
1

Joint Source-Channel
LZ'77 Coding
Stefano Lonardi

University of California, Riverside

Wojciech Szpankowski
Purdue University, West Lafayette

Source vs. Channel coding

• Source coding: represent the
source information with the
minimum of symbols

• Channel coding: represent the
source information in a manner that
minimizes the error probability in
decoding

2

Problem definition

• How to achieve joint source and
channel coding in LZ’77 (by adding
error resiliency)
– without significantly degrading the

compression performance,
– and keeping backward compatibility

with the original LZ’77?

T.gzT.gz

Encoding

“Dear Bob,
How are you

doing today? …”

“Dear Bob,
How are you

doing today? …”
LZRS’77LZRS’77

3

“Dear Bob,
How are you

doing today? ...”

“Dear Bob,
How are you

doing today? ...”
T.gzT.gz

“Dear Bob,
How are you

doing today? …”

“Dear Bob,
How are you

doing today? …”
T.gzT.gz

Decoding (no errors)

LZ’77LZ’77

LZRS’77LZRS’77

?Corrupted T.gzCorrupted T.gz

“Dear Bob,
How are you

doing today? …”

“Dear Bob,
How are you

doing today? …”
Corrupted T.gzCorrupted T.gz

Decoding (with errors)

LZ’77LZ’77

LZRS’77LZRS’77

4

Roadmap

• We will show how to obtain extra
redundant bits from LZ’77

• We will show how to achieve error
resiliency in LZ’77

history current position

LZ’77: which of these pointers do we choose?

5

history current position

By choosing one of these pointers we are recovering two
extra redundant bits. Note that we are not changing LZ’77

00
01

10
11

Extra bits recovering

• Definition: a LZ’77 phrase has
multiplicity q if has exactly q matches in
the history

• Given a phrase with multiplicity q, we
can recover bits2log q

6

Average case analysis

• Theorem: Let Qn be the random
variable associated with the multiplicity
q of a phrase in a string of length n.
For a Markov source

E[Qn]=O(1)
as n? 8

Average phrase multiplicity

average phrase multiplicity (news)

0

1

2

3

4

5

6

7

0 50000 100000 150000 200000

position in the text

av
er

ag
e

ph
ra

se
 m

ul
ti

pl
ic

it
y

average phrase multiplicity (paper2)

0

1

2

3

4

5

6

7

8

9

0 10000 20000 30000 40000 50000 60000 70000

position in the text

av
er

ag
e

p
h

ra
se

 m
u

lt
ip

lic
it

y

7

Recent results

• Theorem: For memoryless sources

where H is the entropy of the source, and
p is the probability of generating a “0”

[]

[]

1
 small fluctuations

(1) (1)

n

k k

n

E Q
H

p p p p
P Q k

kH

= +

− + −
= =

Number of bits recovered
mito

0

1000

2000

3000

4000

5000

6000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

position

bi
ts

 e
xt

ra
ct

ed

paper2

0

2000

4000

6000

8000

10000

12000

14000

16000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

position

b
its

 e
xt

ra
ct

ed

progc

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

position

bi
ts

 e
xt

ra
ct

ed

news

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 50000 100000 150000 200000

position

bi
ts

 e
xt

ra
ct

ed

RemarkRemark: more bits can be recovered by relaxing the greediness: more bits can be recovered by relaxing the greediness

8

Reed Solomon codes

• RS codes are block-based error
correcting codes (BCH family)

• RS(a,b) code
– a=2s-1, where s is the datum size
– has (a-b) “parity” bits
– can correct up to (a-b)/2 errors

• We used RS(255,255-2e), which can
correct up to e errors

LZRS’77 encoder (off-line)

• compress the file with LZ’77
• break the compressed file in blocks

B1,…, Bm of size 255-2e
• for i←m downto 2

– encode with RS(255,255-2e) block Bi

– embed the extra 2e parity bits in the pointers of
block Bi-1

• encode with RS(255,255-2e) block B1

• store the extra parity bits at the beginning of
the file

9

LZRS’77 encoding

optional

LZRS’77 decoder (on-line)

• (assume RSi are the 2e parity bits for Bi)

• decode and correct block B1+RS1

• decompress block B1 and recover RS2

• for i←2 to m
– decode and correct block Bi+RSi

– decompress block Bi and recover RSi+1

10

Experiments: gzip

• gzip issues pointers in a sliding
window of 32Kbytes (typically)

• The length of phrases is represented by
8 bits (3-258)

• Strings smaller than 3 symbols are
encoded as literals

gzip

• gzip always chooses the most “recent”
occurrence of the longest prefix

“…the hash chains are searched
starting from the most recent strings, to
favor small distances and thus take
advantage of the Huffman coding…”

11

“Hacking” gzip

• We modified gzip-1.2.4 to evaluate
the potential degradation of
compression performance due to
changing the rule of choosing always
the most “recent” occurrence

• As a preliminary experiment, we simply
chose one pointer at random

gzip vs. gzipS

12

Error correction (simulation)

• We chose e=1, e=2 and b=10, b=100
• For b blocks, we injected 1,…,b

uniformly distributed errors
• We measured the number of times that

the file was decoded correctly (out of a
few hundreds simulations)

probability of the file incorrectly decoded (e=2, b=100)

0

0.2

0.4

0.6

0.8

1

1.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

number of injected errors

p
ro

b
ab

ili
ty

Error-correction

13

Findings

• Method to recover extra redundant bits
from LZ’77

• Extra bits allow to incorporate error
resiliency in LZ’77
– backward-compatible (deployment without

disrupting service)
– compression degradation due to the extra

bits is almost negligible

