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Abstract

The problem of clustering continuous valued data has been well studied in literature. Its applica-
tion to microarray analysis relies on such algorithms ask -means, dimensionality reduction techniques
(including SVD, principal components, KL transforms, etc.), and graph-based approaches for building
dendrograms of sample data. In contrast, similar problems for discrete-attributed data are relatively un-
explored. An instance of analysis of discrete-attributed data arises in detecting co-regulated samples in
microarrays. Here, our interest is in detecting samples that are up- and down-regulated together. Effi-
cient solutions to this problem enable more refined correlation between presence of sequence motifs and
underlying regulation patterns in microarray data.

One of the key challenges associated with clustering discrete-attributed data is that these problems
typically are NP-hard and few effective heuristics are known for solving them. In this paper, we present
an algorithm and a software framework, PROXIMUS, for error-bounded clustering of high-dimensional
discreteattributed datasets. In our past work, we have demonstrated the excellent performance of PROX-
IMUS in terms of runtime, scalability to large datasets, and performance in terms of capability to represent
data in a compact form. In this paper, we demonstrate its application to microarray data in extracting
co-regulated samples. We show that PROXIMUS delivers outstanding performance in extracting accurate
patterns of gene-expression.

1 Introduction

Analysis of large datasets from microarray experiments traditionally takes the form of clustering high-
dimensional data with a view to correlating samples. This is traditionally done using eigenvalue/singular
value decomposition (PCA/rank reduction),k -means clustering, least squares methods, etc. These analysis
techniques view individual samples as points in high dimensional space and build dendrograms that cluster
spatially proximate points together in a hierarchy. One problem with this approach is that all dimensions in
these datasets are treated identically and local up- or down-regulation can be masked by gross behavior over
the entire experiment. While this can be addressed by scaling dimensions, determining scaling coefficients
is itself difficult.

Another challenge associated with analyzing microarray data is to determine samples that are co-regulated
(up- and down-regulated together) and to detect motifs responsible for this co-regulation. The objective
function in this case is defined over a discrete space of up- and down-regulation and is therefore not amenable
to clustering techniques that treat it as continuous data. The starting point of such analysis is a discretized
vector derived from continuous microarray (expression) data. A down-regulation during an interval (with
respect to previous interval) is discretized to value 0, and to value 1, otherwise. A large set of such discrete
vectors must now be correlated to determine (i) sets of samples that are co-regulated, and (ii) regions within
a vector that display strong correlations.
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Analysis of discrete attributed datasets generally leads to NP-complete/hard problems, especially when
physically interpretable results in discrete spaces (representative patterns for clusters of up- and down-
regulation) are desired. Consequently, our focus is on effective heuristics for detecting dominant corre-
lated patterns. Conventional techniques such as singular value decomposition (SVD), frequency transforms
such as discrete cosine transforms (DCT) and wavelets, and others do not apply here because extracted
patterns (orthogonalized vectors or frequency coefficients) are not directly interpretable as regulation pat-
terns/signals. Techniques for clustering do not generalize easily to extremely high dimensions (104 or
more) while yielding error-bounded cluster centroids. Unfortunately, the runtimes of all these methods are
unacceptably large when scaled to large datasets.

In order to overcome the computational requirements of the problem while providing efficient analysis of
data we propose a new technique – binary(f0; 1g) non-orthogonal matrix transformation to extract dominant
patterns. In this technique, elements of singular vectors of a discrete, positive valued matrix are constrained
to binary entries with an associated singular value of 1. In contrast, in a related technique called Semi-
Discrete Decomposition (SDD), elements of singular vectors are in the setf�1; 0; 1g and the associated
singular value is continuous. We show here that our variant results in an extremely efficient algorithm and
powerful framework within which large discretized microarray datasets can be analyzed.

PROXIMUS is a non-orthogonal matrix transform based on recursive partitioning of a dataset depending
on the distance of a specific (discretized) gene expression pattern from the dominant pattern. The dominant
pattern is computed as a binary singular vector of the matrix of discretized vectors. PROXIMUS computes
only the first singular vector and consequently, each discovered pattern has a physical interpretation at all
levels in the hierarchy of the recursive process. For the discovery of the dominant singular vector, we adopt
an iterative alternating heuristic. Due to the discrete nature of the problem, initialization of singular vectors
is critical for convergence to desirable local optima. We derive effective initialization strategies, along with
algorithms for a multiresolution analysis of discretized microarray datasets.

We support our claims with extensive experimental results on four microarray datasets. We demonstrate
that PROXIMUS is capable of extracting highly correlated regulation patterns in the data. The underlying
(continuous) expression data exhibits strongly correlated behavior as well. These regulation patterns can
then be correlated with motifs in sequences to precisely examine regulation causality. In addition to superior
analysis capabilities, PROXIMUS is over an order of magnitude faster than other (continuous) clustering
techniques for realistic problem sizes.

2 Background and Related Work

Much of the existing literature microarray analysis focuses on clustering high-dimensional datasets. These
clustering techniques range fromk -means methods to matrix transformations such as truncated singular
value decomposition (SVD) and rank-reduction, semi-discrete decomposition (SDD), centroid decompo-
sition, and principal direction divisive partitioning (PDDP) [1, 3, 12]. SVD transforms a matrix into two
orthogonal matrices and a diagonal matrix of the singular values. Specifically, anm by n rectangular matrix
A can be decomposed into

A = U�V T ; (1)

whereU is anm�r orthogonal matrix,V is ann�r orthogonal matrix and� is anr�r diagonal matrix
of the singular values ofA . Herer denotes the rank of matrixA . The matrix ~A = u1�1v

T
1 is a rank-one

approximation ofA , whereu1 and v1 denote the first columns of matricesU andV , respectively. These
vectors are the left and right singular vectors ofA corresponding to the largest singular value. If we think
of a matrix as a multi-attributed dataset with rows corresponding to relations and columns corresponding to
attributes, we can say that each 3-tuple consisting of a singular value�k , kth column inU , andkth column

2



in V represents a pattern inA characterized by�k . For larger singular values, the corresponding pattern is
more dominant in the dataset.

SDD is a variant of SVD in which the values of the entries in matricesU andV are constrained to be
in the setf�1; 0; 1g [12]. The main advantage of SDD is its lower storage requirement, since each element
only requires 1.5 bits, thus enabling a higher rank representation for a given amount of memory. Since the
entries of the singular vectors are constrained to be in the setf-1,0,1g, computation of SDD becomes an
integer programming problem, which is NP-hard. Kolda and O’Leary [12] propose an iterative alternating
heuristic to solve the problem of finding rank-one approximations to a matrix in polynomial time. Each
iteration of this heuristic has linear time complexity.

Centroid Decomposition (CD) is an approximation to SVD that is widely used in factor analysis. It
has been shown empirically that CD provides a measurement of second order statistical information of the
original data [3]. CD represents the underlying matrix in terms of centroid factors that can be calculated
without knowledge of the entire matrix; the computation only depends on the correlations between the rows
of the matrix. Centroid factors are computed via the centroid method, which is a fast iterative heuristic for
partitioning the data. This heuristic aims to modify the coordinate system to increase the eccentricity of the
system variables with respect to the origin. The transformation aims to move the discovered centroid far
away from the origin, so that it represents a better essential factor. The main difference between SVD and
the centroid method is that SVD tends to discover a single dominant pattern while centroid method tends
to discover the overall trend of some part of the data, which may be a collection of several independent
patterns. The centroid method runs in linear time in number of rows of the matrix but requires knowledge of
correlations between all pairs of rows. This requires quadratic time and space in the number of rows. Thus,
while adapting centroid method to binary data, an alternative to the correlation matrix must be provided that
takes advantage of the discrete nature of data and is much sparser (this is indeed a topic of ongoing work in
our group).

Other work on correlating discrete-attributed datasets is largely focused on clustering very large cate-
gorical datasets. A class of approaches is based on well-known techniques such as vector-quantization [6]
and k -means clustering [14]. Thek -modes algorithm [10] extendsk -means to the discrete domain by
defining new dissimilarity measures. Another class of algorithms is based on similarity graphs and hyper-
graphs. These methods represent the data as a graph or hypergraph to be partitioned and apply partitioning
heuristics on this representation. Graph-based approaches represent similarity between pairs of data items
using weights assigned to edges and cost functions on this similarity graph [5, 7, 8]. Hypergraph-based ap-
proaches observe that discrete-attribute datasets are naturally described by hypergraphs and directly define
cost functions on the corresponding hypergraph [9, 16].

Our approach differs from these methods in that it discovers naturally occurring patterns in discretized
microarray data with no constraint on cluster sizes or number of clusters. Thus, it provides a generic interface
to the microarray analysis problem. Furthermore, the superior execution characteristics of our approach
make it particularly suited to extremely high-dimensional attribute sets (well beyond those encountered in
high-throughput microarray experiments).

3 Non-Orthogonal Decomposition of Binary Matrices

PROXIMUS is a collection of novel algorithms and data structures that rely on modified SDD to find error-
bounded correlations of binary attributed datasets. While relying on the idea of non-orthogonal matrix
transforms, PROXIMUS provides a framework that captures the properties of discrete datasets more accu-
rately and takes advantage of their binary nature to improve both the quality and efficiency of the analysis.
Our approach is based on recursively computing discrete rank-one approximations to the matrix to extract
dominant patterns hierarchically [13].
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The problem of error-bounded correlation can also be thought of as finding dense patterns in sparse
matrices. A binary rank-one approximation for a matrix is defined as an outer product of two binary vectors
that is at minimum Hamming distance from the matrix over all outer products of the same size. In other
words, the rank-one approximation problem for matrixA with m columns andn rows is one of finding
two vectorsx and y that maximize the number of zeros in the matrix(A � xyT ) , wherex and y are of
dimensionsm andn , respectively. Here, vectory is thepattern vectorwhich is the best approximation for
the objective (error) function specified. Vectorx is thepresence vectorrepresenting the rows ofA that are
well approximated by the pattern described byy .

Conventional singular value decompositions (SVDs) can be viewed as summations of rank-one approx-
imations to a sequence of matrices. Here, the first matrix is the original matrix itself and each subsequent
matrix is a residual matrix,i.e., the difference between the given matrix and the matrix produced by sum
of previous rank-one approximations. However, the application of SVDs to binary matrices has two draw-
backs. First, the resulting decomposition contains non-integral vector values, which is generally hard to
interpret for binary datasets. SDD partially solves this problem by restricting the entries of singular vectors
to the setf-1, 0, 1g. However, the second drawback is associated with the idea of orthogonal decomposi-
tion, and therefore, SDD also suffers from this problem: if the underlying data consists of non-overlapping
(orthogonal) patterns only, SVD successfully identifies these patterns. However, if the patterns with sim-
ilar strengths overlap, then, because of the orthogonality constraint, the features contained in some of the
previously discovered patterns are extracted from each pattern. Furthermore, in orthogonalizing the second
singular vector with respect to the first, SVD introduces negative values into the second vector. There is no
easy interpretation of these negative values in the context of up- or down-regulation of genes (recall that a
0 corresponds to a down-regulation and 1 otherwise). A simple approach to this problem is to cancel the
effect of the first singular vector by removing this singular vector and introducing all subsets of this vec-
tor with appropriate weights. This can prove to be computationally expensive. What is required here is a
non-orthogonal transform that does not introduce negative values into the composing vectors.

Based on these observations, our modification to SDD for binary matrices has two major components:

� pattern and presence vectors are restricted to binary elements,

� the matrix is partitioned based on the presence vector after each computation of rank-one approxima-
tion, and the procedure is applied recursively to each partition. This method provides a hierarchical
representation of dominant patterns.

3.1 Discrete Rank-one Approximation of Binary Matrices

The problem of finding the optimal discrete rank-one approximation for a binary matrix can be stated as
follows.

Definition 3.1 Rank-one approximation
Given matrixA 2 f0; 1gm � f0; 1gn , find x 2 f0; 1gm and y 2 f0; 1gn to minimize the error:

jjA� xyT jj2F = jfaij 2 (A� xyT ) : jaij j = 1gj: (2)

In other words, the error for a rank-one approximation is the number of nonzero entries in the residual
matrix. This problem is closely related to finding maximal cliques in graphs. This problem is known to be
NP-hard and there exist no known approximation algorithms or effective heuristics in literature. As a matter
of fact, if we view the problem as one of discovering significant patterns in the matrix, the optimal solution
is not necessarily the desired rank-one approximation [13].
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3.1.1 Alternating Iterative Heuristic

Since the objective (error) function can be written as

jjA� xyT jj2F = jjAjj2F � 2xTAy + jjxjj22jjyjj
2
2; (3)

minimizing the error is equivalent to maximizing

Cd(x; y) = 2xTAy � jjxjj22jjyjj
2
2: (4)

If we fix y and sets = Ay , the correspondingx that maximizes this function is given by the following
equation.

x(i) =

�
1; if 2s(i) � jjyjj22
0; otherwise

(5)

This equation follows from the idea that a nonzero element ofx can have a positive contribution to
Cd(x; y) if and only if at least half of the nonzero elements ofy match with the nonzero entries on the
corresponding row ofA . Clearly, this equation leads to a linear time algorithm in the number of nonzeros
of A to computex , as computation ofs requiresO(nz(A)) time and Equation 5 can be evaluated in
O(m) time. Similarly, we can compute vectory that maximizesCd(x; y) for a fixed x in linear time.
This leads us to an alternating iterative algorithm based on the computation of SDD [12], namely initialize
y , then solve forx . Now, we solve fory based on updated value ofx . We repeat this process until
there is no improvement in the objective function. Indeed, this technique is distantly related to expectation
maximization, which is a commonly used technique in statistical analysis [4].

Although the objective function of Equation 4 leads to a linear time algorithm and guarantees conver-
gence to a local maximum, it has a significant drawback due to the discrete nature of the domain. Specif-
ically, this algorithm does not have any global awareness,i.e., it always converges to the local maximum
closest to initialization. This leaves the task of solving the problem to suitable initialization of the pattern
vector. A continuous objective function approximatingCd(x; y) , addresses this problem, since it is more
successful in forcing convergence to desired local maxima, especially for sparse matrices.

3.1.2 Approximate Continuous Objective Function

In the case of decomposing continuous valued matrices, it has been shown [15] that the objective function
of rank-one approximation is equivalent to maximizing

Cc(x; y) =
(xTAy)2

jjxjj22jjyjj
2
2

: (6)

Although this function is not equivalent to the objective function in the case of binary matrices,i.e., Cd(x; y)
andCc(x; y) do not have their global maximum at the same point, the behavior of these two functions is
highly correlated. Thus, we can useCc(x; y) as a continuous approximation toCd(x; y) . Fixing y and

letting s = Ay=jjyjj22 as above, the objective becomes one of maximizing(xT s)2

jjxjj2
2

. This can be done in

linear time by sorting elements ofs via counting sort and visiting elements ofx in the resulting order until
no improvement in the objective function is possible.

This continuous function has the desirable property of having a broader range of convergence compared
to the discrete objective function. Furthermore, since the rate of growth of this function declines less rapidly
with increasing number of nonzeros inx , it favors discovery of sparser patterns. Although a local maximum
of Cc(x; y) does not necessarily correspond to a local maximum of the objective function, it may correspond
to a point that is close to a local maximum and has a higher objective value than many undesirable local
maxima. Note that although this metric provides more flexibility in initialization, selection of the initial
pattern vector still has a significant impact on the quality of the solution due to the discrete nature of the
domain.
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3.2 Recursive Decomposition of Binary Regulation Vectors

We use the rank-one approximation of the given matrix to partition the gene regulation vectors into two
groups.

Definition 3.2 Partitioning based on rank-one approximation:
Given rank-one approximationA � xyT , a partition ofA with respect to this approximation is defined by
two sub-matricesA1 andA0 , where

A(i) 2

�
A1; if x(i) = 1

A0; otherwise

for 1 � i � m . Here,A(i) denotes theith row of A .

The intuition behind this approach is that the rows corresponding to 1’s in the presence vector are the rows
of a maximally connected submatrix ofA . Therefore, these rows have more similar non-zero structures
among each other compared to the rest of the matrix. This partitioning can also be interpreted as creating
two new groups of genes,A0 andA1 . Since the rank-one approximation forA gives no information about
A0 , we further find a rank-one approximation and partition this matrix recursively. On the other hand, we
use the representation of the rows inA1 given by the pattern vectory and check if this representation is
adequate via a stopping criterion. If so, we decide that matrixA1 is adequately represented by matrixxyT

and stop; else, we recursively apply the procedure forA1 as forA0 .
The partitioning-and-approximation process continues until the matrix cannot be further partitioned or

the resulting approximation adequately represents the entire group. We define a metric, called normalized
Hamming radius, to measure the adequacy of the representation in terms of the Hamming distances of rows
to the underlying pattern vector.

Definition 3.3 Normalized Hamming distance
Given two binary vectorsx and y , the normalized Hamming distance betweenx and y is defined as:

ĥ(x; y) =
xTx+ yT y � 2xT y

n
;

wherejjxjj = jjxjj22 = jjxjj1 is the number of nonzeros in ann-dimensional binary vectorx .

Normalized Hamming distance measures the fraction of unmatched nonzeros betweenx and y among all
nonzeros ofx andy . Note that0 � ĥ(x; y) � 1 . The normalized Hamming distance between a row of the
matrix and a pattern vector measures the fraction of the row that is not represented by the pattern as well as
the fraction of the pattern that does not exist in the row. Thus, the normalized Hamming distance provides a
measure for detecting mismatched patterns as well as underrepresentation of a row by the underlying pattern.

Definition 3.4 Normalized Hamming radius
Given a set of binary vectorsX = fx1; x2; : : : ; xng and a binary vectory , the normalized Hamming radius
of X centered aroundy is defined as:

r̂(X; y) = max
1�i�n

ĥ(x; y):

We use the normalized Hamming radius as the major stopping criterion for the algorithm to determine
when a group of regulation patterns is sufficiently correlated. The recursive algorithm does not partition
subgroupAi further if one of the following two conditions holds for the rank-one approximationAi �
xiy

T
i .
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� r̂(Ai1; yi) < � , where � is the prescribed bound on the normalized Hamming radius of identified
clusters.

� xi(j) = 1 8j , i.e., all the rows ofAi are present inAi1 .

If one of the above conditions holds, the pattern vectoryi is identified as a dominant regulation pattern of
groupA .

3.3 Initialization of Iterative Process

While finding a rank-one approximation, initialization is crucial for not only the rate of convergence but also
the quality of the solutions since a wrong choice can result in poor local minima. In order to find a feasible
solution, the initial pattern vector should have magnitude greater than zero,i.e., at least one of the entries
in the initial pattern vector should be equal to one. Possible procedures for finding an initial pattern vector
include:

� Partition: Select a separator column and identify the rows that have a nonzero on that column. Ini-
tialize the pattern vector to the centroid of these rows. The idea is to partition the rows of the matrix
along one dimension expecting that such a partition will include rows that contain a particular pattern.

� Greedy Graph Growing: Based on the idea of iterative improvement heuristics in graph partition-
ing [11], this scheme starts with a randomly selected row in one part and grows that part by including
the rows that share a nonzero with that part until a balanced partition is obtained. The initial pattern
vector is set to the center of rows in this part.

� Neighbor: Observing that a balanced partition of rows is not necessary due to the nature of the
problem, we select one row randomly and initialize the pattern vector to the center of the neighbors
of that row,i.e., the set of rows that share a nonzero with that particular row.

Our observations show that theNeighborscheme tends to initialize the pattern vector close to a desired
local minima,i.e., the resulting rank-one approximation includes a specific pattern that represents a small
set of rows adequately. On the other hand,Greedy Graph Growingprovides hierarchical extraction of
patterns, the resulting rank-one approximation generally contains a combination of patterns, which can be
further decomposed in the recursive course of the algorithm. ThePartition scheme lies somewhere between
the first two schemes as the balance of the partition depends on the selection of the dimension. In our
implementation, we select the dimension that yields the most balanced partition in order to increase the
probability of partitioning along a significant dimension.

4 Experimental Results

We demonstrate the use of PROXIMUS in the context of analysis of microarray data. Conventional anal-
ysis techniques have focused on clustering techniques for building dendrograms for gene expression data
(Figure 1). While this is useful for grouping gene expression based on gross behavior over the experiment,
our objective is to examine co-regulation (up- and down-regulation) in groups of genes. With this goal,
we convert expression data for each gene into a binary vector of length equal to number of samples. Each
component of the vector is assigned a value 0 if expression was down-regulated during the period (w.r.t.
previous period) and 1 otherwise. We then apply PROXIMUS to this set of discrete-valued vectors to deter-
mine a suitable set of representative patterns along with a partitioning (and assignment) of the genes to these
patterns. Each partition represents a set of genes that are co-regulated to within specified tolerance. This
partitioning can then be used to identify motifs in genes that control regulation.
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Figure 1: Gene expression during the yeast cell cycle. Colored bars on the side of the figure indicate the
phase group to which a gene belongs (M/G1, yellow; G1, green; S, purple; G2, red; M, orange). These
same colors indicate cell cycle phase along the top of the figure. The dendrogram on the left side of the
figure shows the structure of the cluster as computed by Cho et al. [2] and Spellman et al. [17]. (Data avail-
able athttp://genome-www.stanford.edu/cellcycle/data/rawdata/ , PROXIMUS soft-
ware available at our web site athttp://www.cs.purdue.edu/homes/koyuturk/proximus ).

Notice that this form of analysis allows a more refined examination of regulation mechanisms. Since
clustered genes in dendrograms may share a large number of motifs, it is difficult to correlation motifs to
regulatory function. Using the analysis presented here, it is indeed possible to prune the set of motifs to a
small set, which can then be correlated to regulation.

We apply our method to microarray data from four experiments on yeast cultures synchronized by the
following methods: �-factor arrest (dataset Alpha), elutriation (dataset Elu), and arrest of cdc15/cdc28
(datasets cdc15/cdc28) temperature-sensitive mutants (Spellman et al. [17], Cho et al. [2]). This data along
with the dendrogram constructed by Cho et al. is illustrated in Figure 1. Dataset Alpha corresponds to
samples taken at 7-minute intervals for 140 minutes, dataset cdc15 contains samples taken every 10 minutes
for 300 minutes, dataset cdc28 contains samples taken every 10 minutes for 160 minutes, and dataset Elu
contains samples taken every 30 minutes for 330 minutes.

The first step in our analysis is the determination of appropriate threshold (error with respect to repre-
sentative pattern) for partitioning data into correlated sets. The number of partitions, along with the number
of samples in each partition is illustrated in Table 1. For example, dataset alpha is partitioned into 13 groups,
with groups containing 200, 46, ...., samples, respectively. The selection of appropriate error threshold is
important because a low threshold results in each sample being identified as a pattern, itself. Conversely, a
high threshold results in poor patterns.

In Figure 2, we illustrate the patterns extracted from the four datasets (8, 10, 13, and 7 patterns from
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Experiment No. of patterns No. of samples in each pattern
alpha 13 [200, 46, 41, 54, 41, 48, 50, 52, 32, 111, 60, 30, 34]
cdc15 10 [174, 58, 69, 35, 58, 65, 73, 134, 80, 53]
cdc28 8 [322, 29, 257, 24, 88, 36, 31, 12]
elu 7 [433, 173, 104, 32, 31, 14, 12]

Table 1: Summary of regulation patterns discovered by PROXIMUS in each experiment.
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(a) Dataset CDC28. (b) Dataset CDC15.
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Figure 2: Up-regulation and down-regulation patterns extracted from four datasets. The shaded regions
indicate clusters that are up-regulated and empty regions indicate down-regulation. Each of these patterns
correspond to clusters of genes that exhibit this behavior. Some of these clusters along with individual up-
and down-regulation are illustrated in Figures 3 and 4.

cdc28, cdc15, alpha, and elu, respectively). The dark (blue) regions represent periods of up-regulation
and unshaded regions represent periods of down-regulation. In Figures 3 and 4, we select some of the
patterns from each dataset and demonstrate the excellent clustering properties of PROXIMUS. For example,
in the top panel of Figure 3, we illustrate 3 patterns from dataset cdc28. The top pattern in each case is the
representative pattern and the following five rows correspond to five randomly chosen samples from the data.
The left panel illustrates the pattern in comparison to actual up- and down-regulation data (0/1 discretized
expression data) and the right panel illustrates the pattern along with actual regulation data. It is evident
that with very high accuracy, PROXIMUS captures patterns in up- and down-regulation of expression. This
is reflected both in the discretized data, as well as continuous sampled data.

We illustrate three randomly selected patterns along with five samples corresponding to each of these
three patterns (along with the actual sample data in right panel) for all four experiments in Figures 3 and 4.
In each case the correlation within each cluster with respect to up- and down- regulation is observed to be
very strong. We are currently in the process of identifying motifs in all of these samples and to correlate
motifs in clusters to their up- and down-regulation behavior. We expect to present this data in the final
version of this paper.
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Figure 3: Selected clusters from datasets CDC28 and CDC15, the representative patterns of these clusters
and some members of the clusters illustrating excellent co-regulation properties. The left column shows
up/down regulation and right column illustrates individual values. In each case, the first row is the repre-
sentative pattern computed by PROXIMUS and subsequent rows correspond to experimental data input to
PROXIMUS.
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Figure 4: (Figure 3 Continued) Selected clusters from datasets Alpha and Elu, the representative patterns
of these clusters and some members of the clusters illustrating excellent co-regulation properties. The left
column shows up/down regulation and right column illustrates individual values. In each case, the first row
is the representative pattern computed by PROXIMUS and subsequent rows correspond to experimental data
input to PROXIMUS.
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5 Conclusions and Ongoing Work

In this paper, we have presented and used a novel technique, PROXIMUS, for analyzing discrete attributed
data. We use this technique to identify co-regulated samples in microarray experiments and demonstrated
excellent results. We are currently in the process of identifying motifs in clusters induced by PROXIMUS

and to relate these motifs to underlying regulatory mechanisms. PROXIMUS is available for free download
at http://www.cs.purdue.edu/homes/koyuturk/proximus/ .
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