by a recurrence, we solve it using a wide range of analytic tools. This analysis is
surprisingly demanding but once it is carried out it reveals an unusually intriguing and
interesting behavior. The average profile undergoes phase transitions when moving from
the root to the longest path: at first it resembles a full tree until it abruptly starts grow-
ing polynomially and oscillating in this range. These results are derived by methods of
analytic combinatorics such as generating functions, Mellin transform, poissonization and
depoissonization, the saddle-point method, singularity analysis and uniform asymptotic
analysis.
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recurrences, generating functions, poissonization, Mellin transform, saddle point method.

∗The material in this paper was presented in part at the SODA, New York, 2009.
∗The work of this author was supported by the Austrian Science Foundation FWF Grant No. S9604.
†Work of W. Szpankowski was supported in part by NSF STC Grant CCF-0939370, NSF Grants DMS-

0800568, and CCF-0830140, NSA Grant H98230-08-1-0092, and the Humboldt Research Award

1



1 Introduction

Digital trees are fundamental data structures on words [14, 27]. Among them tries and

digital search trees stand out due to myriad of applications ranging from data compression

to distributed hash tables [14, 19, 20, 27]. In a digital search tree, the subject of this paper,

strings are directly stored in nodes. More precisely, the root contains the first string (or an

empty string), and the next string occupies the right or the left child of the root depending

on whether its first symbol is “0” or “1”. The remaining strings are stored in available nodes

which are directly attached to nodes already existing in the tree. A digital search tree with n

internal nodes is “completed” with n+1 external nodes, as shown in Figure 1. These external

nodes can be seen as those positions where the next item is to be stored. The resulting tree

is then a complete binary tree with the external nodes as leaves. The search for an available

node follows the prefix structure of a new string [14, 19].

Figure 1: A digital search tree built on eight strings s1, . . . , s8 (i.e., s1 = 0 . . ., s2 = 1 . . .,

s3 = 01 . . ., s4 = 11 . . ., etc.) with internal (ovals) and external (squares) nodes, and its

profiles.

In this paper, we are concerned with probabilistic properties of the profile defined as the

number of nodes at the same distance from the root. Throughout the paper, we write In,k for

the number of nodes at level k when n strings are stored, and Bn,k for the number of external

nodes at level k. We study the profile built over n binary strings generated by a memoryless

source, that is, we assume each string is a binary independently and identically distributed

(i.i.d.) sequence with p being the probability of a “1” (0 < p < 1); we also use q := 1−p ≥ p.

This simple model may seem too idealized for practical purposes, however, typical behaviors

under such a model often hold under more general models such as Markovian or dynamical

sources, although the technicalities are usually more involved (see [7, 16, 27]).

The motivation of studying the profiles is multifold. First, digital search trees are used

in various applications ranging from data compression (e.g., Lempel-Ziv’78 data compres-
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sion scheme1 [8]), to telecommunication (e.g., conflict resolution algorithms [27]), to partial

matching of multidimensional data, to distributed hash tables [20]. Second, the profile is a

fine shape measure closely connected to many other cost measures as further discussed below.

Third, not only the analytic problems are mathematically challenging, but the diverse new

phenomena they exhibit are highly interesting and unusual.

As mentioned above, several DST parameters can be expressed in terms of the internal

profile:

(i) height : the length of the longest path from the root is Hn = max{j : In,j > 0};
(ii) fillup (or saturation) level : the largest full level, or Fn = max{j : In,j = 2j};
(iii) depth: the distance from the root to a randomly selected node; its distribution is given

by the expected profile divided by n, [18];

(iv) total path length: the sum of distances between nodes and the root, or equivalently

Ln =
∑

j jIn,j .

The average profile is described by an interesting recurrence of the following form

xn+1,k =
∑

0≤j≤n

(

n

j

)

pj(1− p)n−j (xj,k−1 + xn−j,k−1)

with suitable initial conditions. We solve it asymptotically for a wide range of n and k ≤ n.

This is our main contribution. We accomplish it by first considering the Poisson gener-

ating function ∆k(z) := e−z
∑

n xn,kz
n/n! that satisfies the following functional-differential

equation

∆′
k+1(z) + ∆k+1(z) = ∆k(pz) + ∆k(qz), (1)

with a suitable ∆0(z). This equation is still not ready for analytic methods, therefore, one

applies the Mellin transform, and some additional transformations, leading to the following

functional-recurrence equation

Fk+1(s)− Fk+1(s− 1) = (p−s + q−s)Fk(s) (2)

for complex s. We are able to obtain an explicit solution of this equation by introducing a

proper functional operator. Next, when finding the inverse of the Mellin transform we need

to deal with an infinite number of saddle points, already observed in [22] for the profile of

tries. The final step is to invert asymptotics of the Poisson function ∆k(z) through the so

called analytic depoissonization [9] to recover asymptotically xn,k. The reader is referred to

[5, 27] for a detailed discussion of the above tools belonging to analytic combinatorics.

Digital trees have been intensively studied for the last thirty years [1, 8, 10, 12, 13, 14,

15, 17, 18, 23, 24, 26, 27]. The quantity closest related to the profile is the typical depth Dn

that measures the path length from the root to a randomly selected node; it is equal to the

ratio of the average profile to the number of nodes. However, all estimations of the depth

[1, 14, 17, 18, 24, 26, 25] deal only with the typical depth around most likely value, namely

k = h−1 log n+O(1) where h = −p log p−q log q is the entropy rate. Analyses of the external

and internal profiles of tries have been initiated in Park’s thesis and fully analyzed in Park et

al. [21, 22], while the profile of the digital search trees for unbiased source (i.e., p = q = 1/2)

has been recently obtained in [13] (see Section 6.3 of Knuth [14] for preliminary studies).

1In particular, In,k represents the number of phrases of length k in the Lempel-Ziv’78 built over n phrases.

3



In this paper, we mostly analyze precisely the expected profile of the biased digital search

trees and reveal an unusually intriguing and interesting behavior. The average internal profile

undergoes phase transitions when moving from the root to the longest path. At first it

resembles a full tree until it abruptly starts growing polynomially. Furthermore, the expected

profile is oscillating in a range where the profile grows polynomially. These oscillations are

due to an infinite number of saddle points. Knowing the expected profile for all values of k,

we easily obtain (known and unknown) results for the typical depth and width. For example,

we shall show an unusual Local Limit Theorem for the typical depth. Furthermore, our

results are in accordance with known results on height, and fillup level. We should mention

that similar phenomena were observed for tries, as discussed in [22].

The paper is organized as follows. We first present our main results and their conse-

quences. We prove them in two sections: In Section 3 we only consider the symmetric DST

(i.e., for unbiased memoryless sources). In Section 4 we deal with the asymmetric DST. This

is our main mathematical contribution, where we apply tools of analytic combinatorics such

as poissonization, Mellin transform, and saddle point method to first solve the functional

equations (1)–(2), and then extract asymptotics of the average profiles.

2 Main Results

In this section we present our main results. We first derive a general formula for the generating

functions of the external and internal profiles. Then we discuss separately the symmetric case

(i.e., unbiased memoryless source with p = 0.5), and the asymmetric case (biased memoryless

source).

2.1 Generating Functions

Let Bn,k and In,k denote the (random) number of external and internal nodes, respectively,

at level k in a digital search tree built over n strings generated by a memoryless source with

parameter p ≤ 1 − p := q; see Figure 1. The probability generating function of the external

profile, Pn,k(u) = EuBn,k , satisfies the following recurrence relation (see [8])

Pn+1,k(u) =
n
∑

ℓ=0

(

n

ℓ

)

pℓqn−ℓPℓ,k−1(u)Pn−ℓ,k−1(u). (3)

The corresponding exponential generating function

Gk(x, u) =
∑

n≥0

Pn,k(u)
xn

n!

fulfills the following functional recurrence

∂

∂x
Gk(x, u) = Gk−1(px, u)Gk−1(qx, u), (k ≥ 1), (4)

with initial conditions G0(x, u) = u + ex − 1 and Gk(0, u) = 1 (k ≥ 1). Similarly, the

corresponding generating function for the internal profile

Gk(x, u) =
∑

n≥0

EuIn,k
xn

n!
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satisfies the same recurrence relation

∂

∂x
Gk(x, u) = Gk−1(px, u)Gk−1(qx, u), (k ≥ 1), (5)

however, the initial conditions are G0(x, u) = 1 + u(ex − 1) and Gk(0, u) = 1 (k ≥ 1).

We are interested in the expected profiles EBn,k and E In,k. By taking derivatives with

respect to u and setting u = 1 we obtain for the exponential generating function

Ek(x) =
∑

n≥0

EBn,k
xn

n!

the following functional recurrence

E′
k(x) = eqxEk−1(px) + epxEk−1(qx), (6)

with initial condition E0(x) = 1 and Ek(0) = 0 (k ≥ 1). The corresponding generating

function for the internal profile

Ek(x) =
∑

n≥0

E In,k
xn

n!

satisfies recurrence (6), too, however with initial conditions E0(x) = ex − 1 and Ek(0) = 0

(k ≥ 1). Note that (6) is equivalent to the recurrence relation

EBn+1,k+1 =

n
∑

ℓ=0

(

n

ℓ

)

pℓqn−ℓ(EBℓ,k + EBn−ℓ,k) (n, k ≥ 0). (7)

In this paper we analyze (7) for a wide range of n and k to present exact and asymptotic

solutions. We first consider the symmetric case (p = q), and then the asymmetric case.

2.2 Symmetric Case

Let us start with the symmetric case p = q = 1
2 . The corresponding generating functions

have simpler structures. Namely,

∂

∂x
Gk(x, u) = Gk−1

(x

2
, u
)2

, (k ≥ 1),

with initial conditions G0(x, u) = u+ ex − 1 and Gk(0, u) = 1 (for k > 0), and

∂

∂x
Gk(x, u) = Gk−1

(x

2
, u
)2

, (k ≥ 1),

with the initial conditions G0(x, u) = 1 + u(ex − 1) and Gk(0, u) = 1. Thus (6) becomes

E′
k(x) = 2ex/2Ek−1

(x

2

)

, (8)

with E0(x) = 1 and Ek(0) = 0 for k ≥ 1 and for the internal profile

E
′
k(x) = 2ex/2Ek−1

(x

2

)

, (9)

with E0(x) = ex − 1 and Ek(0) = 0.

In this special case, we can solve explicitly the above functional-differential equations

leading to our first result.
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Theorem 1 Set Q0 = 1 and

Qℓ =

ℓ
∏

j=1

(

1− 1

2j

)

(ℓ > 0).

Then

Ek(x) = 2kex
k
∑

m=0

(−1)m2−(
m
2 )

QmQk−m
e−x2m−k

, (10)

and

Ek(x) = 2kex

(

1−
k
∑

m=0

(−1)m2−(
m+1

2 )

QmQk−m
e−x2m−k

)

. (11)

Furthermore,

EBn,k = 2k
k
∑

m=0

(−1)m2−(
m
2 )

QmQk−m

(

1− 1

2k−m

)n

(12)

and

E In,k = 2k − 2k
k
∑

m=0

(−1)m2−(
m+1

2 )

QmQk−m

(

1− 1

2k−m

)n

. (13)

for any n and k ≤ n.

There are several ways to prove these relations. The simplest way is to use induction (see

[3]. It should be noted that the explicit formula (12) for EBn,k has appeared several times

in the literature [17, 18, 19, 25]. Therefore, we omit here details of the proof.

In Section 3 we establish the asymptotic behavior of the average profiles presented next.

Theorem 2 Set

F (z) = 1−
∑

m≥0

(−1)m2−(
m+1

2 )

Q∞Qm
e−z2m , (14)

where Q∞ =
∏

j≥1(1− 2−j). Then

EBn,k = 2kF ′(n2−k) + F ′′(n2−k) +O(n2−k) (15)

and

E In,k = 2kF (n2−k) + F ′(n2−k) +O(n2−k) (16)

uniformly for all n, k ≥ 1.

In particular, if n2−k → 0 we can use the following asymptotic expression for the deriva-

tives of F (z):

F (r)(z) ∼ C ′e−Ψ(log2 c(z))c(z)r+
1
2 (log c(z))−

1
2 elog2

1
z
− log 2

2
(log2 c(z))

2

, as z → 0+,

where C ′ is a constant, Ψ(z) a periodic function with period 1, and c(z) = 1
z log2

(

1
z

)

.

In passing we should point out that a precise asymptotic behavior of the internal profile

of the symmetric DST was also recently presented in [13], using a different approach. In [13]

the authors analyzed several ranges of k from k = O(1), to k = α log n, α > 1, to k = Θ(n)

through methods of applied mathematics and the saddle point approach.
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2.3 Asymmetric Case

The asymmetric case (p < q) is much more involved. In particular, we cannot obtain a simple

exact solution for the exponential generating function Ek(x). To circumvent this problem,

we apply the Poisson transform and the Mellin transform [5, 27] to find asymptotic solutions.

Let us start with the external profile. The Poisson transform of Ek(x), namely

∆k(x) = e−x
∑

n≥0

EBn,k
xn

n!
= Ek(x)e

−x, (k ≥ 0)

translates recurrence (6) into

∆k(x) + ∆′
k(x) = ∆k−1(px) + ∆k−1(qx), (k ≥ 1), (17)

with initial conditions ∆0(x) = e−x and ∆k(0) = 0 (k ≥ 1). This recurrence can be solved

using the Mellin transform discussed next.

The Mellin transform of ∆k(x) is defined as [5, 27]

∆∗
k(s) =

∫ ∞

0
∆k(x)x

s−1 dx. (18)

By induction it is easy to prove that ∆k(x) can be represented as a finite linear combination

of functions of the form e−pℓ1qℓ2x with ℓ1, ℓ2 ≥ 0 and 0 ≤ ℓ1 + ℓ2 ≤ k. Hence, ∆∗
k(s) exists

for all s with ℜ(s) > 0. Furthermore, Bn,k = 0 for k > n. Thus, Ek(x) = O(xk) for x → 0

which ensures that ∆∗
k(s) actually exists for s with ℜ(s) > −k.

Let us now express ∆∗
k(s) as

∆∗
k(s) = Γ(s)Fk(s),

where Γ(s) is the Euler gamma function. In the above, Fk(s) is a finite linear combination

of functions of the form p−ℓ1sq−ℓ2s with ℓ1, ℓ2 ≥ 0 and 0 ≤ ℓ1 + ℓ2 ≤ k. Thus, Fk(s) can be

considered an entire function. It is clear that (17) translates into

Fk(s)− Fk(s − 1) = (p−s + q−s)Fk−1(s) = T (s)Fk−1(s), (k ≥ 1), (19)

with initial condition F0(s) = 1 and

T (s) = p−s + q−s. (20)

Note that (19) does not only hold for ℜ(s) > −k where the Mellin transform exists. Since

Fk(s) analytically continues to an entire function, (19) holds for all complex s.

In order to find a solution of (19) we define the power series

f(s,w) =
∑

k≥0

Fk(s)w
k.

Let us also introduce a (partial) functional operator A as

A[g](s) =
∑

j≥0

g(s− j)T (s − j) (21)

for some function g. In the next theorem we find an explicit representation of Fk(x) through

the operator A. The proof is delayed till Section 4.
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Theorem 3 The functions Fk(s) are recursively given by

Fk(s) = A[Fk−1](s)−A[Fk−1](0) (k ≥ 1) (22)

with the initial function F0(s) = 1 and Fk(−ℓ) = 0 for ℓ = 0, 1, 2, . . . , k − 1 and k ≥ 1.

Furthermore, if we set Rk(s) = Ak[1](s), then we have the formal identity

∑

k≥0

Fk(s)w
k =

∑

ℓ≥0Rℓ(s)w
ℓ

∑

ℓ≥0 Rℓ(0)wℓ
. (23)

Remark 1 It is easy to compute Rk(s) for a few small values of k. For example,

R0(s) = 1,

R1(s) =
p−s

1− p
+

q−s

1− q
,

R2(s) =
p−2s

(1− p)(1− p2)
+

p−sq−s

(1− p)(1− pq)
+

p−sq−s

(1− q)(1 − pq)
+

q−2s

(1− q)(1 − q2)
.

In Section 4 we use the above representation to find the asymptotic behavior of the average

profiles. To present it in a concise form, we need some additional notation. For a real number

α with (log 1
p)

−1 < α < (log 1
q )

−1, let

ρ = ρ(α) =
1

log(p/q)
log

1− α log(1/p)

α log(1/q) − 1
. (24)

Equivalently, α and ρ satisfy the equation

α =
p−ρ + q−ρ

p−ρ log 1
p + q−ρ log 1

q

.

Furthermore, we set

β(ρ) =
p−ρq−ρ log(p/q)2

(p−ρ + q−ρ)2
, (25)

and we also use the abbreviation

α0 =
2

log 1
p + log 1

q

.

Our first main asymptotic result is presented next.

Theorem 4 Let EBn,k denote the expected external profile in (asymmetric) digital search

trees with 0 < p < q = 1−p < 1. If n and k are positive integers with 1
log 1

p

+ε ≤ k
logn ≤ 1

log 1
q

−ε

(for some ε > 0), then uniformly

EBn,k = H
(

ρn,k, logp/q p
kn
) (p−ρn,k + q−ρn,k)kn−ρn,k

√

2πβ(ρn,k)k

(

1 +O
(

k−1/2
))

, (26)

where ρn,k = ρ(k/ log n) and H(ρ, x) is a non-zero periodic function with period 1 given by

(56) of Section 4.
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The average internal profile is slightly more complicated. Among others, it exhibits some

phase transitions. As before, the Poisson transform of E In,k is defined as

∆k(x) = e−x
∑

n≥0

E In,k
xn

n!
= Ek(x)e

−x, (k ≥ 0)

which translates into

∆k(x) + ∆
′
k(x) = ∆k−1(px) + ∆k−1(qx), (k ≥ 1), (27)

with the initial condition ∆0(x) = 1 − e−x. This initial condition shifts the existence of the

Mellin transform ∆
∗
k(s) to −k − 1 < ℜ(s) < 0. Let now

∆
∗
k(s) = −Γ(s)F k(s)

where F 0(s) = 1 and by (27) we find

F k(s)− F k(s− 1) = T (s)F k−1(s).

Using now the operator A defined in (21), we can express F k(s) similarly as in Theorem 3,

that is,

F k(s) = A[F k−1](s)−A[F k−1](−1) (k ≥ 1) (28)

and
∑

k≥0

F k(s)w
k =

∑

ℓ≥0Rℓ(s)w
ℓ

∑

ℓ≥0 Rℓ(−1)wℓ
. (29)

Using this representation, in Section 4 we prove our second main asymptotic result.

Theorem 5 Let E In,k denote the expected internal profile in (asymmetric) digital search

trees with 0 < p < q = 1− p < 1. Let k and n be positive integers such that k/ log n satisfies

(log 1
p)

−1 < k/ log n < (log 1
q )

−1. Then the following assertions hold:

1. If 1
log 1

p

+ ε ≤ k
logn ≤ α0 − ε (for some ε > 0), then uniformly

E In,k = 2k −H
(

ρn,k, logp/q p
kn
) (p−ρn,k + q−ρn,k)kn−ρn,k

√

2πβ(ρn,k)k

(

1 +O
(

k−1/2
))

,

where H(ρ, x) is a non-zero periodic function with period 1 (see Section 4 for more

details).

2. If k = α0

(

log n+ ξ
√

α0β(0) log n
)

, where ξ = o((log n)
1
6 ), then

E In,k = 2kΦ(−ξ)

(

1 +O

(

1 + |ξ|3√
log n

))

where Φ is the normal distribution function.

3. If α0 + ε ≤ k
logn ≤ 1

log 1
q

− ε (for some ε > 0), then uniformly

E In,k = H
(

ρn,k, logp/q p
kn
) (p−ρn,k + q−ρn,k)kn−ρn,k

√

2πβ(ρn,k)k

(

1 +O
(

k−1/2
))

with the same function H(ρ, x) as in 1.
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We should point out that we can extend the range of the asymptotic expansion (for

k/ log n around α0, log(1/p), and log(1/q)) so that there are no formal gaps in the uniform

asymptotic expansions. Actually, we can obtain the same range as in [22]. However, this

would lengthen the proof considerably and we decided to omit the details since they provide

no new insights.

Finally, we point out that if we set α = k/ log n, then we can rewrite

(p−ρ + q−ρ)kn−ρ = nα log(p−ρ+q−ρ)−ρ.

Thus, for α0 < α < 1/ log(1/q) the behavior of EBn,k and E In,k is governed by a power of

n depending on the ratio α = k/ log n. The maximum exponent is obtained for

α =
1

h
=

1

p log 1
p + q log 1

q

,

where h = p log 1
p+q log 1

q denotes the entropy of the Bernoulli source. Actually, the expected

number of nodes at level k = 1
h log n is of order n/

√
log n.

2.4 Some Consequences

In this section we briefly present some consequences of our main findings. We start with the

typical depth. Let Dn denote the depth of a random node in a digital search tree with n

nodes. Then the distribution of Dn is related to the internal profile by [14, 26]

P{Dn = k} =
E In,k
n

.

Hence, a direct application of Theorem 5 provides an unusual local limit theorem.

Theorem 6 Let Dn denote the depth of a random node in a binary random digital search

tree with 0 < p < q = 1− p < 1. Then

P{Dn = k} =
H
(

−1, logp/q p
kn
)

√

2π(h2 − h2)/h3 log n
exp

(

−
(

k − 1
h log n

)2

2(h2 − h2)/h3 log n

)

×
(

1 +O

(

1√
log n

+

∣

∣k − 1
h log n

∣

∣

3

(log n)2

))

uniformly for k and n with
∣

∣k − 1
h log n

∣

∣ = o
(

(log n)2/3
)

where h2 = p(log 1
p)

2 + q(log 1
q )

2.

The unusualness of this result is the periodic factor H(·, ·) in the local limit theorem.

Although the depth Dn follows a central limit theorem (see [18]) it does not obey the corre-

sponding local central limit theorem (see also with [22]).

As a further corollary to the above finding, we observe that the width Wn (defined as

maxk In,k) satisfies

EWn ≥ max
k

E In,k = Ω

(

n

log n

)

.

In order to obtain a corresponding upper bound (one expects that the order of magnitude

of the lower bound is the correct one) we would need some information about the second

moment E I2n,k, compare with [2].
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Remark 2 Other parameters of interest are the height Hn = max{k : In,k > 0} and the

fillup level Fn = max{k : In,k = 2k}. It is well known (see [23, 1]) that

Hn

log n
→ 1

log p−1
, in probability,

and
Fn

log n
→ 1

log q−1
, in probability.

This is completely in accordance with our findings. Theorem 4 only works in the interesting

range (log 1
p)

−1 < α = k/ log n < (log 1
q )

−1 where we either have 2k − E In,k → ∞ resp.

E In,k → ∞. However, it is a common phenomenon that fillup level and height occur, where

E In,k = 2k − O(1) resp. where E In,k = O(1). By extrapolating the asymptotic expansions,

presented in Theorem 4, to its boundaries α = (log 1
p)

−1 resp. α = (log 1
q )

−1 one can expect

to prove this kind of behavior (see [22] for tries). In order to make this precise we would have

to discuss the asymptotic behavior of Fk(s) for s → ∞ and s → −∞, which we omit in this

paper (see [12] for the symmetric case).

3 Analysis: Symmetric Case

In the symmetric case, we only discuss the asymptotic analysis of the profile. We prove here

(15) and (16) of Theorem 2 that we repeat below:

EBn,k = 2kF ′(n2−k) + F ′′(n2−k) +O(n2−k)

and

E In,k = 2kF (n2−k) + F ′(n2−k) +O(n2−k),

where (see (14))

F (z) = 1−
∑

m≥0

(−1)m2−(
m+1

2 )

Q∞Qm
e−z2m .

It is easy to see that

F (z) = 1− 1

Q∞
e−z +O(e−2z) (z → ∞).

However, for the asymptotics of EBn,k and E In,k we need the behavior of F (z) for z → 0+

which is much more involved and will be presented in Lemma 2. Interestingly we need the

following identity.2

Lemma 1 Suppose that |q| < 1 and let

(a; q)∞ =

∞
∏

j=0

(1− aqj) and (a; q)k =
(a; q)∞
(aqk; q)∞

,

be the usual q-Pochhammer notation for q-rising factorial. Then

∞
∑

k=0

(−1)kq(
k
2)

(q; q)k(1− cqk−1)
q2k =

q

c

1

1− c/q

(q; q)∞
(c; q)∞

− q

c
(q; q)∞. (30)

2We are grateful to Michael Schlosser (University of Vienna) who proposed a simple proof of Lemma 1.
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Proof: We first recall the following 1φ1 summation formula [6, Appendix (II.5)]:

∞
∑

k=0

(a; q)k(−1)kq(
k
2)

(q; q)k(c; q)k

( c

a

)k
=

(c/a; q)∞
(c; q)∞

(31)

that we will apply twice. We consider the left hand side of (30) and replace one factor qk by
q
c −

q
c (1− cqk−1) that leads to

∞
∑

k=0

(−1)kq(
k
2)

(q; q)k(1− cqk−1)
q2k =

∞
∑

k=0

(−1)kq(
k
2)

(q; q)k(1− cqk−1)
qk
[q

c
− q

c
(1− cqk−1)

]

=
q

c

1

1− c/q

∞
∑

k=0

(c/q; q)k(−1)kq(
k
2)

(q; q)k(c; q)k
qk − q

c

∞
∑

k=0

(−1)kq(
k
2)

(q; q)k
qk.

The first sum on the right hand side can be simplified using (31) by setting a = c/q. For the

second sum we can also apply (31) with a = c/q but considering the limit c → 0. This proves

(30).

If we apply (30) with the special values q = 1
2 and c = − s

2 we obtain (after some

elementary calculations)

1

s

∞
∏

j=0

1

1 + s2−j
=

1

s
−

∞
∏

j=1

1

1− 2−j

∞
∑

m=0

(−1)m 2−(
m+1

2 )

(s + 2m)
∏m

j=1(1− 2−j)
. (32)

This identity is now used in the proof of Lemma 2 and in an asymptotic expansion of F (z)

and its derivatives.

Lemma 2 The Laplace transform L(s) =
∫∞
0 F (z)e−sz dz is given by

L(s) =
1

s

∞
∏

j=0

1

1 + s2−j
. (33)

Furthermore, for any fixed r ≥ 0 the r-th derivative F (r)(z) is asymptotically equivalent to

F (r)(z) ∼ C ′e−Ψ(log2 c(z))c(z)r+
1
2 (log c(z))−

1
2 elog2

1
z
− log 2

2
(log2 c(z))

2

, (34)

where c(z) = log(1/z)
z log 2 = log2(1/z)

z and

C ′ =
1√
2π

exp

(

− π2

6 log 2
− 1

12
log 2

)

.

In particular limz→0+ F (r)(z) = 0.

Proof: Since F (z) is bounded for z ≥ 0, the Laplace transform L(s) exists for ℜ(s) > 0

and is given by

L(s) =

∫ ∞

0
F (z)e−sz dz =

1

s
−
∑

m≥0

(−1)m2−(
m+1

2 )

Q∞Qm (s+ 2m)

12



Applying (32) we prove (33).

Denoting

Q(x) =
∞
∏

j=1

(

1− x

2j

)

we also have

L(s) =
1

sQ(−2s)
.

Note that the Laplace transforms of the derivatives F (r)(z) are given by

srL(s)−
r−1
∑

j=0

sr−1−j lim
z→0+

F (j)(z).

Since we will prove (inductively) that limz→0+ F (r)(z) = 0 we can assume (inductively) that

the Laplace transforms of the derivatives F (r)(z) is actually given by srL(s).

In order to obtain the asymptotic expansion (34) we use the integral representation for

the inverse Laplace transform

F (r)(z) =
1

2πi

∫ c+i∞

c−i∞
srL(s)esz ds,

where c is an arbitrary positive number (which we choose in the sequel). Here we use the fact

that we have already proved that limz→0+ F (j)(z) = 0 for j < r. The idea is to use a saddle

point approximation of the integrand. For this purpose we need an asymptotic formula for

Q(−2x) for x → ∞:

Q(−2x) = exp

(

(log x)2

2 log 2
+

log x

2
+

π2

6 log 2
+

1

12
log 2 + Ψ(log2(x)) +O(1/x)

)

, (35)

where Ψ(x) is a differentiable periodic function with period 1. This follows from the Mellin

transform applied to the logarithms. Indeed, for −1 < ℜ(u) < 0, using the “harmonic sum

formula” [4, 27] we find

M(u) =

∫ ∞

0
logQ(−2x)xu−1 dx =

1

1− 2u
R(u)

with

R(u) =

∫ ∞

0
log(1 + x)xu−1 dx =

π

u sin(πu)
.

The inverse Mellin transform yields

logQ(−2x) =
1

2πi

∫ c+i∞

c−i∞
M(u)x−u du

with −1 < c < 0. By shifting the line of integration to the right and collecting the contri-

butions from the triple pole at u = 0 and the single poles at u = 2πki/ log 2 (k ∈ Z \ {0}),
which constitute the periodic function Ψ, we obtain (35) (compare with [4]). It is also easy to

extend the asymptotic relation (35) to the complex plane | arg(x)| ≤ δ and |x| → ∞, where

δ is a small positive number.

13



By elementary means it follows that the order of magnitude of |Q(−2x)| is (up to con-

stants)

exp

(

(log |x|)2
2 log 2

+
log |x|

2

)

(36)

as |x| → ∞. This estimate will be used for x with δ ≤ | arg(x)| ≤ π.

With the help of these preliminaries we can evaluate the r-th derivative F (r)(z) asymp-

totically. Let 0 < z < 1 be given. We will compute the integral

F (r)(z) =
1

2πi

∫ c+i∞

c−i∞

sr−1

Q(−2s)
esz ds,

where

c = c(z) =
log(1/z)

z log 2
=

log2(1/z)

z

is chosen as the (approximate) saddle point of the function

s 7→ exp

(

sz − (log s)2

2 log 2

)

.

Hence, by a standard saddle point method we obtain (34). It also follows that limz→0+ F (r)(z) =

0 which completes the induction proof. Note that we can use the expansion (35) for | arg(s)| =
| arg(c(z) + it)| ≤ δ and the estimate (36) for | arg(s)| ≥ δ.

This completes the proof of Lemma 2 (see also [12]).

Remark 3 We note that the relation In,k =
∑

j≥1 2
−jBn,k+j is reflected by the functional

equation

F (z) =
∑

j≥1

F ′(z2−j)

which is equivalent to the relation

L(s) = s
∑

j≥1

2jL(s2j), (37)

where L(s) = sL(s) denotes the Laplace transform of F ′(z). Interestingly, equation (37) is

deduced easily from the identity

∑

j≥1

2j

(1 + 2s)(1 + 22s) · · · (1 + 2js)
=

1

s
,

that follows from (31) by setting a = q = 1
2 , c = −1/(4s), applying the index shift k 7→ j − 1

and doing some elementary calculations.

Proof of Theorem 2: In order to prove Theorem 2 we use the the explicit representa-

tions (12) and (13) of Theorem 1 and approximate the leading terms by 2kF ′(n2−k) and by

2kF (n2−k), respectively.

Let us concentrate on the external profile. We repeat here equation (12)

EBn,k = 2k
k
∑

m=0

(−1)m2−(
m
2 )

QmQk−m

(

1− 1

2k−m

)n

.

14



We first show that the terms for m > k/3 can be neglected

∣

∣

∣

∣

∣

∣

∑

m>k/3

(−1)m2−(
m
2 )

QmQk−m

(

1− 2m−k
)n

∣

∣

∣

∣

∣

∣

= O





∑

m>k/3

2−(
m
2 )



 = O
(

2−(
⌊k/3⌋

2 )
)

.

In a next step we use the approximation (for m ≤ k/3)

(

1− 2m−k
)n

= e−n2m−k
(

1 +O
( n

4k−m

))

= e−n2m−k
+O

( n

4k−m

)

,

and obtain an error term of the form

∑

m≤k/3

(−1)m2−(
m
2 )

QmQk−m
·O
( n

4k−m

)

= O
( n

4k

)

.

Finally, we approximate the ratio

Q∞
Qk−m

= 1− 1

2k−m
+O

(

1

4k−m

)

leading to even smaller error term O(4−k). Summing up we arrive at

EBn,k = 2k
k
∑

m=0

(−1)m2−(
m
2 )

QmQk−m

(

1− 2m−k
)n

= 2k
∑

m≤k/3

(−1)m2−(
m
2 )

Q∞Qm

(

1− 1

2k−m

)

e−n2m−k
+O

(

2k
n

4k

)

+O
(

2k2−(
⌊k/3⌋

2 )
)

= 2k
∞
∑

m=0

(−1)m2−(
m
2 )

Q∞Qm

(

1− 2m

2k

)

e−n2m−k
+O

( n

2k

)

= 2kF ′(n2−k) + F ′′(n2−k) +O(n2−k).

This completes the proof of (15). The proof of (16) is exactly the same.

Remark 4 These expansions are valid only if n2−k ≤ 2k, that is, for k ≥ 1
2 log2 n. The range

of interest is (see [12])

log2 n− log log n ≤ k ≤ log2 n+
√

2 log2 n,

and this range is covered by Theorem 2 (see also [13]). Nevertheless, with some more care it

is easy to obtain more precise expansions, e.g.

EBn,k = 2kF ′(n2−k) + F ′′(n2−k)− n

2k+1
F ′′′(n2−k) +O(n4−k) +O(2−k).

4 Analysis: Asymmetric Case

In this section, we return to the asymmetric case (p 6= q). We first derive the exact repre-

sentation for the Mellin transform Fk(s), proving Theorem 3. Then we deal with asymptotic

results establishing Theorems 4 and 5.
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4.1 Proof of Theorem 3: Exact Representation

Let us recall that A is a functional operator defined by

A[g](s) =
∑

j≥0

g(s − j)T (s − j),

where T (s) = p−s + q−s. We prove here Theorem 3, that is,

Fk(s) = A[Fk−1](s)−A[Fk−1](0) (k ≥ 1), (38)

where F0(s) = 1, and
∑

k≥0

Fk(s)w
k =

∑

ℓ≥0Rℓ(s)w
ℓ

∑

ℓ≥0 Rℓ(0)wℓ
, (39)

where Rk(s) = Ak[1](s); also Fk(−ℓ) = 0 for ℓ = 0, 1, 2, . . . , k − 1.

Proof Theorem 3: Set F̃0(s) = 1 and recursively

F̃k(s) = A[F̃k−1](s)−A[F̃k−1](0) (k ≥ 1).

It is easy to see that F̃k(s) is a well defined entire function. In particular it follows that F̃k(s)

is (as it is for Fk(s)) a finite linear combination of a function of the form p−ℓ1sq−ℓ2s with

ℓ1, ℓ2 ≥ 0 and ℓ1 + ℓ2 ≤ k. Furthermore, by definition these functions satisfy F̃k(0) = 0 (for

k ≥ 1) and by (38) fulfill the relation

F̃k(s)− F̃k(s− 1) = T (s)F̃k−1(s)

for k ≥ 0 and all s.

Now we can proceed by induction to show that Fk(s) = F̃k(s). By definition we have

F0(s) = F̃0(s). Now suppose that Fk(s) = F̃k(s) holds for some k ≥ 0. Then it follows that

Fk+1(s) = F̃k+1(s) +G(s), where G(s) satisfies

G(0) = 0 and G(s)−G(s − 1) = 0, (ℜ(s) > −k). (40)

By the above observations G(s) has to be a finite linear combination of functions of the form

p−ℓ1sq−ℓ2s. However, the only periodic function of this form that meets conditions (40) is the

zero function. Hence, Fk+1(s) = F̃k+1(s).

Now we prove (39), which is equivalent to

k
∑

ℓ=0

Fℓ(s)Rk−ℓ(0) = Rk(s), (k ≥ 0),

or

Fk(s) = Rk(s)−
k−1
∑

ℓ=0

Fℓ(s)Rk−ℓ(0), (k ≥ 0).

We will prove this relation by induction. Certainly, it is satisfied for k = 0. Now suppose

that is holds for some k ≥ 0. By (38) we also have

Fk+1(s) = A[Fk](s)−A[Fk](0)
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= A[Rk](s)−A[Rk](0)−
k−1
∑

ℓ=0

(A[Fℓ](s)−A[Fℓ](0))Rk−ℓ(0)

= Rk+1(s)−Rk+1(0) −
k−1
∑

ℓ=0

Fℓ+1(s)Rk−ℓ(0)

= Rk+1(s)−
k
∑

ℓ=0

Fℓ(s)Rk+1−ℓ(0).

Finally, since Fk(s) = ∆∗
k(s)/Γ(s) is analytic for ℜ(s) > −k and 1/Γ(−ℓ) = 0, it also follows

that Fk(−ℓ) = 0 for ℓ = 0, 1, . . . , k − 1.

Following the same footsteps, we prove the corresponding relations for the internal profile

presented just above Theorem 5; in particular, (28) and (29).

Remark 5 The proof of (38) (and consequently that of (39)) makes use of the fact that

Fk(0) = 0 for k ≥ 1. However, we also have Fk(−r) = 0 for k > r. In particular, if we set

s = −r in (39) we find
r
∑

k=0

Fk(−r)wk =

∑

ℓ≥0Rℓ(−r)wℓ

∑

ℓ≥0Rℓ(0)wℓ
,

and consequently
∑

k≥0

Fk(s)w
k =

∑

ℓ≥0Rℓ(s)w
ℓ

∑

ℓ≥0Rℓ(−r)wℓ

r
∑

k=0

Fk(−r)wk. (41)

4.2 Asymptotic Analysis

We now prove Theorems 4 and 5 establishing the asymptotic behavior of the average profiles.

The discussion is divided into several steps: First we analyze Fk(s), then we invert the Mellin

transform ∆∗
k(s) = Γ(s)Fk(s), and finally we invert the Poisson transform ∆k(x) to obtain

asymptotics for the expected profile EBn,k. Finally, we comment on necessary changes to

recover asymptotics of E In,k.

4.2.1 Singularity Analysis of Fk(s)

In order to obtain asymptotic information for Fk(s) we will analyze the generating function

f(s,w) =
∑

k Fk(s)w
k that by Theorem 3 is also given by

f(s,w) =
g(s,w)

g(0, w)
,

where g(s,w) =
∑

ℓ≥0Rℓ(s)w
ℓ for complex w. Note that g(s,w) satisfies the following formal

identity

g(s,w) = 1 + wA[g(·, w)](s) = 1 + w
∑

j≥0

g(s − j, w)T (s − j). (42)

Interestingly enough, the function g(s,w) has a polar singularity at w = 1/T (s), as proved

below.
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Lemma 3 There exists a function h(s,w) that is analytic for all w and s satisfying

wT (s−m) 6= 1 for all m ≥ 1

such that

g(s,w) =
h(s,w)

1− wT (s)
. (43)

Thus, g(s,w) has a meromorphic continuation with w0 = 1/T (s) being a polar singularity.

Proof: We recall that Rk(s) = Ak[1](s). Then for p < q

|Rk(s)| ≤
1

∏

j≥1(1− qj)
(p−ℜ(s) + q−ℜ(s))k.

Thus, if |w| < T (ℜ(s))−1 the series

g(s,w) =
∑

ℓ≥0

Rℓ(s)w
ℓ =





∑

ℓ≥0

wℓAℓ



 [1](s) (44)

converges absolutely and represents an analytic function. We can rewrite (44) as

g(s,w) = (I − wA)−1[1](s),

where I is the identity operator. Then

(I− wA)[g(·, w)](s) = g(s,w) − w
∑

j≥0

g(s− j, w)T (s − j) = 1, (45)

which formally proves (42).

If we substitute g(s,w) in (42) by

g(s,w) =
h(s,w)

1− wT (s)
,

we find the following relation for h(s,w)

h(s,w) = 1 +
∑

j≥1

h(s − j, w)
wT (s− j)

1 − wT (s− j)
. (46)

Recall that we established the existence of h(s,w) for |w| < T (ℜ(s))−1. We will now use (46)

to show that h(s,w) can be analytically continued to |w| < T (ℜ(s)− 1)−1 (and even to all w

such that wT (s −m) 6= 1)) thus leading to a meromorphic continuation, as claimed.

For this purpose we introduce another operator B defined as

B[f ](s) =
∑

j≥1

f(s− j, w)
wT (s− j)

1 − wT (s− j)
. (47)

For convenience, set U(s,w) = wT (s)/(1 − wT (s)). By induction it follows that

Bk[1](s) =
∑

i1≥1

∑

i2≥1

· · ·
∑

ik≥1

U(s− i1, w)U(s − i1 − i2, w) · · ·U(s− i1 − i2 − · · · − ik, w)
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=
∑

mk≥k

mk−1
∑

mk−1=k−1

mk−1−1
∑

mk−2=k−2

· · ·
m2−1
∑

m1=1

U(s−m1, w)U(s −m2, w) · · ·U(s−mk, w).

Hence,

|Bk[1](s)| ≤
∑

mk≥k

∑

mk−1≥k−1

· · ·
∑

m1≥1

|U(s−m1, w)U(s −m2, w) · · ·U(s−mk, w)|

=
∑

m1≥1

|U(s −m1, w)| ·
∑

m2≥2

|U(s −m2, w)| · · ·
∑

mk≥k

|U(s−mw, k)|.

By using the fact that T (s−m) = O(qm), it follows directly that the series

S :=
∑

m≥1

|U(s−m,w)| =
∑

m≥1

|wT (s−m)|
|1− wT (s −m)|

converges if wT (s − m) 6= 1 for all m ≥ 1. Thus for any choice of w and s there are only

finitely many exceptional points where wT (s−m) = 1.

Let now k0 be any value such that

∑

m≥k0

|U(s−m,w)| ≤ 1

2
.

Then we have for all k ≥ k0

|Bk[1](s)| ≤ Sk02−(k−k0) = (2S)k02−k.

In view of this,

h(s,w) =
∑

k≥0

Bk[1](s), (48)

is well defined and it satisfies (46). Furthermore, |h(s,w)| ≤ 2(2S)k0 .

Now we are in the position to derive an asymptotic representation for Fk(s).

Lemma 4 For every real interval [a, b] there exist k0, η > 0 and ε > 0 such that

Fk(s) = A(s)T (s)k
(

1 +O
(

e−ηk)
))

(49)

uniformly for all s such that ℜ(s) ∈ [a, b], |ℑ(s)− 2πj/ log(p/q)| ≤ ε for some integer j and

k ≥ k0, where A(s) is an analytic function that satisfies A(−r) = 0 for r = 0, 1, . . . and is

bounded in this region.

Furthermore, if |ℑ(s)− 2πj log(p/q)| > ε for for all integers j then we have

Fk(s) = O
(

T (ℜ(s))k e−ηk)
)

. (50)

uniformly for ℜ(s) ∈ [a, b].
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Proof: The idea of the proof is to show that the function f(s,w) has a polar singularity

w = 1/T (s) (if the imaginary part of s is close to an integer multiple of 2π log(q/p)), and

to use this property to obtain asymptotic for the coefficient Fk(s) = [wk] f(s,w). (In a

similar way we obtain estimates for Fk(s) if the imaginary part of s is not close to an integer

multiple of 2π log(q/p).) Due to the special structure of f(s,w) (see (39) and (41)) we have

to distinguish several cases depending on the size of ℜ(s).
Suppose first that s > −r− 1 for some integer r ≥ 0 but s is not a positive integer. Here

we use the following representation (see (41))

f(s,w) =

r
∑

ℓ=0

Fℓ(−r)wℓ g(s,w)

g(−r, w)

=

r
∑

ℓ=0

Fℓ(−r)wℓ h(s,w)

h(−r, w)

1− wT (−r)

1− wT (s)
. (51)

By Lemma 3 the function h(s,w) is analytic for |w| < 1/T (s − 1). By (48) it also follows

that h(s,w) is non-zero for real 0 < w < 1/T (s− 1). It also follows that h(−r, w) is analytic

and non-zero for 0 < w < 1/T (−r − 1). Hence, w0 = 1/T (s) is a singular point of f(s,w).

Since Fk(s) = ∆∗
k(s)/Γ(s) it follows that all values Fk(s), k ≥ 0, have the same sign. Hence,

the radius of convergence of the series
∑

k≥0 Fk(s)w
k equals w0 = 1/T (s).

In a next step we show that f(s,w) has no other singularities on the circle of conver-

gence |w| = 1/T (s). Moreover, the function f(s,w)(1 − wT (s)) continues analytically to

to |w| < 1/T (s) + ε for some ε > 0. Since all terms on the right hand side of (51), that is,
∑r

ℓ=0 Fℓ(−r)wℓ, h(s,w), h(−r, w), 1−wT (−r), and 1−wT (s) are analytic for |w| < 1/T (s)+ε,

a singularity of f(s,w) can only be induced by a zero of h(−r, w).

Suppose first that h(−r, w) has a zero w1 with |w1| < 1/T (s). Since h(−r, w) 6= 0 for

0 < w < 1/T (−r − 1) it follows that w1 6= 1/T (−r). If we assume that
∑r

ℓ=0 Fℓ(−r)wℓ
1 6= 0,

then w = w1 has to be a zero of h(s,w). We slightly decrease s to s− η (for some η > 0 such

that s − η is not a positive integer) such that h(s − η,w1) 6= 0. Then the zero w = w1 of

h(−r, w) would induce a singularity w1 of f(s,w)(1−wT (s)) with |w1| < 1/T (s) although its

radius of convergence is 1/T (s − η) > 1/T (s) > |w1|. This leads to a contradiction. Hence,

if h(−r, w1) = 0 for some w1 with |w1| < 1/T (s), then we also have
∑r

ℓ=0 Fℓ(−r)wℓ
1 = 0.

Actually, it also follows that the order of the zeroes of
∑r

ℓ=0 Fℓ(−r)wℓ
1 is at least as large as

that of h(−r, w1).

The above considerations also show that if w = w1 is a zero of h(−r, w) with |w1| <
1/T (−r − 1), then w1 is also a zero of

∑r
ℓ=0 Fℓ(−r)wℓ = 0 at least of the same order.

Namely, if |w1| < 1/T (−r − 1) then there exists a non-integral real number s > −r − 1 with

|w1| < 1/T (s) and we proceed as above.

This property shows that the only singularity of the mapping w 7→ f(s,w) is given by

w = 1/T (s) if s > −r − 1 is real (but not an integer). This singularity is a polar singularity

of order 1. Hence, by using Cauchy’s formula for a contour of integration on the circle

γ = {w ∈ C : |w| = eη/T (s)} and the residue theorem [5, 27] it follows that

Fk(s) =
1

2πi

∫

γ
f(s,w)w−k−1 dw

= A(s)T (s)k +O
(

|T (s)e−η|k
)

,
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where

A(s) =
r
∑

ℓ=0

Fℓ(−r)T (s)−ℓ h(s, 1/T (s))

h(−r, 1/T (s))

(

1− T (−r)

T (s)

)

(52)

These estimates are uniform for s contained in a compact interval [a, b] ⊆ (−r − 1,−r) (for

some non-negative integer r) or in a compact interval [a, b] contained in the positive real

line. Furthermore, we get the same result if s is sufficiently close to the real axis. Thus, if

a ≤ ℜ(s) ≤ b and |ℑ(s)| ≤ ε for some sufficiently small ε > 0 then we obtain (49). Here we

have also use that fact that A(s) 6= 0 in this range.

Next, suppose that s is real (or sufficiently close to the real axis) and close to a negative

integer −r, say −r − η ≤ s ≤ −r + η (for some η > 0). Here we use the representation

∑

k≥0

Fk(s)w
k =

r
∑

ℓ=0

Fℓ(−r)wℓ g(s,w)

g(−r, w)

=

r
∑

ℓ=0

Fℓ(−r)wℓ h(s,w)

h(−r, w)

1− wT (−r)

1− wT (s)

=

r
∑

ℓ=0

Fℓ(−r)wℓ h(s,w) − h(−r, w)

h(−r, w)

1− wT (−r)

1− wT (s)

+

r
∑

ℓ=0

Fℓ(−r)wℓ +

r
∑

ℓ=0

Fℓ(−r)wℓ+1T (s)− T (−r)

1− wT (s)
.

Now if we subtract the finite sum
∑r

ℓ=0 Fℓ(s)w
ℓ, then we can safely multiply by Γ(s) (that

is singular at s = −r) and obtain

Γ(s)
∑

k>r

Fk(s)w
k =

r
∑

ℓ=0

Fℓ(−r)wℓ Γ(s)(h(s,w) − h(−r, w))

h(−r, w)

1− wT (−r)

1− wT (s)

+
r
∑

ℓ=0

Fℓ(−r)wℓ+1Γ(s)(T (s)− T (−r))

1− wT (s)

+
r
∑

ℓ=0

Γ(s)(Fℓ(−r)− Fℓ(s))w
ℓ.

We again use the fact that the function
∑r

ℓ=0 Fℓ(−r)wℓ/h(−r, w) is analytic for |w| <

1/T (−r − 1) and observe that w = 1/T (s) is a polar singularity. By applying Cauchy’s

formula we obtain for k > r (similarly to the above)

Γ(s)Fk(s) =

r
∑

ℓ=0

Fℓ(−r)T (s)−ℓ Γ(s)(h(s, 1/T (s)) − h(−r, 1/T (s)))

h(−r, 1/T (s))

(

1− T (−r)

T (s)

)

T (s)k

+

r
∑

ℓ=0

Fℓ(−r)T (s)−ℓ−1 Γ(s)(T (s)− T (−r)) T (s)k

+O
(

|T (s)e−η|k
)

.

Thus, we actually prove (49) for k > r and also observe A(−r) = 0.

Set tj = 2jπ/ log(p/q) (for integers j) and γ = −2π log(p)/ log(p/q). Then

T (s+ itj) = eijγT (s)
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Hence, |T (s+itj)| = |T (s)| and consequently, it follows that w = 1/T (s) is a polar singularity

of f(s,w) if |ℑ(s)− tj | < ε for some integer j. Thus, (49) follows also for s in this range.

By using the representation (52) it is also easy to deduce that A(s) is bounded. Suppose

first that ℜ(s) is not an integer (more precisely we have ℜ(s) ∈ (−r − 1, r) for some integer

r ≥ 0). By using the relation Rk(s + itj) = Rk(s)e
ijkγ we obtain g(s + itj , w) = g(s,weijγ)

and also h(s + itj , w) = h(s,weijγ). Consequently

A(s+ itj) =

r
∑

ℓ=0

Fℓ(−r)T (s)−ℓe−ijℓγ h(s, 1/T (s))

h(−r, e−ijγ/T (s))

(

1− T (−r)

T (s)eijγ

)

.

Since h(−r, w) 6= 0 if |w| = |1/T (s)| it follows that A(s) is bounded if ℜ(s) is contained in a

compact interval [a, b] ⊆ (−r − 1,−r) (for some non-negative integer r) and |ℑ(s) − tj| < ε

for some integer j. If ℜ(s) is close to an integer we can proceed similarly.

Finally, suppose that |ℑ(s) − 2πj/ log(q/p)| > ε for some integer j, then there exists

η > 0 such that |T (s)| < e−2η |T (ℜ(s)|. Hence it follows that f(s,w) is regular for |w| <
e2η/T (ℜ(s)). Consequently, if we use the path of integration γ = {w ∈ C : |w| = eη/T (ℜ(s))}
in Cauchy’s formula we obtain

Fk(s) = O
(

T (ℜ(s))ke−ηk
)

which is precisely (50). It should be clear that this estimate is uniform if ℜ(s) varies in a

finite interval [a, b].

Similarly we can analyze the function F k(s). Following the same footsteps, we conclude

that (for |ℑ(s)− tj| ≤ ε for some integer j)

F k(s) = A(s)T (s)k
(

1 +O(e−ηk)
)

, (53)

where A(−r) = 0 for r = 1, 2, . . ..

4.2.2 Saddle Point Analysis

By the above discussion, we know that Fk(s) and ∆k(s) = Γ(s)Fk(s) behave asymptotically

as T (s)k. Thus we are in a situation similar to the analysis of the profile of random tries

presented in [22] (but since A(s) is zero for negative integers, some poles disappear in the

analysis of digital search trees, as we shall see below). Our asymptotic analysis will be

therefore similar to that of [22].

We start with a very short outline of the proof (where we also make a simplification and

we only consider the case x = n). By applying the inverse Mellin transform

∆k(n) =
1

2πi

∫ ρ+i∞

ρ−i∞
∆∗

k(s)n
−s ds (54)

it is natural to choose ρ = ρn,k as the saddle point of the function

T (s)kn−s = ek log T (s)−s logn

which satisfies the equation

k

log n
=

p−ρ + q−ρ

p−ρ log 1
p + q−ρ log 1

q

.
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Observe that when ρ varies from −∞ to +∞ the ratio k/ log n = α varies from 1/ log(1/p)

to 1/ log(1/q).

Note also that on the line ℜ(s) = ρ there will be infinitely many saddle points

sj = ρ+
2πij

log p
q

(j ∈ Z)

since T (sj) = e−2πij(log p)/(log p/q)T (ρ). Consequently, the behavior of T (s)kz−s around s = sj
is almost the same as that of T (s)kz−s around s = ρ. This phenomenon implies a periodic

leading factor in the asymptotics of ∆k(n) and then also in that of EBn,k.

Lemma 5 Suppose that (log 1
p)

−1 + ε ≤ k/ log n ≤ (log 1
q )

−1 − ε (for some ε > 0). Then

∆k(n) = H
(

ρn,k, logp/q p
kn
) (p−ρn,k + q−ρn,k)kn−ρn,k

√

2πβ(ρn,k)k

(

1 +O

(

1√
k

))

, (55)

where

H(ρ, x) =
∑

j∈Z
A(ρ+ itj)Γ(ρ+ itj)e

−2jπix (56)

is a non-zero periodic function with period 1 and tj = 2jπ/ log(p/q).

Proof: For convenience we set Jk(n, s) = n−sΓ(s)Fk(s). By Lemma 4 we can safely re-

place Fk(s) by A(s)T (s)k since the error term is of order O(|T (s)|ke−ηk) and leads to an

exponentially small contribution compared to the asymptotic leading term.

We split the integral (54) into two parts where we use the substitution s = ρ + it.

Let us start with the range |t| ≥ √
log n and recall that by Stirling’s formula Γ(ρ + it) =

O
(

|t|ρ−1/2e−π|t|/2). Furthermore we use the property that |A(s)| is uniformly bounded for

ℜ(s) ∈ [a, b] and |ℑ(s)− tj| ≤ ε (for some integer j). Consequently

1

2π

∫

|t|≥
√
logn

Jk(n, ρ+ it) dt = O

(

n−ρT (ρ)k
∫ ∞

√
logn

|Γ(ρ+ it)| dt
)

= O

(

n−ρT (ρ)k
∫ ∞

√
logn

tρ−1/2e−πt/2

)

= O
(

n−ρT (ρ)k(log n)ρ/2−1/4e−π
√
logn/2

)

= O
(

n−ρT (ρ)ke−
√
logn

)

.

Next set

Cj =
1

2π

∫

|t−tj |≤π/| log(p/q)|
Jk(n, ρ+ it) dt,

where tj =
2πj
log p

q
. We have to study these integrals for all |j| ≤ j0 = ⌊

√
log n |log(p/q)|/(2π)⌋.

Since there exists c0 > 0 such that

|p−ρ−it + q−ρ−it| ≤ T (ρ)e−c0(t−tj )
2

for |t− tj| ≤ π/|log(p/q)|, we obtain an upper bound of the integral (for j 6= 0)

C ′
j =

1

2π

∫

k−2/5≤|t−tj |≤π/| log(p/q)|

Jk(n, ρ+ it) dt
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= O

(

|Γ(ρ+ itj)|n−ρT (ρ)k
∫ ∞

k−2/5

e−c0kt2 dt

)

= O
(

|Γ(ρ+ itj)|n−ρT (ρ)kk−3/5e−c0k1/5
)

.

For j = 0 we can replace the factor |Γ(ρ+ itj)| by 1.

Finally, for |t− tj| ≤ k−2/5 we use the approximation

Jk(n, ρ+ it) = Γ(ρ+ it)A(ρ+ it)n−ρ−itT (ρ+ it)k
(

1 +O(e−ηk)
)

= Γ(ρ+ it)A(ρ+ it)e−itj log(pkn)n−ρ−i(t−tj )T (ρ+ i(t− tj))
k
(

1 +O(e−ηk)
)

= Γ(ρ+ itj)A(ρ+ itj)e
−itj log(p

kn)n−ρT (ρ)ke−
1
2
β(ρ)(t−tj )

2k

×
(

1 +O(|t− tj|) +O(k|t− tj |3) +O(e−ηk)
)

.

A standard saddle point method then leads to

C ′′
j =

1

2π

∫

|t−tj |≤k−2/5

Jk(n, ρ+ it) dt

= Γ(ρ+ itj)A(ρ+ itj)
n−ρT (ρ)k
√

2πβ(ρ)k
e−itj log(p

kn)
(

1 +O(k−1/2)
)

.

Hence we finally obtain

∆k(n) =
∑

|j|≤j0

Tj +O
(

n−ρT (ρ)ke−
√
logn

)

=
∑

|j|≤j0

Γ(ρ+ itj)A(ρ+ itj)e
−itj log(pkn)

n−ρT (ρ)k
√

2πβ(ρ)k

(

1 +O(k−1/2)
)

+O
(

n−ρT (ρ)ke−
√
logn

)

= H
(

ρ, logp/q p
kn
) n−ρT (ρ)k
√

2πβ(ρn,k)k

(

1 +O(k−1/2)
)

,

as desired.

Remark 6 The above proof extends directly to an asymptotic expansion for ∆k(ne
iϑ), where

|ϑ| ≤ π/2− ε (for some ε > 0). In this range we have uniformly

∆k(ne
iϑ) =

T (ρ)k
√

2πβ(ρ)k

∑

|j|≤j0

Γ(ρ+ itj)A(ρ+ itj)(ne
iϑ)−ρ−itjp−iktj (57)

×
(

1 +O
(

k−1/2
))

.

We will use this extended version for the final depoissonization procedure.
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The analysis of ∆k(x) for the internal profile is similar but needs some additional consid-

erations. As before, we start with

∆k(n) =
1

2πi

∫ ρ+i∞

ρ−i∞
∆

∗
k(s)n

−s ds (58)

where, we recall, ∆
∗
k(s) = −F k(s)Γ(s). By (53) we have F k(s) = A(s)T (s)k

(

1 +O(e−ηk)
)

,

with A(−r) = 0 for r = 1, 2, . . .. Notice that A(0) 6= 0. In fact, we know that F k(0) = 2k.

With these preliminaries, we are ready to present our asymptotic analysis.

We have to distinguish three ranges:

Range:
(

log 1
p

)−1
+ ε ≤ k/ log n ≤ α0 − ε.

In this range ρ varies from large values to zero. In order to cover this range we have to

shift the line of integration in (58) to the saddle point ρ > 0. By doing this we collect a

contribution of 2k from the polar singularity of F k(s)Γ(s). This leads to

∆k(x) = 2k +
1

2πi

∫ ρ+i∞

ρ−i∞
∆

∗
k(s)x

−s ds.

The remaining integral can be handled as above by a saddle point method.

Range: α0 + ε ≤ k/ log n ≤
(

log 1
q

)−1
− ε, that is ρ ≈ 0.

Here we have ρ < 0 and we are precisely in the same situation as in the analysis of the external

profile. Actually this range is the most significant range. Almost all nodes are concentrated

around the level k/ log n ≈ 1/h, where h = p log 1
p + q log 1

q denotes the entropy of the source.

Range: k/ log n ≈ 2
(

log 1
p + log 1

q

)−1
.

Here a phase transition occurs. Technically, a polar singularity (of Γ(s)) and the sad-

dle point Fk(s)n
−s coalesce at s = 0). We assume that α = k/ log n is close to α0 :=

2
(

log 1
p + log 1

q

)−1
. More precisely suppose that

k = α0

(

log n+ ξ
√

α0β(0) log n
)

,

where ξ = o((log n)1/6). Here we move the line of integration to the saddle point

ℜ(s) = ρ =
1

log(p/q)
log

1− α log(1/p)

α log(1/q) − 1
= − ξ

√

α0β(0) log n
+O

(

ξ2/ log n
)

.

First assume that k > α0 log n, so that ξ > 0 and ρ < 0. This means that we do not pass the

polar singularity, which is located at s = 0. Hence, as above we obtain

∆k(ne
iϑ) =

1

2π

∫

|t|≤(logn)−2/5
Jk(ne

iϑ, ρ+ it) dt

+O
(

|Γ(ρ+ i(log n)−2/5)|n−ρT (ρ)ke−c0(log n)1/5
)

+O
(

k−1/2n−ρT (ρ)k
)

,
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where Jk(s, x) = −x−sΓ(s)F k(s). This can be again replaced by −x−sΓ(s)A(s)T (s)k. Since

|Γ(ρ+ i(log n)−2/5)| = O

(

1

|ξ|(log n)−1/2 + (log n)−2/5

)

= O((log n)2/5),

we can neglect the first error term.

Next we replace the factor Γ(s)A(s) in (the approximation of) Jk(s, x) by

A(s)

s
.

Since the sum Γ(s)A(s)−A(0)/s is analytic, we have

∫

|t|≤(logn)−2/5

(

Γ(s)A(s)− A(0)

s

)

(neiϑ)−ρ−itT (ρ+ it)k dt = O

(

n−ρT (ρ)k√
k

)

and consequently the asymptotic leading term of ∆k(ne
iϑ) is given by

− A(0)

2π

∫

|t|≤(logn)−2/5

(neiϑ)−ρ−itT (ρ+ it)k

ρ+ it
dt

= −A(0)

2π
n−ρe−iϑρT (ρ)k

∫

|t|≤(logn)−2/5

eϑt−β(ρ)kt2/2+O(k|t|3)

ρ+ it
dt

= −A(0)

2π
n−ρe−iϑρT (ρ)k

∫ ∞

−∞

e−w2/2

ξ0 + iw

(

1 +O

( |w|+ |w|3√
log n

))

dt,

where w =
√

β(0)kt and

ξ0 = ρ
√

β(0)k = −ξ +O(ξ2(log n)−1/2).

Since ξ0 < 0, we obtain (with the help of the substitution s = −w)

1

2π

∫ ∞

−∞

e−w2/2

ξ0 + iw
dw = − 1

2π

∫ ∞

−∞
e−s2/2

∫ ∞

0
e−v(−ξ0+is) dv ds

= − 1

2π

∫ ∞

0
evξ0

∫ ∞

−∞
e−s2/2−isv ds dv

= − 1√
2π

∫ ∞

0
e−v2/2+vξ0 dv

= −eξ
2
0/2Φ(ξ0).

The error term is estimated similarly:

1√
log n

∫ ∞

−∞

(|w|+ |w|3)e−w2/2

|ρ
√

β(ρ)k + iw|
dw = O

(

1√
log n

∫ ∞

0
(v + v3)e−v2/2+vξ0 dv

)

= O

(

1√
log n

eξ
2
0/2Φ(ξ0)(1 + |ξ0|3)

)

.

Thus

∆k(ne
iϑ) = A(0)(neiϑ)−ρT (ρ)keξ

2
0/2Φ(ξ0)

(

1 +O

(

1 + |ξ0|3√
log n

))

+O
(

k−1/2n−ρT (ρ)k
)

.
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By using the local expansions

n−ρT (ρ)k = T (0)ke−ξ2/2+O(|ξ3|(logn)−1/2),

eξ
2
0/2Φ(ξ0) = eξ

2/2Φ(−ξ)
(

1 +O
(

|ξ|3(log n)−1/2
))

we end up with the final expansion

∆k(ne
iϑ) = A(0)T (0)kΦ(−ξ)

(

1 +O

(

1 + |ξ0|3√
log n

))

+O
(

k−1/2T (0)ke−ξ2/2
)

,

that holds uniformly for |ϑ| ≤ ϑ0.

4.2.3 Depoissonization

The final step in the proof is to obtain asymptotics for EBn,k and E In,k from the asymptotic

properties of ∆k(x) and ∆k(x). This is accomplished by the analytical depoissonization [9]

which requires to compute another Cauchy integral

EBn,k =
n!

2πi

∫

|x|=n
ex∆k(x)

dx

xn+1
.

Since ∆k(x) behaves quite smoothly (in particular it has a subexponential growth) the de-

poissonization heuristics saying that EBn,k ≈ ∆k(n) applies (see [5, 27]). However, this has

to be made precise. For this we need a good upper bound for ∆k(ne
iϑ) that is valid for all

|ϑ| ≤ π.

Lemma 6 For every real number ρ there exist constants C = C(ρ) > 0, c1 = c1(ρ) ≥ 0,

c2 = c2(ρ) > 0, and an integer k0 = k0(ρ) such that

|ex∆k(x)| ≤ C(1 + c1/r)
k(1− c2ϑ

2)−kr−ρT (ρ)ker(1−c2ϑ2) (59)

for k ≥ 0 and uniformly for all r ≥ 1 and |ϑ| ≤ π, where x = reiϑ.

Proof: We indicate a proof for ρ ≤ 0. (In this case we can choose c1 = 0 and get also

a proof for all r ≥ 0). First, since ex∆0(x) = 1 (and ex∆0(x) = ex − 1, respectively) it is

clear that (59) holds for k = 0 (for properly constants C and c2). Then by definition we have

recursively

|ex∆k+1(x)| =
∣

∣

∣

∣

∫ x

0
eξ (∆k(pξ) + ∆k(qξ)) dξ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ r

0
ete

iϑ
(

∆k(pte
iϑ) + ∆k(qte

iϑ)
)

dt

∣

∣

∣

∣

≤ C(1− cϑ2)−k T (ρ)k
∫ r

0

(

eqt cosϑ(pt)−ρept(1−c2ϑ2) + ept cosϑ(qt)−ρeqt(1−c2ϑ2)
)

dt

≤ C(1− c2ϑ
2)−kT (ρ)k+1

∫ r

0
t−ρet(1−cϑ2) dt

≤ C(1− c2ϑ
2)−k−1T (ρ)k+1 r−ρer(1−c2ϑ2).
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A similar proof works for ρ > 0. Here we have to use the trivial estimate e1∆k(1) = O(1)

and the asymptotic formula
∫ x

1
t−ρet dt = x−ρex (1 +O(1/x)) ≤ x−ρex(1 + c1/x) (x ≥ 1)

for some constant c1 = c1(ρ) > 0 instead of the inequality
∫ x
0 t−ρet dt ≤ x−ρex that holds

only for ρ ≤ 0.

Since ∆k(r) is of order T (ρ)
kr−ρ/

√
k, where ρ is the saddle point defined by

k

log r
=

p−ρ + q−ρ

p−ρ log 1
p + q−ρ log 1

q

,

we can choose ρ in Lemma 6 accordingly and obtain as a corollary the bound

|ex∆k(x)| ≤ C ′er∆k(r)
√

log r e−rc′ϑ2

(x = reiϑ), (60)

where k is of order log r and the constants c′ > 0 and C ′ > 0 depend on the ratio k/ log r.

Finally, as explained above we use the Cauchy integral along |x| = n to complete the

asymptotic analysis:

EBn,k =
n!

2πi

∫

|x|=n
ex∆k(x)

dx

xn+1
=

n!n−n

2π

∫

|ϑ|≤π
ene

iϑ
∆k(ne

iϑ)e−inϑ dϑ.

Fix 0 < ϑ0 < π/2. Then (60) implies
∣

∣

∣

∣

∣

∣

∣

n!n−n

2π

∫

ϑ0≤|ϑ|≤π

ene
iϑ
∆k(ne

iϑ)e−inϑ dϑ

∣

∣

∣

∣

∣

∣

∣

≤ ∆k(n)
n!n−nen

√
log n

2π

∫

ϑ0≤|ϑ|≤π

e−c′nϑ2

dϑ

= O
(

∆k(n) e
−c′′ϑ2

0n
)

.

For the remaining part of the integral we use (57) and obtain

n!n−n

2π

∫

|ϑ|≤ϑ0

ene
iϑ
∆k(ne

iϑ)e−inϑ dϑ

=
n−ρT (ρ)k
√

2πβ(ρ)k

∑

|j|≤j0

Γ(ρ+ itj)A(ρ+ itj)

× n!n−n

2π

∫

|ϑ|≤ϑ0

ene
iϑ−inϑeiϑ(ρ+itj ) dϑ ·

(

1 +O(k−1/2)
)

=
n−ρT (ρ)k
√

2πβ(ρ)k

∑

|j|≤j0

Γ(ρ+ itj)A(ρ+ itj)

× n!n−nen

2π

∫

|ϑ|≤ϑ0

e−
1
2
nϑ2 (

1 +O(n|ϑ|3) +O(|tjϑ|)
)

dϑ ·
(

1 +O(k−1/2)
)

=
n−ρT (ρ)k
√

2πβ(ρ)k

∑

|j|≤j0

Γ(ρ+ itj)A(ρ+ itj)
(

1 +O(|tj |n−1/2) +O(k−1/2)
)

= ∆k(n)
(

1 +O(k−1/2)
)

.

This completes the proof of Theorem 4. The last part of the proof of Theorem 5 follows the

same footsteps and is omitted.
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