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Abstract

Limited memory and bounded communication resources require powerful data com-
pression techniques, but at the same time noisy tetherless channels and/or corrupted
file systems need error correction capabilities. Joint source-channel coding has emerged
as a viable solution to this problem. We present here the first practical joint source-
channel coding algorithm capable of correcting errors in the popular Lempel-Ziv’'77
scheme without practically losing any compression power. This is possible since the
LZ77 encoder does not completely remove all redundancy. The inherent additional
redundancy left by LZ’77 encoder is used succinctly by a channel coder (e.g., Reed-
Solomon coder) to protect against a limited number of errors. In addition to this,
the scheme proposed here is perfectly backward-compatible, that is, a file compressed
with our error-resilient LZ’77 can be still decompressed by a common LZ’77 decoder.
In this preliminary report, we present our algorithm, collect some experimental data
supporting our claims, and provide some theoretical justifications.

1 Introduction

Error-resilient adaptive lossless data compression is a particularly challenging problem be-
cause of two opposing “forces”. Source coding tries to decorrelate as much as possible the
input sequence (i.e., by removing redundant information), while channel coding introduces
additional correlation (i.e., by adding redundant information) in order to protect against
errors. The devastating effect of errors in adaptive data compression is a long-standing open
problem posed in '70s by Lempel and Ziv. In fact, the non-resilience of adaptive data com-
pression has been a practical drawback of its use in many applications. Joint source-channel
coding has emerged as a viable solution to this problem.

In this paper we deal with the best known adaptive data compression scheme, namely
that of Lempel Ziv'77 [16]. This popular compression scheme works on-line and replaces
the longest prefix of non-yet-compressed file with a pointer and length of its copy in the
already compressed file. The lack of error-resilience of LZ’77 is a well-recognized problem.
In a recent posting on the comp.compression newsgroup, we read [6]:
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...I'm a casualty of corrupt tar’d gzipped files on Solaris 8. (gzip 1.3) ... Is there
a reason why there are no compression utilities that allow controlled amounts of
redundancy for error correction? ... How much overhead would be needed to
correct these?

Indeed, how much overhead is needed in LZ’77 to correct errors? We shall argue that
practically there is no need for additional overhead in order to correct errors in LZ’77. This
seemingly impossible goal is achieved in practice due to the fact that the LZ’77 encoder
is unable to decorrelate completely the input sequence. Some implicit redundancy is still
present in the compressed stream and can be exploited by the encoder. The additional
redundancy derives from the encoding of phrases for which one has a choice among more
than one possible pointer. We observed experimentally that in a significant proportion of
phrases, there is more than one copy of the longest prefix in the compressed file (see, e.g.,
Table 1 that shows number of redundant bytes that can be used for error correction). We
also prove that on average there are O(1) copies (Theorem 1). In practice, if there are ¢
copies of the longest prefix, we recover [log,¢| redundant bits by choosing one of the ¢
pointers (see Figure 1). In order to avoid the loss inherent to the ceiling operator, one could
also “batch” the bits for several phrases together.

Once the redundant bits of LZ’77 have been identified, one can devise the method to
exploit them for channel coding. We choose RS(255, 255 — 2e) Reed-Solomon codes, where
255 is the size of the buffer containing the data and the parity bits, and e is the maximum
number of errors that the code can correct. The actual payload is 255 — 2e, because Reed-
Solomon codes need 2e parity bits. We should point out that if e is large then we may not
have always enough redundant bits to embed the parity bits. For the purposes of this paper,
we fixed a value of e small enough such that there are always enough bits. We are currently
working on a scheme in which e is changed adaptively with the availability of redundancy
bits in the input stream.

To the best of our knowledge, the scheme described here is the first joint source-channel
LZ’77 algorithm. In [12], Storer and Reif address the issue of error propagation but not error
recovery (cf. see [8] for an analysis of the Storer and Reif algorithm). There are, however,
joint source-channel coding algorithms for arithmetic coding and other variable length codes
(see, e.g., [11]).

This paper is organized as follows. In the next section we describe how to obtain re-
dundant bits in the LZ’77 scheme. We prove in Section 3 that there are O(1) copies of the
longest prefix in LZ’77. Finally, in Section 4 we explain how to embed Reed-Solomon codes
in LZ’77 and we report experimental results in Section 5.

2 Redundant Information in LZ’77

Let T be a text of length n over a finite alphabet A. We write T, 1 <1 < nto indicate the -
th symbol in T'. We use Tj; ;; shorthand for the substring Tj;Tji1y) . . . T};) where 1 <@ < 7 < n,
with the convention that Tj; ; = T};. Substrings in the form T7; j; corresponds to the prefixes
of T', and substrings in the form 7j;,) to the suffixes of 7.
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Figure 1: The multiplicity of the next phrase is four (¢ = 4). Choosing one of the four
possible pointers recovers two redundant bits.

The LZ’77 algorithm [16] processes the data on-line as it is read, i.e., it parses the file
sequentially left to right and looks into the sequence of past symbols to find a match with the
longest prefix of the string starting at the current position. The longest prefix is substituted
with a pointer, which is a triple composed of (position, length, symbol). Several variations
on LZ’77 have been proposed (see, e.g., [2] and references therein), but the basic principle
remains the same.

Let us suppose that the first ¢ — 1 symbols of the string 1" have been already parsed in
h — 1 phrases, i.e., Tj1;—1] = ¥1%2 .. . Yn—1. To identify the h-th phrase, LZ'77 looks for the
longest prefix of Tj; , that matches a substring of T}, ;_1). If Tj; ;4;1). j < i is the substring
that matches the longest prefix, then the next phrase is y;, = 1}; i41—1). The algorithm issues
the pointer (4, [, 7};4;) and updates the current position i to i + [ + 1. The reason we need
Tii4q) 18 to be able to advance when [ = 0, which is common in the very beginning of this
process.

In order to recover additional bits to be used for channel coding, we slightly modify the
LZ’77 encoding. The resulting algorithm, called LZS77, allows one to embed some bits
of another text M over the alphabet {0,1}. We define a position i corresponding to the
beginning of a phrase to have multiplicity q if there exists exactly ¢ matches for the longest
prefix that starts at position ¢ in 7. The positions with multiplicity ¢ > 1 are the places
where we can embed some of the bits of M. Specifically, the next |log,(q)| bits will drive the
selection of one particular pointer out of the g choices (see Figure 1). These additional bits
can be used for various purposes such as authentication [1] or error correction as described
next.

Suppose again that the initial portion of 7', say 1} ;_1), has been already parsed. Let
{(o, L Tiivyy), (1.1, Thivyy), -+ (Pg=1,1. Thiv)) }, @ = 1, be the set of feasible pointers for the
longest prefix of Tj; ,j, where [ > 1, and 1 < p; <iforall0 <1 <g—1. If g =1 we skip to
the next phrase, and no extra bits are embedded. When g > 1, we use the next d = |log,(q)]
bits of M to choose one of the ¢ pointers. If we assume that the first » — 1 bits of M have
been already embedded in previous phrases, we select the pointer whose name matches the
next d bits of M, that is (pM['r,'rer]’ I, Tiiyy). We move the current position to i + 1+ 1, and
we increment 7 by d. The complete algorithm is summarized in Figure 2.



LZS’77_ENCODER (T, M)
1 leti,r,n,m,P < 0,0,|T|,| M|
2 whilei <n do

3 let T}; ;111 < the longest prefix of Tj; 4 that matches a substring in T} ;_q

4 let R — {(po.l,Ti+y),-- -, (Pg—1,1, Tiizqy) } be the set of feasible pointers for T; ;141
5 if ¢ > 1 then

6 let d — [log,(q)]

7 append (puy,, gL, Tjivy) to P

8 let r —r+d

9 else

10 append (pg_1,1, Tjiyy) to P

11 let i —i+1+1

12 return P

LZS’77_DECODER (P)

1 let D, M < empty string, empty string

2 for each (p,l,¢) € P do

3 let R« {po,...,pq 1} be the set of occurrences of Dy, 41
4 let ¢ the index such that p;, = p

5 append |[log,(q)] bits of i to M

6 append Dy, ,;_yc to D

7 return (D, M)

Figure 2: Recovering redundant bits M in LZ77. T is the text, M represents the redundant
bits, P is the compressed stream of pointers, D is the decompressed text.

We want to stress that these changes do not affect the internal structure of LZ’77 encod-
ing, other than a possible re-shuffling of the pointers. A file compressed with LZS’77 can
still be decompressed by a standard LZ’77 algorithm. The fact that LZS77 is “backward-
compatible” makes it possible to deploy it gradually over the existing LZ’77, without dis-
rupting service.

3 Average Case Analysis

Given the limited space allowed for the paper, we only present preliminary analytical results
regarding the size of redundant bits. More precisely, we formulate and sketch a proof of a
result that will allow us to estimate the average number of copies of the longest prefix (i.e.,
its multiplicity) when the text is generated by a Markov source.

Let T}y ) be the first n symbols generated by the source and let L,, be the random variable
associated with the length of the longest prefix (phrase) of T},1 o) which have an occurrence
in Tj; ;. The random variable L,, describes the length of the phrases of LZ'77. It is known
(see [4, 13, 15]) that L, ~ IOgTQn +O(1) in probability and on average, where H is the entropy
of the source that generates T'. In the following we write L instead of L, to simplify the



notation. Finally, we define the number of longest prefix occurrences as W,,, that is,

n—L

Wo =Y UTiivi-1) = Tint1n41))-

=1

Theorem 1 Let T}y, be generated by a Markov source. Then

that is, on average there are constant number of pointers for n large.
Proof. We follow Wyner [15]. Let for any sequence z
Zn(z) =min{k > 1: P(Thx = 2px) < 1/n}

Observe that for k = Z,(z)
EW(Q)] = (n—k)/n~1,

hence when the prefix 2y of T}, o is of length k& = Z,(z), there is about one occurrence of
this prefix. Wyner [15] proved that the longest prefix is very well approximated by Z,(z).
More precisely, let

L,=7Z,(T)+ C.

Then there are constants «a, § < 1 such that

P(C>j)<d j>0,
P(C<j)<p’ j<o.

Furthermore, one finds that for ¢ = Z,(T") + j we have P(Ijyniqg) < %aj for j > 0 and
P(Tipntq) < %ﬂ_j for j < 0. With this in mind, we have

E[Wn(ﬂTL,TL+Z(T)+C])] S Zﬁ_j + Z O[j = 0(1)

Jj=<0 720

This completes the proof. [

The experimental results in Section 5 seem to confirm that the multiplicity of the point-
ers converges asymptotically to a constant. Actually, we conjecture that W, is Poisson
distributed with mean A = O(1). In passing, we should add that we can obtained more
redundant bits, if necessary, by considering not the longest prefix, but say the k-th longest
(where k£ = o(loglogn)). We will not, however, explore this line of study in this paper.

4 FError-Resilience in LZ’77

We now describe how to use the extra redundant bits to achieve error-resilience. Since we
are protecting the stream of pointers, i.e., a sequence of bytes, we choose Reed-Solomon (RS)
codes [7]. Reed-Solomon codes are block-based error correcting codes widely used in digital
communications and storage.
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Figure 3: The right-to-left sequence of operations on the blocks for the encoder

Reed-Solomon codes belongs to the family of BCH codes (see, e.g., [10]). A Reed-Solomon
code is specified as RS(a, b), where a is the size of the block and b is the size of the payload.
The datum is a symbol drawn from an alphabet of cardinality 2°. The encoder collects b
symbols and adds a — b parity symbols to make a block of length a. A Reed-Solomon decoder
can correct up to e errors in a block, where e = (a — b) /2. One symbol error occurs if one or
more of the bits of the symbol (up to s) is wrong.

Given a symbol size s, the maximum block length a for a Reed-Solomon code is a = 2°—1.
For example, the maximum length of a code with 8-bit symbols (s = 8) is 255 bytes. The
family of Reed-Solomon codes for s = 8 is therefore RS(255, 255 — 2¢). Each block contains
255 bytes, of which 255 — 2e are data and 2e are parity. Errors up to e bytes anywhere in
the block can be automatically detected and corrected.

We can use the extra redundancy bits of LZS'77 to embed 2e extra bytes, as described
in the following. The encoder, called LZRS’77, first compresses T" using standard LZ’77.
The data is broken into blocks of size 255 — 2e. Then, blocks are processed in reverse order,
beginning with the very last. When processing block i, the encoder computes first the Reed-
Solomon parity bits for the block 7 + 1 and then it embeds the extra bits in the pointers
of block 7 using the method described in Section 2. The order in which the operations are
performed in the encoder is illustrated in Figure 3. The parity bits of the first block are not
embedded, but saved at the beginning of the compressed file.

The LZRS77 decoder receives a sequence of pointers, preceded by the parity bits of the
first block. It first breaks the input stream in blocks of size 255 — 2e. Then, it uses the parity
bits at the beginning of the compressed stream to check (and possibly correct) the first block.
Once block Bj is correct, it decompresses it using LZS’77. This not only reconstructs the
initial portion of the original text, but it also recovers the bits stored in those particular
choices for the pointers. These extra bits are collected, and they become the parity bits
for the second block. The decoder can therefore correct possible errors in B,. Block Bs is
then decompressed, and the parity bits for Bz are recovered. This process continues until all
blocks have been decompressed. A high-level description of the encoder and the decoder is
shown in Figure 4.

The reason the encoder needs to process the blocks in reverse order should now be
apparent. The encoder cannot compute the RS parity bits before the pointers are finalized.
We embed the RS bits for the current block in the previous block, because the decoder
needs to know the parity bits of a block before it attempts to decompress it. This has the
unfortunate effect of making the encoder off-line, since it requires the encoder to keep the



LZRS’77_ENCODER (T e)
1 letb,jn—1,1,|T|

2 while j <n do

3 append LZ’77_CoMPRESS(T}) to B, /* compress the next phrase */
4 if |B,| = 255 — 2e then

) let b<—b+1

6 fori«<b,...,2do

7 let RS; < REED_SOLOMON_ENCODER(B;, €)

8 embed in the block B;_; the bits RS; using LZS’77

9 let RS; < REED_SOLOMON_ENCODER(B;, €)

10 return RS|, By, By, ..., By

LZRS’77_DECODER (RS, B, Ba, ..., By, €)
1 D « empty string

2 if REED_SOLOMON_DECODER(B; + RSy, e) = errors then correct By

3 append LZ’77_DECOMPRESS(B;) to D

4 recover RS, from the pointers used in By using LZS’77

5 fori«2,...,bdo

6 if REED_SOLOMON_DECODER(B; + RS;,e) = errors then correct B;

7 append LZ’77_DECOMPRESS(B;) to D /* decompress all pointers in B; */
8 recover RS;,; from the pointers used in B; using LZS'77

9 return D

Figure 4: Error-resilient LZ’77 algorithm. 7" is the text, e is the maximum number of errors
that can be corrected in each block of 255 — 2e bytes.

entire set of buffers in primary memory. The problem can be alleviated by breaking up large
inputs in chunks of a size that could be easily stored and processed in main memory.

5 Experimental Results

In order to validate our theoretical studies and test the correctness of our scheme, we instru-
mented several implementations.

In the first one, we designed an implementation of LZ’77 based on suffix trees [9], and
we kept track of the multiplicity ¢ for each phrase of the LZ’77 parsing, when the length of
the phrase is greater than two. The average value of ¢ is shown in Figure 5, for increasing
lengths of the prefixes. Note that for both graphs, the average for ¢ appears to converge
asymptotically to some constant, as the analysis in Section 3 suggests.

In the second, we modified the code of gzip-1.2.4 to evaluate the impact of our method
on compression performance. gzip is an implementation of the sliding window variant of
LZ’77, that is, it issues pointers in a fixed-size window preceding the current position.

The modified gzip, called gzipS, implements directly LZS’77 as described in Section 2.
It allows the user to specify a second file, which contains the text to be embedded in the
pointers. The compression performance of the gzipS with respect to the original gzip was
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Figure 5: The average value of the pointer multiplicity ¢ for increasing portions of paper2
(left), and news (right) of the Calgary corpus

measured, and it is summarized in Table 1 on the Calgary corpus dataset. The embedding
of the message slightly degrades the compression performance, in the order of 1%2% on
average for the files in the Calgary corpus. A file compressed with gzipS can be still be
decompressed by gzip.

Finally, in the last implementation we coded the error-resilient LZRS’77. The prototype
implementation is written in Python and linked to a public-domain library that implements
the Reed-Solomon encoder/decoder [5]. Based on the considerations mentioned in intro-
duction, we initially choose e = 1 and e = 2 which requires respectively at least 2 and 4
parity bytes on a block of data of size 255 — 2e. We experimented the resilience to errors
by introducing a controlled number of errors uniformly distributed over the b blocks of the
compressed file. The graphs in Figure 6 shows the probability that the file did not uncom-
pressed correctly for an increasing number of errors and for different choices of e and b. For
example, using e = 2 over 100 blocks, LZRS’77 is able to decompress the file correctly with
20 uniformly distributed errors, 90% of the times.
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