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Abstract

A digital search tree (DST) is a fundamental data structure on words that finds vari-
ous applications from the popular Lempel-Ziv’'78 data compression scheme to distributed
hash tables. The profile of a DST measures the number of nodes at the same distance
from the root; it depends on the number of stored strings and the distance from the root.
Most parameters of DST (e.g., depth, height, fillup) can be expressed in terms of the
profile. We study here asymptotics of the average profile in a DST built from sequences
generated independently by a memoryless source. After representing the average pro-
file by a recurrence, we solve it using a wide range of analytic tools. This analysis is
surprisingly demanding but once it is carried out it reveals an unusually intriguing and
interesting behavior. The average profile undergoes phase transitions when moving from
the root to the longest path: at first it resembles a full tree until it abruptly starts grow-
ing polynomially and oscillating in this range. These results are derived by methods of
analytic combinatorics such as generating functions, Mellin transform, poissonization and
depoissonization, the saddle-point method, singularity analysis and uniform asymptotic
analysis.
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1 Introduction

Digital trees are fundamental data structures on words [14, 27]. Among them tries and
digital search trees stand out due to myriad of applications ranging from data compression
to distributed hash tables [14, 19, 20, 27]. In a digital search tree, the subject of this paper,
strings are directly stored in nodes. More precisely, the root contains the first string (or an
empty string), and the next string occupies the right or the left child of the root depending
on whether its first symbol is “0” or “1”. The remaining strings are stored in available nodes
which are directly attached to nodes already existing in the tree. A digital search tree with n
internal nodes is “completed” with n+1 external nodes, as shown in Figure 1. These external
nodes can be seen as those positions where the next item is to be stored. The resulting tree
is then a complete binary tree with the external nodes as leaves. The search for an available
node follows the prefix structure of a new string [14, 19].

Ig,{)=1 Bg10=0
Ig,|=2 Bg,]=0

Ig‘2=2 Bg,2=2

Ig,3=3 Bg}3=l

Is,FO Bs,4z6

Figure 1: A digital search tree built on eight strings si,...,ss (i.e., s =0..., so = 1...,
sg = 01..., s4 = 11..., etc.) with internal (ovals) and external (squares) nodes, and its
profiles.

In this paper, we are concerned with probabilistic properties of the profile defined as the
number of nodes at the same distance from the root. Throughout the paper, we write I, ;, for
the number of nodes at level £ when n strings are stored, and B, j, for the number of external
nodes at level k. We study the profile built over n binary strings generated by a memoryless
source, that is, we assume each string is a binary independently and identically distributed
(i.i.d.) sequence with p being the probability of a “1” (0 < p < 1); we alsouse ¢ :=1—p > p.
This simple model may seem too idealized for practical purposes, however, typical behaviors
under such a model often hold under more general models such as Markovian or dynamical
sources, although the technicalities are usually more involved (see [7, 16, 27]).

The motivation of studying the profiles is multifold. First, digital search trees are used
in various applications ranging from data compression (e.g., Lempel-Ziv’'78 data compres-



sion scheme! [8]), to telecommunication (e.g., conflict resolution algorithms [27]), to partial
matching of multidimensional data, to distributed hash tables [20]. Second, the profile is a
fine shape measure closely connected to many other cost measures as further discussed below.
Third, not only the analytic problems are mathematically challenging, but the diverse new
phenomena they exhibit are highly interesting and unusual.

As mentioned above, several DST parameters can be expressed in terms of the internal
profile:

(i) height: the length of the longest path from the root is H, = max{j : I, ; > 0};
(ii) fillup (or saturation) level: the largest full level, or F;, = max{j : I, ; = 27 };
(iii) depth: the distance from the root to a randomly selected node; its distribution is given
by the expected profile divided by n, [18];
(iv) total path length: the sum of distances between nodes and the root, or equivalently

Ln - Zj j[n7j-

The average profile is described by an interesting recurrence of the following form

n . s
Ttk = Y <j>p%1—4ﬂ"]0%w—1+$wﬂk—ﬂ

0<j<n

with suitable initial conditions. We solve it asymptotically for a wide range of n and k < n.
This is our main contribution. We accomplish it by first considering the Poisson gener-
ating function Ag(z) = e™ %> x, 2" /n! that satisfies the following functional-differential
equation

ki1(2) + Bpi1(2) = Di(pz) + Ak(g2), (1)

with a suitable Ag(z). This equation is still not ready for analytic methods, therefore, one
applies the Mellin transform, and some additional transformations, leading to the following
functional-recurrence equation

Fii1(s) = Fa(s = 1) = (p7° + ¢~ °) Fi(s) (2)

for complex s. We are able to obtain an explicit solution of this equation by introducing a
proper functional operator. Next, when finding the inverse of the Mellin transform we need
to deal with an infinite number of saddle points, already observed in [22] for the profile of
tries. The final step is to invert asymptotics of the Poisson function Ag(z) through the so
called analytic depoissonization [9] to recover asymptotically x,, ;. The reader is referred to
[5, 27] for a detailed discussion of the above tools belonging to analytic combinatorics.
Digital trees have been intensively studied for the last thirty years [1, 8, 10, 12, 13, 14,
15, 17, 18, 23, 24, 26, 27]. The quantity closest related to the profile is the typical depth D,
that measures the path length from the root to a randomly selected node; it is equal to the
ratio of the average profile to the number of nodes. However, all estimations of the depth
[1, 14, 17, 18, 24, 26, 25] deal only with the typical depth around most likely value, namely
k= h~tlogn+O(1) where h = —plog p—qlog q is the entropy rate. Analyses of the external
and internal profiles of tries have been initiated in Park’s thesis and fully analyzed in Park et
al. [21, 22], while the profile of the digital search trees for unbiased source (i.e., p =q=1/2)
has been recently obtained in [13] (see Section 6.3 of Knuth [14] for preliminary studies).

'n particular, I,, x represents the number of phrases of length k in the Lempel-Ziv’78 built over n phrases.



In this paper, we mostly analyze precisely the expected profile of the biased digital search
trees and reveal an unusually intriguing and interesting behavior. The average internal profile
undergoes phase transitions when moving from the root to the longest path. At first it
resembles a full tree until it abruptly starts growing polynomially. Furthermore, the expected
profile is oscillating in a range where the profile grows polynomially. These oscillations are
due to an infinite number of saddle points. Knowing the expected profile for all values of k,
we easily obtain (known and unknown) results for the typical depth and width. For example,
we shall show an unusual Local Limit Theorem for the typical depth. Furthermore, our
results are in accordance with known results on height, and fillup level. We should mention
that similar phenomena were observed for tries, as discussed in [22].

The paper is organized as follows. We first present our main results and their conse-
quences. We prove them in two sections: In Section 3 we only consider the symmetric DST
(i.e., for unbiased memoryless sources). In Section 4 we deal with the asymmetric DST. This
is our main mathematical contribution, where we apply tools of analytic combinatorics such
as poissonization, Mellin transform, and saddle point method to first solve the functional
equations (1)—(2), and then extract asymptotics of the average profiles.

2 Main Results

In this section we present our main results. We first derive a general formula for the generating
functions of the external and internal profiles. Then we discuss separately the symmetric case
(i.e., unbiased memoryless source with p = 0.5), and the asymmetric case (biased memoryless
source).

2.1 Generating Functions

Let B, and I,, ; denote the (random) number of external and internal nodes, respectively,
at level k in a digital search tree built over n strings generated by a memoryless source with
parameter p < 1 — p := ¢; see Figure 1. The probability generating function of the external
profile, P, (u) = EuPr, satisfies the following recurrence relation (see [8])

n

Praaa) = Y- ()00 PiaaPoeia ), 3

=0

The corresponding exponential generating function

xTL
Gr(z,u) =) P (1)
n>0
fulfills the following functional recurrence
0
& G, u) = Groa (o2, )G (gzyw), (k> 1), (4)

ox

with initial conditions Go(z,u) = u + €* — 1 and G(0,u) = 1 (k > 1). Similarly, the
corresponding generating function for the internal profile

Gr(x,u) = Z E ufn* %

n>0
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satisfies the same recurrence relation
0 — _ _
%Gk(%U) = G-1(pz, u)Gr-1(q, u), (k>1), (5)

however, the initial conditions are Go(z,u) = 1+ u(e® — 1) and Gp(0,u) =1 (k > 1).
We are interested in the expected profiles E B, , and E I, ;. By taking derivatives with
respect to v and setting u = 1 we obtain for the exponential generating function

x’ﬂ
Ek(a:) = ZEBn,k m
n>0 ’
the following functional recurrence
E(z) = e Ey_1(px) + " Ex_1(qx), (6)
with initial condition Ey(z) = 1 and Er(0) = 0 (kK > 1). The corresponding generating
function for the internal profile
— "
Ep(z) =Y Ely —
n>0 ’

satisfies recurrence (6), too, however with initial conditions Eq(z) = €* — 1 and E(0) = 0
(k > 1). Note that (6) is equivalent to the recurrence relation

n
n _
E Bpitpr1 = ) <£>p£qn “EBix+EBy ) (n,k>0) (7)
(=0
In this paper we analyze (7) for a wide range of n and k to present exact and asymptotic
solutions. We first consider the symmetric case (p = ¢), and then the asymmetric case.
2.2 Symmetric Case

Let us start with the symmetric case p = ¢ = % The corresponding generating functions
have simpler structures. Namely,

0 r 2
S=Gila,u) = Gt (Fou) o (k2 1),

with initial conditions Go(x,u) =u+ e* — 1 and G(0,u) =1 (for £ > 0), and

Q@k(iv,u) = Gr1 (x, )2, (k>1),

Ox 2
with the initial conditions Go(x,u) = 1+ u(e® — 1) and G (0,u) = 1. Thus (6) becomes
/ _9,1/2 z
El(z) = 2¢"2E;_; (2> : (8)
with Ep(z) =1 and Eg(0) =0 for k£ > 1 and for the internal profile
Fo(x) = 2¢°2F, (X
B)(z) = 2¢*/*Ey_; (2) , (9)

with Fo(r) = e* — 1 and E}(0) = 0.
In this special case, we can solve explicitly the above functional-differential equations
leading to our first result.



Theorem 1 Set Qg =1 and

j=1
Then i o
k_x (_1)m2— 2/ _gom—k
Bue) =2 o ’ (10)
and i ()
il _ ok, x o (_1)m2— 2 —g2m—k
Ep(z) = 2ke (1 mzz:o OO ) (11)
Furthermore,
k _
e (Cm2(8) Y
B =2 2 T 0 <1_2'f—m> (12)
and i (1)
Lok ok N~ (ZDT270 2 (_ 1 >"
El,x=2" -2 n;) oo \l"3=) - (13)

for any n and k < n.

There are several ways to prove these relations. The simplest way is to use induction (see
[3]. It should be noted that the explicit formula (12) for E B, ;, has appeared several times
in the literature [17, 18, 19, 25]. Therefore, we omit here details of the proof.

In Section 3 we establish the asymptotic behavior of the average profiles presented next.

Theorem 2 Set

F(z)=1-— Z Me—ﬁm (14)
So @oolm ’
where Qoo = [[;51(1 — 277). Then
E By = 2F'(n27%) + F"(n27%) + O(n27%) (15)
and
E L =2"F(n27%) + F'(n27%) + O(n27%) (16)

uniformly for alln,k > 1.
In particular, if n27% — 0 we can use the following asymptotic expression for the deriva-
tives of F(z):

FU)(2) ~ C'e Y082 c(Z))c(z)’”r% (log c(z))_%elo& =% (logy =)’ gs z— 0t
where C' is a constant, ¥(2) a periodic function with period 1, and c¢(z) = =

In passing we should point out that a precise asymptotic behavior of the internal profile
of the symmetric DST was also recently presented in [13], using a different approach. In [13]
the authors analyzed several ranges of k from k = O(1), to k = alogn, a > 1, to k = O(n)
through methods of applied mathematics and the saddle point approach.



2.3 Asymmetric Case

The asymmetric case (p < ¢) is much more involved. In particular, we cannot obtain a simple

exact solution for the exponential generating function Ei(x). To circumvent this problem,

we apply the Poisson transform and the Mellin transform [5, 27] to find asymptotic solutions.
Let us start with the external profile. The Poisson transform of Ej(z), namely

—x z" —x
Ap(x) =€) EBny — = Ex(@)e™, (k>0)
n>0 '

translates recurrence (6) into
Ap(z) + Ap(@) = Ap-r(pz) + Apoa(gz), (B =1), (17)

with initial conditions Ag(z) = e™* and Ag(0) = 0 (k > 1). This recurrence can be solved
using the Mellin transform discussed next.
The Mellin transform of Ag(z) is defined as [5, 27]

Al(s) = /0 Y Ap(@)r L da. (18)

By induction it is easy to prove that Ag(z) can be represented as a finite linear combination
of functions of the form e P42% with (1,02 > 0 and 0 < ¢; + £o < k. Hence, Aj(s) exists
for all s with R(s) > 0. Furthermore, By, = 0 for k > n. Thus, Ex(z) = O(z*) for z — 0
which ensures that Aj(s) actually exists for s with R(s) > —F.

Let us now express Ay (s) as

Ak(s) = T(s) Fr(s),

where I'(s) is the Euler gamma function. In the above, Fj(s) is a finite linear combination
of functions of the form p~“1%¢=%2* with £1,f > 0 and 0 < £1 + f5 < k. Thus, F,(s) can be
considered an entire function. It is clear that (17) translates into

Fip(s) = Fe(s = 1) = (p™° + ¢ ") F—1(s) = T(s)Fy—1(s), (b =>1), (19)
with initial condition Fy(s) =1 and
T(s)=p°+q" (20)

Note that (19) does not only hold for R(s) > —k where the Mellin transform exists. Since
Fj(s) analytically continues to an entire function, (19) holds for all complex s.
In order to find a solution of (19) we define the power series

f(s,w) = Z Fr(s)wh.

k>0

Let us also introduce a (partial) functional operator A as

Algl(s) =D g(s = )T (s - j) (21)

J=0

for some function g. In the next theorem we find an explicit representation of Fy(x) through
the operator A. The proof is delayed till Section 4.



Theorem 3 The functions Fy(s) are recursively given by
Fi(s) = AlFi](s) — A[Fp-1](0) (kK =1) (22)

with the initial function Fy(s) =1 and Fp(—¢) =0 for £ =0,1,2,...,k—1 and k > 1.
Furthermore, if we set Ry(s) = AF[1](s), then we have the formal identity

éﬂ@w—zmmww. (23)

Remark 1 It is easy to compute Rj(s) for a few small values of k. For example,

RO(S) = 1,
p° q”
R =
1(s) it
—2s —S ,—S —S,.,—S —2s
Ra(s) = p P P'q q

A—p(-p) 0-p(0-p) (-@0-p) (T-gl-¢)

In Section 4 we use the above representation to find the asymptotic behavior of the average
profiles. To present it in a concise form, we need some additional notation. For a real number
a with (log]%)_1 < a < (log %)_1, let

1 ) 1 —alog(1/p)

p=rplo)= log(p/q) ° alog(1/g) — 1 (24)

Equivalently, o and p satisfy the equation
_ pP+q”
p~Plog s +qrlog
Furthermore, we set )
) 0o )
and we also use the abbreviation
2

ag=—5—7-
log 5t log 7
Our first main asymptotic result is presented next.

Theorem 4 Let E B,, ; denote the expected external profile in (asymmetric) digital search
trees with0 < p < ¢ = 1—p < 1. Ifn and k are positive integers with —r+& < £ < L _¢

log % logn — log %

(for some € > 0), then uniformly

2= (i) T (0 ().

where pp i, = p(k/logn) and H(p,x) is a non-zero periodic function with period 1 given by
(56) of Section 4.



The average internal profile is slightly more complicated. Among others, it exhibits some
phase transitions. As before, the Poisson transform of E I,, ;, is defined as

_ e z" .
Ag(z)=e ZEIn,k i Ey(z)e™™, (k>0)
n>0 ’

which translates into
Ap(z) + Bp(z) = D1 (pr) + Byoi(gr), (k> 1), (27)

with the initial condition Ag(z) = 1 — e~®. This initial condition shifts the existence of the
Mellin transform Ay (s) to —k — 1 < R(s) < 0. Let now

Aj(s) = —T(s)F(s)
where Fy(s) =1 and by (27) we find
Fr(s) — Fr(s —1) = T(s)Fj_1(s).

Using now the operator A defined in (21), we can express F(s) similarly as in Theorem 3,
that is,

Fi(s) = A[Fp-a](s) — A[Fp](-1)  (k=1) (28)

and

= k Zezo Ry(s)w*
kZX)Fk(S)w = ZZZO Ré(—l)wg (29)

Using this representation, in Section 4 we prove our second main asymptotic result.

Theorem 5 Let EI, ), denote the expected internal profile in (asymmetric) digital search
trees with 0 <p < q=1—p < 1. Let k and n be positive integers such that k/logn satisfies
(log %)_1 < k/logn < (log %)_1. Then the following assertions hold:

1 If 2 +e< £ <ag—c (for somee >0), then uniformly

log% — logn
_ (p_pn,k: + q_pn,k)kn_pn,k _1/9
E Tk =2 =T (puyesTogy g vn) (1+0(k12)),
n n p/q 2775(Pn,k)k‘
where H(p,r) is a non-zero periodic function with period 1 (see Section 4 for more
details).

2. If k= oy (logn + &/ apB(0) log n), where & = o((log n)%), then

E 1,4 = 2°®(~¢) <1 +0 (11\/%5»

where ® is the normal distribution function.

8 Ifag+e< i <1 —¢ (for some £ > 0), then uniformly

= Togn = Tog !

s ) EE R 10

with the same function H(p,z) as in 1.



We should point out that we can extend the range of the asymptotic expansion (for
k/logn around «ag, log(1/p), and log(1/q)) so that there are no formal gaps in the uniform
asymptotic expansions. Actually, we can obtain the same range as in [22]. However, this
would lengthen the proof considerably and we decided to omit the details since they provide
no new insights.

Finally, we point out that if we set & = k/logn, then we can rewrite

(p—p + q—p)kn—p _ nalog(pf”-‘rq*p)—P'

Thus, for ag < a < 1/1og(1/q) the behavior of E B,, ;, and E I,, ;, is governed by a power of
n depending on the ratio &« = k/logn. The maximum exponent is obtained for

1 1
h plog%—l—qlog%7

o =

where h = plog % +qlog % denotes the entropy of the Bernoulli source. Actually, the expected
number of nodes at level k = % logn is of order n/+/logn.

2.4 Some Consequences

In this section we briefly present some consequences of our main findings. We start with the
typical depth. Let D,, denote the depth of a random node in a digital search tree with n
nodes. Then the distribution of D,, is related to the internal profile by [14, 26]

EI
P{D, =k} = —2k
n
Hence, a direct application of Theorem 5 provides an unusual local limit theorem.

Theorem 6 Let D, denote the depth of a random node in a binary random digital search
tree with 0 <p<q=1—p<1. Then

POy~ 1} — o (1totyo'n) (k— jlogn)’
n — - ex —
\/2m(he — h2)/h3 logn 2(ha — h%)/h3 logn

1 |k—%logn‘3
- <”O<¢m+ (log n?

uniformly for k and n with |k‘ - %logn‘ =0 ((log n)2/3) where he = p(log %)2 + q(log %)2.

The unusualness of this result is the periodic factor H(-,-) in the local limit theorem.
Although the depth D,, follows a central limit theorem (see [18]) it does not obey the corre-
sponding local central limit theorem (see also with [22]).

As a further corollary to the above finding, we observe that the width W,, (defined as
maxy, I, ;) satisfies

EW, > maxE T, ; = 0 <L> .
k ’ logn
In order to obtain a corresponding upper bound (one expects that the order of magnitude
of the lower bound is the correct one) we would need some information about the second
moment EI?L > compare with [2].

10



Remark 2 Other parameters of interest are the height H, = max{k : I,; > 0} and the
fillup level F,, = max{k : I,; = 2*}. It is well known (see [23, 1]) that

H, 1
LN , in probability,
logn ~ logp~!
and
— , in probability.
logn ~ logq~!

This is completely in accordance with our findings. Theorem 4 only works in the interesting
range (log]%)_1 < a=k/logn < (log%)_ where we either have 2¥ — E 1, — oo resp.
E I, , — oo. However, it is a common phenomenon that fillup level and height occur, where
EL,; = 2F — O(1) resp. where E I, = O(1). By extrapolating the asymptotic expansions,
presented in Theorem 4, to its boundaries o = (log %)_1 resp. a = (log %)_1 one can expect
to prove this kind of behavior (see [22] for tries). In order to make this precise we would have
to discuss the asymptotic behavior of F(s) for s — oo and s — —oo, which we omit in this
paper (see [12] for the symmetric case).

3 Analysis: Symmetric Case

In the symmetric case, we only discuss the asymptotic analysis of the profile. We prove here
(15) and (16) of Theorem 2 that we repeat below:

E By = 2F'(n27%) + F"(n27%) + O(n27%)
and
E I, = 28F(n27%) + F'(n27%) + O(n27"),

where (see (14)) 1
(—1)ym2-("3")
Qoolm

Flz)=1-) —=2"
m>0
It is easy to see that

F(z )—1—Qiooe_z—|—0( ) (z = ).

However, for the asymptotics of E B,, ,, and E I,, , we need the behavior of F(z) for 2 — 0+
which is much more involved and will be presented in Lemma 2. Interestingly we need the
following identity.?

Lemma 1 Suppose that |q| < 1 and let

- @ q)oo
H (1-ag’)  and  (a5q)r = (C(qu?;) :

be the usual q-Pochhammer notation for g-rising factorial. Then

N ~1)*q() 1 (9
Zo K(1 =gt~ 1)q2k - %1 —c/q EZ; Zioo - %(q;q)“' (30)

2We are grateful to Michael Schlosser (University of Vienna) who proposed a simple proof of Lemma 1.

11



Proof: We first recall the following ;¢; summation formula [6, Appendix (II.5)]:

> (a; () ko (c/a;q)
(] 7 4)oco
Z;) (¢;q)k (a) - (¢;q) 00 (31)

that we will apply twice. We consider the left hand side of (30) and replace one factor ¢* by
4 — 49(1 — cg"') that leads to

= (1)kgl) LS (1)) . )
kzzo (75 9)r(1 — qu_l)q% - ;:;) (@)1 — ch—l)qk [E B 2(1 — cq" 1)]

a1 & (e as(-1)rl) k_ﬂoo
_cl—c/qu:;) (@ k(cq ckZ:o

The first sum on the right hand side can be simplified using (31) by setting a = ¢/q. For the
second sum we can also apply (31) with a = ¢/q but considering the limit ¢ — 0. This proves
(30). [

7

If we apply (30) with the special values q = % and ¢ = —3 we obtain (after some
elementary calculations)

00 00 _ m+1)

I 1 (—1m 2 ("3
;jl;[om—g—l_[11_2_j%(S+2m)ngn:1(1_2—j)- (32)

1=

This identity is now used in the proof of Lemma 2 and in an asymptotic expansion of F(z)
and its derivatives.

Lemma 2 The Laplace transform L(s) = [° F(z)e 5% dz is given by

1 1
Ls)=-1] ——. 33
(S) 8]]:1014-82_] ( )

Furthermore, for any fixed r > 0 the r-th derivative F (’")(z) s asymptotically equivalent to

F)(2) ~ e Y082 c(Z))c(z)’”r% (log c(z))_%e10g2 125 (log, o(2))?, (34)

log(1/2) _ logy(1/2)

zlog 2 z and

where ¢(z) =

1 U 1
C'=— - ——log2|.
NG eXp( Glogz 12 °° )
In particular lim,_q4 F")(2) = 0.

Proof: Since F(z) is bounded for z > 0, the Laplace transform L(s) exists for R(s) > 0

and is given by
9=(")
F —SZ d — _ _
/ § Z Qoo Qm 54 2m)

m>0

12



Applying (32) we prove (33).

Denoting
b x
Q) =1] <1 - 27)
j=1
we also have 1
L(s) = ————
(s) sQ(—2s)
Note that the Laplace transforms of the derivatives F(")(z) are given by
r—1
r _ r=1-j ()
s"L(s) JZ_;S zl—l>%1+F (2).

Since we will prove (inductively) that lim, oy F()(z) = 0 we can assume (inductively) that
the Laplace transforms of the derivatives F(")(z) is actually given by s"L(s).

In order to obtain the asymptotic expansion (34) we use the integral representation for
the inverse Laplace transform

1 c+1i00
FU(z) = —/ s"L(s)e* ds,
2mi c—100

where c is an arbitrary positive number (which we choose in the sequel). Here we use the fact
that we have already proved that lim, o F' ( )(z) =0 for j < r. The idea is to use a saddle
point approximation of the integrand. For this purpose we need an asymptotic formula for
Q(—2z) for x — oc:

(logx)*  logz T
—92) =
@(=2) = exp ( 210g2 | 2 Glog2

2 2

+ o log2 + Wllogy(a)) +01/a) ) (35)

where W(x) is a differentiable periodic function with period 1. This follows from the Mellin
transform applied to the logarithms. Indeed, for —1 < R(u) < 0, using the “harmonic sum
formula” [4, 27] we find

1

M(u) = / log Q(—2x)z" ' dx = 5 R(u)
0 —
with -
_ u—1 _ T
Rlw) = /0 log(1 + ) dr = wsin(ru)’

The inverse Mellin transform yields

1 c+io0o
1 —2z) = — M(u)z™"d
o8 Q(-20) = 5 [ M(wa
with —1 < ¢ < 0. By shifting the line of integration to the right and collecting the contri-
butions from the triple pole at u = 0 and the single poles at u = 27ki/log?2 (k € Z \ {0}),
which constitute the periodic function W, we obtain (35) (compare with [4]). It is also easy to
extend the asymptotic relation (35) to the complex plane |arg(z)| < ¢ and |z| — oo, where
¢ is a small positive number.
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By elementary means it follows that the order of magnitude of |Q(—2z)| is (up to con-

stants)
(log |z])* | log|x|
eXp( 2log2 | 2 (36)

as |x| — oco. This estimate will be used for z with § < |arg(z)| < 7.
With the help of these preliminaries we can evaluate the r-th derivative F (T)(z) asymp-
totically. Let 0 < z < 1 be given. We will compute the integral

") 1 c+100 Sr—l o
P06 =g [ o

where

¢ = o(z) = 28U/2) _ logy(1/2)
zlog 2 z

is chosen as the (approximate) saddle point of the function

(1og 5)?
2log?2 /-

S — exp (.sz —

Hence, by a standard saddle point method we obtain (34). It also follows that lim,_,q4 F(")(2) =
0 which completes the induction proof. Note that we can use the expansion (35) for | arg(s)| =
|arg(c(z) 4+ it)| < ¢ and the estimate (36) for |arg(s)| > 4.

This completes the proof of Lemma 2 (see also [12]). ]

Remark 3 We note that the relation I,, ;, = Zj>1 277 By, i+ is reflected by the functional
equation

F(z) =Y F'(227)

Jj=1
which is equivalent to the relation
L(s)=sY 2L(s?), (37)
Jj=1
where L(s) = sL(s) denotes the Laplace transform of F’(z). Interestingly, equation (37) is
deduced easily from the identity

27 1

;(1+23)(1+228)---(1+2j8) s

that follows from (31) by setting a = ¢ = %, ¢ = —1/(4s), applying the index shift k — j — 1
and doing some elementary calculations.

Proof of Theorem 2: In order to prove Theorem 2 we use the the explicit representa-
tions (12) and (13) of Theorem 1 and approximate the leading terms by 2¥ F’(n27%) and by
2k P (n27F), respectively.

Let us concentrate on the external profile. We repeat here equation (12)

k _(m
_ k§:<—mm2<z><4_ 1 >"
EBHJC =2 m—0 Qka—m ! 2k—m ’
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We first show that the terms for m > k/3 can be neglected
(—1)m2‘(’3) m—t\"| _ —-(m | _ —(Lh3)y
> oo (1-2m) =0 X 2B ) =o(22("D).
m>k/3 m>k/3

In a next step we use the approximation (for m < k/3)

(-2 = (10 () = w0 ().

and obtain an error term of the form

_1ymo—(%) n n
> (an)lQi_m 0 <4k—m) =0 <4_k> ‘

m<k/3

Finally, we approximate the ratio

Qoo 1 1
Qk—m - ok—m <4k—m>

leading to even smaller error term O(4~%). Summing up we arrive at

EBnk—2kZ Qka m) (1—2m—’f)"

oy (—gmg(Z) <1 - 2k1_m> e 40 (2’“%) +0 (2h27 ()

= 2kF'(n2 FY £ F"(n27%) + O(n27").
This completes the proof of (15). The proof of (16) is exactly the same. n

Remark 4 These expansions are valid only if n27% < 2%, that is, for k > % logy n. The range
of interest is (see [12])

logyn —loglogn < k <logyn + +/2logyn,

and this range is covered by Theorem 2 (see also [13]). Nevertheless, with some more care it
is easy to obtain more precise expansions, e.g.

E By = 2°F'(n27%) + F"(n27%) — WF’”( FY+0ma™ ) +0027h).

4 Analysis: Asymmetric Case

In this section, we return to the asymmetric case (p # ¢). We first derive the exact repre-
sentation for the Mellin transform Fj(s), proving Theorem 3. Then we deal with asymptotic
results establishing Theorems 4 and 5.

15



4.1 Proof of Theorem 3: Exact Representation

Let us recall that A is a functional operator defined by

Algl(s) =D _g(s =T (s — ),

Jj=0

where T'(s) = p~° + q~°. We prove here Theorem 3, that is,

Fi(s) = AlFp_1](s) — A[Fp1](0)  (k>1), (38)
where Fj(s) =1, and ,
gk 2aezo Re(s)w

kZka(s)w =S RO (39)

where Ry(s) = A¥[1](s); also Fj,(—¢) =0 for £ =0,1,2,... , k— 1.

Proof Theorem 3: Set Fy(s) = 1 and recursively

Fi(s) = AlFei)(s) — A[F)(0) (k> 1),

It is easy to see that F}(s) is a well defined entire function. In particular it follows that Fj(s)
is (as it is for Fj(s)) a finite linear combination of a function of the form p~*%¢=%* with
l1,05 > 0 and ¢1 + 5 < k. Furthermore, by definition these functions satisfy F, (0) = 0 (for
k> 1) and by (38) fulfill the relation

Fi(s) — Fk(s —-1)= T(S)Fk_l(s)

for kK > 0 and all s.

Now we can proceed by induction to show that Fj(s) = Fj(s). By definition we have
Fy(s) = Fy(s). Now suppose that F(s) = Fx(s) holds for some k > 0. Then it follows that
Fli1(s) = Fyp1(s) + G(s), where G(s) satisfies

G0)=0 and G(s)—G(s—1)=0, (R(s) > —k). (40)

By the above observations G(s) has to be a finite linear combination of functions of the form
p~ 13¢5, However, the only periodic function of this form that meets conditions (40) is the
zero function. Hence, Fyy1(s) = Fr11(s).

Now we prove (39), which is equivalent to

k
> Fu(s)Rp—e(0) = Ri(s),  (k>0),
/=0
or o1
Fi(s) = Ri(s) = > _ Fu(s)Rp—e(0),  (k>0).
(=0

We will prove this relation by induction. Certainly, it is satisfied for £ = 0. Now suppose
that is holds for some k£ > 0. By (38) we also have

Fi1(s) = A[F](s) — A[F;](0)

16



= A[Ri](s) — A[Rg](0) — > (A[F](s) — A[F](0)) Rg—e(0)
e

= Rpy1(8) — Ri1(0) — > Foya(s)Ri—e(0)
=0

k
= Riy1(s) = Y Fy(s) Ris1-¢(0).
£=0

Finally, since Fj,(s) = Aj(s)/T'(s) is analytic for R(s) > —k and 1/I'(—¢) = 0, it also follows
that F(—¢) =0 for £ =0,1,...,k— 1. [

Following the same footsteps, we prove the corresponding relations for the internal profile
presented just above Theorem 5; in particular, (28) and (29).

Remark 5 The proof of (38) (and consequently that of (39)) makes use of the fact that
Fi(0) = 0 for £ > 1. However, we also have Fj(—r) = 0 for £ > r. In particular, if we set
s = —r in (39) we find

- ok 2520 Ry(—r)uw’
ZFk( rw® = S B0l

and consequently

Zé>0 Ry(s
]Z;)Fk(s) kE _ Zé>0 RZ i ZFk . (41)

4.2 Asymptotic Analysis

We now prove Theorems 4 and 5 establishing the asymptotic behavior of the average profiles.
The discussion is divided into several steps: First we analyze Fj(s), then we invert the Mellin
transform Ay (s) = I'(s)Fj(s), and finally we invert the Poisson transform Aj(z) to obtain
asymptotics for the expected profile E B, ;. Finally, we comment on necessary changes to
recover asymptotics of E I, ;.

4.2.1 Singularity Analysis of Fj(s)

In order to obtain asymptotic information for Fy(s) we will analyze the generating function
f(s,w) =", Fi.(s)w”* that by Theorem 3 is also given by

where g(s,w) = /5 Ry(s)w’ for complex w. Note that g(s,w) satisfies the following formal
identity
gls,w) = 1+ wAlg(,w))(s) = 1+w S gls — j,w)T(s — j). (12)
J=0

Interestingly enough, the function g(s,w) has a polar singularity at w = 1/7T(s), as proved
below.

17



Lemma 3 There exists a function h(s,w) that is analytic for all w and s satisfying
wl(s—m)#1 forallm>1
such that
h(s,w)
1—wT(s)

Thus, g(s,w) has a meromorphic continuation with wg = 1/T(s) being a polar singularity.

9(87 w) = (43)

Proof: We recall that Ry(s) = A¥[1](s). Then for p < q

1 —R(s —R(s
|Ri(s)| < m(? ) 4 g RNk,
i>1

Thus, if |w| < T(R(s))~! the series

g(s,w) =Y Re(s)w’ = | D w'A" | [1(s) (44)

20 >0
converges absolutely and represents an analytic function. We can rewrite (44) as
g(s,w) = (I—wA) 1] (s),
where I is the identity operator. Then

(I—wA)g(w)](s) = g(s,w) —w Y g(s — j,w)T(s —j) =1, (45)
=0

which formally proves (42).
If we substitute g(s,w) in (42) by

g9(s,w)

we find the following relation for A(s,w)

wT(s - j)

h(s,w) =1 —I-Zh(s —j,w)m.

Jj1

(46)

Recall that we established the existence of h(s,w) for |w| < T(R(s))~!. We will now use (46)
to show that h(s,w) can be analytically continued to |w| < T(R(s) —1)~! (and even to all w
such that wT'(s —m) # 1)) thus leading to a meromorphic continuation, as claimed.

For this purpose we introduce another operator B defined as

BIfI(s) = Y (s — ) )

> Rt (47)

For convenience, set U(s,w) = wT(s)/(1 —wT(s)). By induction it follows that

B*[1](s) = Z Z---ZU(s—il,w)U(s—il—ig,w) e U(s— i —ig — -+ — i, w)

i121i221 21
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my—1 mp_1—1 mo—1

= Z Z Z Z U(s —mq,w)U(s —mo,w) - U(s — mg,w).

mip>kmg_1=k—1mp_o=k—2 m1=1
Hence,
BGI< Y Y Y UG —mi,w)U(s — ma,w) - Uls — my, )
mip>kmy_1>k—1 m1>1
= Y UG —mi,w)|- > [U(s — ma, w)| Y U (s =, E)).
mi1>1 mo>2 my >k

By using the fact that T'(s — m) = O(¢™), it follows directly that the series

wl(s—m
S::Z\U mw\—z|1| )|)|

wT'(s —
m>1 m>1

converges if wT'(s —m) # 1 for all m > 1. Thus for any choice of w and s there are only
finitely many exceptional points where wT (s —m) = 1.
Let now kg be any value such that

Z|U8—mw|§

m>ko

NI)—t

Then we have for all k > kg
IBF[1)(s)| < Skog=(h=ho) — (2,6)kog—F
In view of this,

— 3 BM1(s), (48)

k>0
is well defined and it satisfies (46). Furthermore, |h(s, w)| < 2(25)%o. n
Now we are in the position to derive an asymptotic representation for Fj(s).
Lemma 4 For every real interval [a,b] there exist kg, n > 0 and € > 0 such that
Fi(s) = A(s)T(s)" (1 +0 (e_”k))> (49)
uniformly for all s such that R(s) € [a,b], |3(s) — 275 /log(p/q)| < € for some integer j and
k > ko, where A(s) is an analytic function that satisfies A(—r) = 0 for r = 0,1,... and is

bounded in this region.
Furthermore, if |3(s) — 2mjlog(p/q)| > € for for all integers j then we have

Fi(s) = O (T(R(s)F ™)) (50)

uniformly for R(s) € [a,b].
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Proof: The idea of the proof is to show that the function f(s,w) has a polar singularity
w = 1/T(s) (if the imaginary part of s is close to an integer multiple of 27log(q/p)), and
to use this property to obtain asymptotic for the coefficient Fj(s) = [w*] f(s,w). (In a
similar way we obtain estimates for Fj(s) if the imaginary part of s is not close to an integer
multiple of 27 log(¢/p).) Due to the special structure of f(s,w) (see (39) and (41)) we have
to distinguish several cases depending on the size of R(s).

Suppose first that s > —r — 1 for some integer r > 0 but s is not a positive integer. Here
we use the following representation (see (41))

s,w) = y —r wgig(s,w)
o) = Rt A

- h(s,w) 1 —wT(—r
- ;Fg(_r)wzh((_mj) = wzg(s)). 51)

By Lemma 3 the function h(s,w) is analytic for |w| < 1/T'(s — 1). By (48) it also follows
that h(s,w) is non-zero for real 0 < w < 1/T(s —1). It also follows that h(—r,w) is analytic
and non-zero for 0 < w < 1/T(—r — 1). Hence, wg = 1/T(s) is a singular point of f(s,w).
Since Fj(s) = Aj(s)/I'(s) it follows that all values Fj(s), k > 0, have the same sign. Hence,
the radius of convergence of the series >, <, Fi(s)w* equals wy = 1/T(s).

In a next step we show that f(s,w) has no other singularities on the circle of conver-
gence |w| = 1/T(s). Moreover, the function f(s,w)(1 — w7 (s)) continues analytically to
to |w| < 1/T(s) + € for some € > 0. Since all terms on the right hand side of (51), that is,
S i—o Fo(=r)w, h(s,w), h(—r,w), 1—wT(—r), and 1—wT(s) are analytic for |w| < 1/T(s)+e,
a singularity of f(s,w) can only be induced by a zero of h(—r,w).

Suppose first that h(—r,w) has a zero wy with |wy| < 1/T(s). Since h(—r,w) # 0 for
0 <w < 1/T(—r —1) it follows that wy # 1/T(—r). If we assume that > j_, Fy(—r)w! # 0,
then w = wj has to be a zero of h(s,w). We slightly decrease s to s —n (for some 1 > 0 such
that s — n is not a positive integer) such that h(s — n,w;) # 0. Then the zero w = wy of
h(—r,w) would induce a singularity wy of f(s,w)(1—wT(s)) with |wy| < 1/T(s) although its
radius of convergence is 1/T(s —n) > 1/T(s) > |wy|. This leads to a contradiction. Hence,
if h(—r,w;1) = 0 for some wy with |wi| < 1/T(s), then we also have > ;_, Fy(—r)wf = 0.
Actually, it also follows that the order of the zeroes of Y ;_, Fy(—r)w? is at least as large as
that of h(—r,wy).

The above considerations also show that if w = wy is a zero of h(—r,w) with |w;| <
1/T(—r — 1), then wy is also a zero of Y ;_o Fy(—r)w’ = 0 at least of the same order.
Namely, if |wy| < 1/T(—r — 1) then there exists a non-integral real number s > —r — 1 with
|lwi| < 1/T(s) and we proceed as above.

This property shows that the only singularity of the mapping w — f(s,w) is given by
w = 1/T(s) if s > —r — 1 is real (but not an integer). This singularity is a polar singularity
of order 1. Hence, by using Cauchy’s formula for a contour of integration on the circle
v={weC:|w|=e"/T(s)} and the residue theorem [5, 27] it follows that

Fy(s) = % / f(s,w)w 1 dw
g

= A(s)T(s)* +0 (IT()e "),
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where

N e HETE) (T
= 2 BT ) = 52

These estimates are uniform for s contained in a compact interval [a,b] C (—r — 1, —7) (for
some non-negative integer r) or in a compact interval [a,b] contained in the positive real
line. Furthermore, we get the same result if s is sufficiently close to the real axis. Thus, if
a < R(s) < band |J(s)| < e for some sufficiently small € > 0 then we obtain (49). Here we
have also use that fact that A(s) # 0 in this range.

Next, suppose that s is real (or sufficiently close to the real axis) and close to a negative
integer —r, say —r —n < s < —r +n (for some 1 > 0). Here we use the representation

ZFk w_ZF ggsw)

k>0 —w)
h (s,w) 1—wT(-r)
B ZF W —ryw) 1 —wT(s)
h(s,w) — h(—r,w) 1 —wT(-r)
N Z Fy(=rju’ h(—r,w) 1 —wT(s)
Y Bt + Y () f+1w,
=0 =0 —wT(s)

Now if we subtract the finite sum >_;_, Fy(s)w’, then we can safely multiply by I'(s) (that
is singular at s = —r) and obtain

B L(s)(h(s,w) — h(—r,w)) 1 —wT(—r)
%Fk w* Z F(= h(—r,w) 1 —wT(s)

¥ Z Fi(—r)ut ™ F(s)(lT e

+Zr — Fy(s))w'.

We again use the fact that the function Y ,_o Fy(—r)w’/h(—r,w) is analytic for |w| <
1/T(—r — 1) and observe that w = 1/T(s) is a polar singularity. By applying Cauchy’s
formula we obtain for k > r (similarly to the above)

1 L, 1/T() R UTED) ([ TENY g
ZF@ h(—r. 1/T(5)) (1 T<s>>T”

+ZFz TTIT(s)(T(s) = T(=1)) T(s)*

+0 <|T(s)e_77| ) :

Thus, we actually prove (49) for £ > r and also observe A(—r) = 0.
Set t; = 2jm/log(p/q) (for integers j) and v = —27log(p)/log(p/q). Then

T(s +it;) = 77T (s)
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Hence, |T'(s+it;)| = |T'(s)| and consequently, it follows that w = 1/T(s) is a polar singularity
of f(s,w) if |(s) —t;| < € for some integer j. Thus, (49) follows also for s in this range.

By using the representation (52) it is also easy to deduce that A(s) is bounded. Suppose
first that R(s) is not an integer (more precisely we have R(s) € (—r — 1,r) for some integer
r > 0). By using the relation Ry (s + it;) = Ry(s)e”* we obtain g(s + it;,w) = g(s, we¥?)
and also h(s + it;,w) = h(s,we”7). Consequently

s 7 —L o —ijly h(s,l/T(s)) — T(—r)
+ i) ZFe B, e~ T (3)) <1 <>em>

Since h(—r,w) # 0 if jw| = |1/T'(s)]| it follows that A(s) is bounded if R(s) is contained in a
compact interval [a,b] C (—r — 1, —r) (for some non-negative integer r) and |3(s) —t;| < e
for some integer j. If R(s) is close to an integer we can proceed similarly.

Finally, suppose that |3(s) — 2mj/log(q/p)| > € for some integer j, then there exists
n > 0 such that |T'(s)| < e~ 27|T(R(s)|. Hence it follows that f(s,w) is regular for |w| <
e?1/T(R(s)). Consequently, if we use the path of integration v = {w € C : |w| = ¢"/T(R(s))}
in Cauchy’s formula we obtain

Fi(s) = O (T(@R(s))ke—”k)

which is precisely (50). It should be clear that this estimate is uniform if R(s) varies in a
finite interval [a, b]. ]

Similarly we can analyze the function F(s). Following the same footsteps, we conclude
that (for |J(s) —t;| < e for some integer j)

Fi(s) = A(s)T(s)" (1 + O(e_"k)> : (53)

where A(—r) =0 forr=1,2,....

4.2.2 Saddle Point Analysis

By the above discussion, we know that Fj(s) and Ag(s) = I'(s)Fi(s) behave asymptotically
as T(s)*. Thus we are in a situation similar to the analysis of the profile of random tries
presented in [22] (but since A(s) is zero for negative integers, some poles disappear in the
analysis of digital search trees, as we shall see below). Our asymptotic analysis will be
therefore similar to that of [22].

We start with a very short outline of the proof (where we also make a simplification and
we only consider the case = n). By applying the inverse Mellin transform

Lo
Ag(n) = 5 | Ap(s)n™*ds (54)
pP—1i00

it is natural to choose p = p,, 1, as the saddle point of the function

T(S)kn—s _ ek log T'(s)—slogn

which satisfies the equation

ko pP+q?
logn  p—rlog % +q"log % '
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Observe that when p varies from —oo to +o0o the ratio k/logn = « varies from 1/log(1/p)

to 1/1log(1/q).
Note also that on the line R(s) = p there will be infinitely many saddle points

2mij

sj=p+ (J€Z)

P
log 7
since T'(s;) = e~ 2mii(logr)/108p/A)T(p). Consequently, the behavior of T(s)*2~* around s = s;
is almost the same as that of T'(s)*27% around s = p. This phenomenon implies a periodic

leading factor in the asymptotics of Ag(n) and then also in that of E B,, .

Lemma 5 Suppose that (log %)_1 +e<k/logn < (log %)_1 — ¢ (for some € >0). Then

—Pnk | q_pnyk)kn_pn’k 1
Aw(n) = H (pyp,1 en) & <1+O<—>>’ K
k(n) (P ks 108p/q P n) 21 B(pn. )k vk ()
where ™
2) =Y Alp+ity)T(p + it;)e” ™ (56)
jez

is a non-zero periodic function with period 1 and t; = 2jm/log(p/q).

Proof: For convenience we set Ji(n,s) = n=°T'(s)Fj(s). By Lemma 4 we can safely re-
place Fy(s) by A(s)T(s)* since the error term is of order O(|T(s)|*e~"F) and leads to an
exponentially small contribution compared to the asymptotic leading term.

We split the integral (54) into two parts where we use the substitution s = p + it.
Let us start with the range [¢| > y/logn and recall that by Stirling’s formula I'(p + it) =
O (Jt|p~1/2¢=mItl/2) " Furthermore we use the property that |A(s)| is uniformly bounded for
R(s) € [a,b] and |I(s) — t;j| < e (for some integer j). Consequently

1 [e.e]
— / Je(n,p+it)dt = O <n_pT(p)k/ IT'(p + it)] dt)
27 Viogn

[t|>+/Togn

o= 1/2e—me/2>

log n

- (n ’T(p logn) p/2=1/4 —w\/@m)
O (w#T(p)*ePE)

Next set
1

J = o5_
270 Jjt—t;1<r/|10g(p/q)|

where t; = 24 We have to study these integrals for all || < jo = [vIogn [log(p/q)|/(27)].
q

Ji(n, p+it) dt,

log
Since there exists ¢g > 0 such that

[P g S T(p)em )
for |t —t;] < m/|log(p/q)|, we obtain an upper bound of the integral (for j # 0)

,_1 / '
Cj o e
kfz/sg‘t_tj\gwﬂlog(p/Q)‘
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=0 (\F(p +ity)[n~PT(p)* /:O

—2/5

e_Coktz dt)
=0 <‘P(P + itj)’n_pT(p)kk_3/5e—cok1/5) .

For j = 0 we can replace the factor |I'(p + it;)| by 1.
Finally, for |t — ;| < k~2/> we use the approximation

Je(n, p+it) =T(p +it)A(p + it)n P4 (p + it)* (1 + O(e_"k)>

(p + it)Ap + it)e ™ P ) =P =it (p 4 it — 1))k <1 T 0(6_”k))
(p+it;)A(p +itj)e " 10g(p’“n)n—pT(p)ke—%B(p)(t—t]‘)zk

x (1 +O([t — t]) + Okt — ;%) + O(e_"k)> .

T
I

A standard saddle point method then leads to

1 ,
|t—tj|<k~2/5
, T ()" st -
= D(p+ it;)Alp + it )~ e e~ i lo2@"n) (1 4 O(k~1/2)) .
(it Alp+it)) Ze= (1+067)

Hence we finally obtain
Au(n) = 3 T+ 0 (n 7T () e V")
l71<Jo
= Y T(p+itj)A(p +itj)e " log(p"n
171<do
+0 (n_pT(p)ke_*/@>

n”*T(p)*
2775(pn,k)k

) T (p)*

=T (1 + O(k‘1/2)>

=H (,0, log,, /g pkn) <1 + O(k_1/2)> )
as desired. m

Remark 6 The above proof extends directly to an asymptotic expansion for Ak(new), where
[¥] < 7/2 — ¢ (for some € > 0). In this range we have uniformly

k
) > T(p+it;)A(p + ity) (ne™) =P~ Hip=ikls (57)

- VeBok 151<jo

X (1 +0 (k‘l/z)) .

We will use this extended version for the final depoissonization procedure.

Ap(ne™)
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The analysis of Ay (z) for the internal profile is similar but needs some additional consid-
erations. As before, we start with

_ Lo
where, we recall, A, (s) = —F(s)T'(s). By (53) we have Fy(s) = A(s)T(s)* (1+ O(e™™)),
with A(—r) = 0 for 7 = 1,2,.... Notice that A(0) # 0. In fact, we know that F'}(0) = 2*.
With these preliminaries, we are ready to present our asymptotic analysis.

We have to distinguish three ranges:

Range: <log%> ' +e<k/logn <ay—ec.

In this range p varies from large values to zero. In order to cover this range we have to
shift the line of integration in (58) to the saddle point p > 0. By doing this we collect a
contribution of 2¥ from the polar singularity of F(s)I'(s). This leads to

. p+ico e
Ap(z) =28 + L Ay (s)x™ ds.

211 p—ico
The remaining integral can be handled as above by a saddle point method.
-1
Range: ag+¢ < k/logn < (log %) — ¢, that is p =~ 0.
Here we have p < 0 and we are precisely in the same situation as in the analysis of the external

profile. Actually this range is the most significant range. Almost all nodes are concentrated
around the level k/logn =~ 1/h, where h = plog % +qlog % denotes the entropy of the source.

-1

Range: k/logn ~ 2 (log% + log %)

Here a phase transition occurs. Technically, a polar singularity (of I'(s)) and the sad-
dle point Fj(s)n™*® coalesce at s = 0). We assume that o = k/logn is close to ag :=

-1
2 <log % + log %) . More precisely suppose that

k=ag (logn + & apB(0) log n) ,

where € = o((logn)'/%). Here we move the line of integration to the saddle point

oL Ll-alg(l/p) 3 2 o
Ris)=p= log(p/cz)1 S alog(l/q) — 1~ \JaoB(0)logn +0(&/logn).

First assume that £ > aglogn, so that £ > 0 and p < 0. This means that we do not pass the
polar singularity, which is located at s = 0. Hence, as above we obtain

Ap(ne’) = i/ Te(ne®, p+ it) dt
27 Jjt1<(log n)—2/5
+ 0 (’F(P + 1(10g n)_2/5)] n_pT(p)ke—Co(log n)1/5>

+0 (k27T (p)")
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where Jy(s,x) = —27°T'(s)Fj(s). This can be again replaced by —z~*T'(s)A(s)T(s)*. Since

1
)

IT(p +i(logn)~*/%)| = O = O((log n)*?),

<\§!(10gn)‘1/2

we can neglect the first error term.
Next we replace the factor I'(s)A(s) in (the approximation of) Jy(s,z) by

(s)

S

N

Since the sum T'(s)A(s) — A(0)/s is analytic, we have

/t|s(10gn)2/5 (F(S)Z(s) N Z?) (ne™) "7 (p + it)* dt = O (ﬂﬁ(mk>

and consequently the asymptotic leading term of Ay (ne®) is given by
A(0) / (ne®) =P~ T (p + it)*
2 |t|<(logn)—2/5 p+it
A(0 . t—PB(p)kt* /2+O0(klt|?)
= ——( )n_pe_pr(p)k/ ¢ dt

2 [t]<(logn)=2/5 ptit

A0) .y iopry k /°° e’ /? jw| + |w]?
i wpe 1+0| ——— dt
o € 2 —oo S0 T iw * Viogn ’

where w = /5(0)kt and

dt

é = pVBO)k = €+ O(¢* (logn)~2).
Since &y < 0, we obtain (with the help of the substitution s = —w)

—w?2/2
2i h g i / w=—a [ e /OO e~ V(=C0F) gy ds
™ J_c0 SO rw _

27T 0
1 oo oo
— __/ ev&) / 6—52/2—2'51) ds dv
27 0 —00
1 oo

_ —v? /240 d
——27r A e v
= <2 (&).

The error term is estimated similarly:

1 © (|w] + [wP)e=v*/? 1 > 3\ —v? 24vEo
—logn/_oo IOk 1 il dw_O< —logn/o (v+v7)e dv)
_ L e 3

Thus

Ag(ne'?) = A(0)(ne') T (p)*eS/2 (&) <1 +0 (1\7%?’)) +0 (k‘_l/zn_pT(p)k) :
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By using the local expansions
n=PT(p)k = T(0)keE /20 (logm)71/2)
20 (&) = *20(=6) (140 ([ePogm)?))

we end up with the final expansion

Ru(ne'”) = AO)T(0)"B(~¢) (1 o <1¢+%3>> +O (kT (0)fe ),

that holds uniformly for |¢| < ¥y.

4.2.3 Depoissonization

The final step in the proof is to obtain asymptotics for E By, ,, and E I,, ;, from the asymptotic
properties of Ag(z) and Ag(x). This is accomplished by the analytical depoissonization [9]
which requires to compute another Cauchy integral

n! dz

EB, ;= —— AL ()2
nk Qi e|=n € k(x) xn-i—l

Since Ag(z) behaves quite smoothly (in particular it has a subexponential growth) the de-
poissonization heuristics saying that E B, ;, = Ag(n) applies (see [5, 27]). However, this has
to be made precise. For this we need a good upper bound for Ay (ne™) that is valid for all
|9 < 7.

Lemma 6 For every real number p there exist constants C = C(p) > 0, ¢1 = c1(p) > 0,
ca = c2(p) > 0, and an integer ko = ko(p) such that

€% Ag(@)] < C(1 4 e1 /r)F(1 — eg0?)~Fr=PT(p)ker (=29 (59)

for k >0 and uniformly for all * > 1 and [9| < 7, where x = re'.

Proof: We indicate a proof for p < 0. (In this case we can choose ¢; = 0 and get also
a proof for all » > 0). First, since e*Ag(x) = 1 (and e*Ag(x) = €* — 1, respectively) it is
clear that (59) holds for £ = 0 (for properly constants C' and c2). Then by definition we have
recursively

" Mg (@) =

/0 " (An(p) + Arlat)) ds'

/ ete” (Ak(ptew) + Ak(qtew)) dt
0

< C(l _6192)—]6 T(p)k/ (eqtcosﬁ(pt)—pept(l—cg192) _|_eptcosﬁ(qt)—peqt(l—cgﬁQ)> dt
0

S C(l _ (32'[92)_kT(p)k+1/ t—pet(l—cﬂ2) dt
0

< C(l o 02192)_k_1T(,0)k+1 T—per(l—czﬁz).
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A similar proof works for p > 0. Here we have to use the trivial estimate e!Ag(1) = O(1)
and the asymptotic formula

xr
/ Pl dt = 5Pe® (1 + O(1/2)) < a—Pe"(1 + 1 /2) (x> 1)
1
for some constant ¢; = ¢1(p) > 0 instead of the inequality fox t=Pet dt < x~Pe® that holds

only for p <0. [ |

Since Ay(r) is of order T'(p)*r~"//k, where p is the saddle point defined by
ko pP4+q*
logr p—Plog% +q Plog %’

we can choose p in Lemma 6 accordingly and obtain as a corollary the bound
le" Ay ()] < C'e" Ag(r)\/logr e e (x = re'?), (60)

where k is of order logr and the constants ¢ > 0 and C’ > 0 depend on the ratio k/log r.
Finally, as explained above we use the Cauchy integral along || = n to complete the
asymptotic analysis:
n! dx nln™"

EB,,=— eEAL(z) —= = e Ap(net)e ™ gy,
mk 271 |z|=n k( ) :E"'H 27 \/ﬂgﬂ— k( )

Fix 0 < ¥y < 7/2. Then (60) implies

nln™"

2

i ; ; In="e™y/ '
/ e"* ﬁAk(new)e_"“S di| < Ak(n)n n ; logn e~ gy
T
Yo<[Y|<m Jo<[Y|<m
=0 (Ak(n) e_cﬁﬂgn) :
For the remaining part of the integral we use (57) and obtain

nln™"

9 . .
/ ene Ak (nezﬂ)e nd do
|9 <o

_ nT(p)*

2T

3" Tlp+it)Alp +ity)

v 2Bk i,

n

nln~ W _ind_id(ptit;) ~1/2
ene’ =i i0(o+its) g9 (14 Ok
27 /|19|<190 ( ( ))
n=PT(p)* . .
= L(p+itj)A(p +it;)
VIrB o)k IZ ’ ’
' —n,n
B [ e T (1 0o+ Ota)) i (14 OG)
21 |9]<do
_ nPT(p)*

>° Do+ ity Alp + ity) (1 + O(Itn~"2) + O(k™Y/%)

V2B
= Ay(n) (1 + O(k‘1/2)> .

This completes the proof of Theorem 4. The last part of the proof of Theorem 5 follows the
same footsteps and is omitted.
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