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Abstract— We study the classical problem of noisy constrained
capacity in the case of the binary symmetric channel (BSC),
namely, the capacity of a BSC whose input is a sequence from
a constrained set. As stated in [4] “. . . while calculation of the
noise-free capacity of constrained sequences is well known, the
computation of the capacity of a constraint in the presence of
noise . . . has been an unsolved problem in the half-century since
Shannon’s landmark paper . . ..” We first express the constrained
capacity of a binary symmetric channel with (d, k)-constrained
input as a limit of the top Lyapunov exponents of certain matrix
random processes. Then, we compute asymptotic approximations
of the noisy constrained capacity for cases where the noise
parameter ε is small. In particular, we show that when k≤2d,
the error term with respect to the constraint capacity is O(ε),
whereas it isO(ε log ε) when k > 2d. In both cases, we compute
the coefficient of the error term. In the course of establishing
these findings, we also extend our previous results on the entropy
of a hidden Markov process to higher-order finite memory
processes. These conclusions are proved by a combination of
analytic and combinatorial methods.

I. I NTRODUCTION

We consider a binary symmetric channel (BSC) with
crossover probabilityε, and a constrained set of inputs. More
precisely, letSn denote the set of binary sequences of lengthn
satisfying a given(d, k)-RLL constraint [18], i.e., no sequence
in Sn contains a run of zeros of length shorter thand or
longer thank (we assume that the valuesd and k, d ≤ k,
are understood from the context). We writeXn

1 ∈ Sn for
Xn

1 = X1 . . . Xn. Furthermore, we denoteS =
⋃

n>0 Sn.
We assume that the input to the channel is a stationary
processX = {Xk}k≥1 supported onS. We regard the BSC
channel as emitting a Bernoulli noise sequenceE = {Ek}k≥1,
independent ofX , with P (Ei = 1) = ε. The channel output
is

Zi = Xi ⊕ Ei.

where⊕ denotes addition modulo2 (exclusive-or).
For ease of notation, we identify the BSC channel with its

parameterε. Let C(ε) denote conventional BSC channel ca-
pacity (over unconstrained binary sequences), namely,C(ε) =
1−H(ε), whereH(ε) = −ε log ε−(1−ε) log(1−ε). We use
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natural logarithms throughout. Entropies are correspondingly
measured in nats. The entropy of a random variable or process
X will be denotedH(Xn

1 ), and the entropy rate byH(X).
The noisy constrained capacityC(S, ε) is defined [4] by

C(S, ε) = sup
X∈S

I(X ; Z) = lim
n→∞

1

n
sup

Xn
1 ∈Sn

I(Xn
1 , Zn

1 ) , (1)

where the supreme are over all stationary processes supported
on S and Sn, respectively. Thenoiseless capacityof the
constraint isC(S) ∆= C(S, 0). This quantity has been ex-
tensively studied, and several interpretations and methods for
its explicit derivation are known (see, e.g., [18] and extensive
bibliography therein). As forC(S, ε), the best results in the
literature have been in the form of bounds and numerical
simulations based on producing random (and, hopefully, typi-
cal) channel output sequences (see, e.g., [26], [23], [1] and
references therein). These methods allow for fairly precise
numerical approximations of the capacity for given constraints
and channel parameters.

Our approach to the noisy constrained capacityC(S, ε) is
different. We first consider the corresponding mutual informa-
tion,

I(X ; Z) = H(Z) − H(Z|X). (2)

SinceH(Z|X) = H(ε), the problem reduces to findingH(Z),
the entropy rate of the output process. If we restrict our
attention to constrained processesX that are generated by
Markov sources, the output processZ can be regarded as a
hidden Markov process(HMP), and the problem of computing
I(X ; Z) reduces to that of computing the entropy rate of this
HMP. The noisy constrained capacity follows provided we find
the maximizing distributionPmax of X , as it turns out.

It is well known (see, e.g., [18]) that we can regard the
(d, k) constraint as the output of akth-order finite memory
(Markov) stationary process, uniquely defined by conditional
probabilitiesP (xt|xt−1

t−k), where for any sequence{xi}i≥1,
we denote byxj

i , j≥i, the sub-sequencexi, xi+1, . . . , xj . For
nontrivial constraints, some of these conditional probabilities
must be set to zero in order to enforce the constraint (for
example, the probability of a zero after seeingk consecutive
zeros, or of a one after seeing less thand consecutive zeros).
When the remaining free probabilities are assigned so that the
entropy of the process is maximized, we say that the process is



maxentropic, and we denote it byPmax. The noiseless capacity
C(S) is equal to the entropy ofPmax [18].

The Shannon entropy (or, simply,entropy) of a HMP was
studied as early as [2], where the analysis suggests the intrinsic
complexity of the HMP entropy as a function of the process
parameters. Blackwell [2] showed an expression of the entropy
in terms of a measureQ, obtained by solving an integral
equation dependent on the parameters of the process. The mea-
sure is hard to extract from the equation in any explicit way.
Recently, we have seen a resurgence of interest in estimating
HMP entropies [7], [8], [14], [19], [20], [27]. In particular, one
recent approach is based on computing the coefficients of an
asymptotic expansion of the entropy rate around certain values
of the Markov and channel parameters. The first result along
these lines was presented in [14], where the Taylor expansion
aroundε = 0 is studied for a binary HMP of order one. In
particular, the first derivative of the entropy rate atε = 0 is
expressed very compactly as a Kullback-Liebler divergence
between two distributions on binary triplets, derived fromthe
marginals of the input processX . It is also shown in [14],
[15] that the entropy rate of a HMP can be expressed in terms
of the top Lyapunov exponent of a random process of2×2
matrices (cf. also [11], where the capacity of certain channels
with memory is also shown to be related to top Lyapunov
exponents). Further improvements, and new methods for the
asymptotic expansion approach were obtained in [19], [27],
and [8]. In [20] the authors express the entropy rate for a binary
HMP where one of the transition probabilities is equal to zero
as an asymptotic expansion including aO(ε log ε) term. As
we shall see in the sequel, this case is related to the(1,∞)
(or the equivalent(0, 1)) RLL constraint. Analyticity of the
entropy as a function ofε was studied in [7].

In Section II of this paper we extend the results of [14],
[15] on HMP entropy to higher order Markov processes. We
show that the entropy of arth-order HMP can be expressed as
the top Lyapunov exponent of a random process of matrices
of dimensions2r × 2r (cf. Theorem 1). As an additional
result of this work, of interest on its own, we derive the
asymptotic expansion of the HMP entropy rate aroundε = 0
for the case where all transition probabilities are positive (cf.
Theorem 2). In particular, we derive an expression for the
first derivative of the entropy rate as the Kullback-Liebler
divergence between two distributions on2r+1-tuples, again
generalizing the formula forr=1 [14].The results of Section II
are applied, in Section III, to express the noisy constrained
capacity as a limit of top Lyapunov exponents of certain
matrix processes. These exponents, however, are notoriously
difficult to compute [25]. Hence, as in the case of the entropy
of HMPs, it is interesting to study asymptotic expansions of
the noisy constrained capacity. In Section III-B, we study
the asymptotics of the noisy constrained capacity, and we
show that for (d, k) constraints withk ≤ 2d, we have
C(S, ε) = C(S) + K ε + O(ε2 log ε), where K is a well
characterized constant. On the other hand, whenk > 2d, we
haveC(S, ε) = C(S)+L ε log ε+O(ε), where, again,L is an
explicit constant. The latter case covers the(0, 1) constraint

(and also the equivalent(1,∞) constraint). Our formula for
the constantL in this case is consistent with the one derived
from the results of [20]. Preliminary results of this paper were
presented in [16].

We also remark that recently Han and Marcus [9] reached
similar conclusions and obtained some generalizations using
different methodology.

II. ENTROPY OFHIGHER ORDER HMPS

Let X = {Xi}i≥1 be anrth-order stationaryfinite memory
(Markov) processover a binary alphabetA={0, 1}. The
process is defined by the set of conditional probabilities
P (Xt = 1|Xt−1

t−r = ar
1), ar

1 ∈ Ar. The process is equivalently
interpreted as the Markov chain of itsstatesst = Xt−1

t−r ,
t > 0 (we assumeX0

−r+1 is defined and distributed according
to the stationary distribution of the process).1 Clearly, a
transition from a stateu∈Ar to a statev∈Ar can have positive
probability only if u and v satisfy ur

2=vr−1
1 , in which case

we say that(u, v) is an overlappingpair. Thenoise process
E = {Ei}i≥1 is Bernoulli (binary i.i.d.), independent ofX ,
with P (Ei=1) = ε. Finally, the HMP is

Z={Zi}i≥1, Zi = Xi⊕Ei, i ≥ 1 . (3)

Let Z̃i = (Zi, Zi+1, . . . , Zi+r−1) and Ẽi =
(Ei, . . . , Ei+r−1). Also, for e∈{0, 1}, let Ẽe

i =
(e, Ei, . . . , Ei+r−1). We next compute2 P (Z̃n

1 ) (equivalently,
P (Zn+r−1

1 )). From the definitions ofX andE, we have

P (Z̃n
1 , Ẽn) =

∑

e∈A

P (Z̃n
1 , Ẽn, En−1 = e) (4)

=
∑

e∈A

P (Z̃n−1
1 , Zn+r−1, En−1 = e, Ẽn)

=
∑

e∈A

P (Zn+r−1, En+r−1|Z̃n−1
1 , Ẽe

n−1)P (Z̃n−1
1 , Ẽe

n−1)

=
∑

e∈A

P (En+r−1)PX(Z̃n⊕Ẽn|Z̃n−1⊕Ẽe
n−1)P (Z̃n−1

1 , Ẽe
n−1).

Observe that in the last line the transition probabilities
PX(·|·) are with respect to the original Markov chain.

We next derive, from (4) , an expression forP (Z̃n
1 ) as

a product of matrices extending our earlier work [14], [15].
In what follows, vectors are of dimension2r, and matrices
are of dimensions2r × 2r. We denoterow vectors by bold
lowercase letters, matrices by bold uppercase letters, andwe
let 1 = [1, . . . , 1]; superscriptt denotes transposition. Entries
in vectors and matrices are indexed by vectors inAr, according
to some fixed order, so thatAr = {a1,a2, . . . ,a2r}. Let

pn = [P (Z̃n
1 , Ẽn=a1), P (Z̃n

1 , Ẽn=a2) . . . P (Z̃n
1 , Ẽn=a2r )]

1We generally use the term “finite memory process” for the firstinterpre-
tation, and “Markov chain” for the second.

2In general, the measures governing probability expressions will be clear
from the context. In cases when confusion is possible, we will explicitly
indicate the measure, e.g.,PX .



and letM(Z̃n|Z̃n−1) be a2r × 2r matrix defined as follows:
if (en−1, en) ∈ Ar ×Ar is an overlapping pair, then

Men−1,en
(Z̃n|Z̃n−1) = PX(Z̃n⊕en|Z̃n−1⊕en−1)P (Ẽn=en).

(5)
All other entries are zero. Clearly,M(Z̃n|Z̃n−1) is a random
matrix, drawn from a set of2r+1 possible realizations.

With these definitions, it follows from (4) that

pn = pn−1M(Z̃n|Z̃n−1). (6)

Since PZ(Z̃n
1 ) = pn1t =

∑
e∈Ar PZ(Z̃n

1 , Ẽn = e), after
iterating (6), we obtain

PZ(Z̃n
1 ) = p1M(Z̃2|Z̃1) · · ·M(Z̃n|Z̃n−1)1

t. (7)

The joint distributionPZ(Zn
1 ) of the HMP, presented in (7),

has the formp1An1t, whereAn is the product of the first
n−1 random matrices of the process

M = M(Z̃2|Z̃1),M(Z̃3|Z̃2), . . . ,M(Z̃n|Z̃n−1), . . . (8)

Applying a subadditive ergodic theorem, and noting that
p1An1t is a norm of An, it is readily proved that
n−1E[− logPZ(Zn

1 )] must converge to a constantξ known
as thetop Lyapunov exponentof the random processM (cf.
[5], [21], [25]). This leads to the following theorem.

Theorem 1:The entropy rate of the HMPZ of (3) satisfies

H(Z) = lim
n→∞

E

[
− 1

n
log PZ(Zn+r

1 )

]

= lim
n→∞

1

n
E
[
− log

(
p1M(Z̃2|Z̃1)· · ·M(Z̃n|Z̃n−1)1

t
)]

= ξ,

whereξ is the top Lyapunov exponent of the processM of (8).

Theorem 1 and its derivation generalize the results, forr = 1,
of [14], [15], [27], [28]. It is known that computing top
Lyapunov exponents is hard (maybe infeasible), as shown
in [25]. Therefore, we shift our attention to asymptotic ap-
proximations.

We consider the entropy rateH(Z) for the HMP Z as a
function of ε for small ε. In order to derive expressions for
the entropy rate, we resort to the following formal defini-
tion (which was also used in entropy computations in [13]
and [15]):

Rn(s, ε) =
∑

zn
1 ∈An

P s
Z(zn

1 ), (9)

wheres is a real (or complex) variable, and the summation is
over all binaryn-tuples. It is readily verified that

H(Zn
1 ) = E [− logPZ(Zn

1 )] = − ∂

∂s
Rn(s, ε)

∣∣∣∣
s=1

. (10)

The entropy of the underlying Markov sequence is

H(Xn
1 )= − ∂

∂s
Rn(s, 0)

∣∣∣∣
s=1

.

Furthermore, letP = [pei,ej
]ei,ej∈Ar be the transition matrix

of the underlyingrth order Markov chain, and letπ =

[πe]e∈Ar be the corresponding stationary distribution . Define
alsoP(s) = [ps

ei,ej
]ei,ej∈Ar andπ(s) = [πs

e
]e∈Ar . Then

Rn(s, 0) =
∑

zn

P s
X(zn

1 ) = π(s)P(s)n−11t . (11)

Using a formal Taylor expansion nearε = 0, we write

Rn(s, ε) = Rn(s, 0) + ε
∂

∂ε
Rn(s, ε)

∣∣∣∣
ε=0

+ O(g(n)ε2), (12)

whereg(n) is the second derivative ofRn(s, ε) with respect
to ε, computed at someε′, provided these derivatives exist (the
dependence onn stems from (9)).

Using analyticity atε = 0 (cf. [7], [15]), we find

H(Zn
1 ) = H(Xn

1 ) − ε
∂2

∂s∂ε
Rn(s, ε)

∣∣∣∣
ε=0,
s=1

+ O(g(n)ε2)

= H(Xn
1 ) − ε

∂

∂s

∂

∂ε

∑

zn
1

P s
Z(zn

1 )

∣∣∣∣
ε=0,
s=1

+ O(g(n)ε2). (13)

To compute the linear term in the Taylor expansion (13),
we differentiate with respect tos, and evaluate ats = 1.
Proceeding in analogy to the derivation in [14], we obtain the
following result basically proved in [15], so we omit details
here.

Theorem 2:If the conditional symbol probabilities in the
finite memory (Markov) processX satisfy P (ar+1|ar

1) > 0
for all ar+1

1 ∈Ar+1, then the entropy rate ofZ for small ε is

H(Z) = lim
n→∞

1

n
Hn(Zn) = H(X)+f1(PX)ε+O(ε2), (14)

where, denoting bȳzi the Boolean complement ofzi, and
ž2r+1=z1 . . . zrz̄r+1zr+2 . . . z2r+1, we have

f1(PX) =
∑

z2r+1
1

PX(z2r+1
1 ) log

PX(z2r+1
1 )

PX(ž2r+1
1 )

= D
(
PX(z2r+1

1 )||PX(ž2r+1
1 )

)
. (15)

Here,D(·||·) is the Kullback-Liebler divergence, applied here
to distributions onA2r+1 derived from the marginals ofX .

A question arises about the asymptotic expansion of the
entropyH(Z) when some of the conditional probabilities are
zero. Clearly, when some transition probabilities are zero,
then certain sequencesxn

1 are not reachable by the Markov
process, which provides the link to constrained sequences.
For example, consider a Markov chain with the following
transition probabilities

P =

[
1 − p p

1 0

]
(16)

where0 ≤ p ≤ 1. This process generates sequences satisfying
the (1,∞) constraint (or, under a different interpretation of
rows and columns, the equivalent(0, 1) constraint). The output
sequenceZ, however, will generally not satisfy the constraint.
The probability of the constraint-violating sequences at the
output of the channel is polynomial inε, which will generally



contribute a termO(ε log ε) to the entropy rateH(Z) whenε
is small. This was already observed for the transition matrix
P of (16) in [20], where it is shown that

H(Z) = H(X) − p(2 − p)

1 + p
ε log ε + O(ε) (17)

asε → 0.
In this paper, in Section IV and Appendix A we prove the

following generalization of Theorem 2 for(d, k) sequences.
Theorem 3:Let Z be a HMM representing a(d, k) se-

quence. Then

H(Z) = H(X) − f0(PX)ε log ε + f1(PX)ε + O(ε2 log ε)
(18)

for somef0(PX) and f1(PX). If all transition probabilities
are positive, thenf0(PX) = 0 and the coefficientf1(PX) at ε
is presented in Theorem 2. The coefficientf0(PX) is derived
in Section IV, and for the maximizing distribution is presented
in Theorems 5 and 6.

Recently, Han and Marcus [9] showed that in general for
any HMM

H(Z) = H(X) − f0(PX)ε log ε + O(ε)

which is further generalized in [10] to

H(Z) = H(X) − f0(PX)ε log ε + f1(P )ε + O(ε2 log ε)

when at least one of the transition probabilities in the Markov
chain is zero.

III. C APACITY OF THE NOISY CONSTRAINED SYSTEM

We now apply the results on HMPs to the problem of noisy
constrained capacity.

A. Capacity as a Lyapunov Exponent

Recall thatI(X ; Z) = H(Z) − H(ε) and, by Theorem 1,
when X is a Markov process, we haveH(Z) = ξ(PX)
where ξ(PX) is the top Lyapunov exponent of the process
{M(Z̃i|Z̃i−1)}i>0. In [3] it is proved that the process optimiz-
ing the mutual information can be approached by a sequence
of Markov representations of increasing order. Therefore,as
a direct consequence of this fact and Theorem 1 we conclude
the following.

Theorem 4:The noisy constrained capacityC(S, ε) for a
(d, k) constraint through a BSC channel of parameterε is
given by

C(S, ε) = lim
r→∞

sup
P

(r)
X

ξ(P
(r)
X ) − H(ε) (19)

whereP
(r)
X denotes the probability law of anrth-order Markov

process generating the(d, k) constraintS.

In the next subsection, we turn our attention to asymptotic
expansions ofC(S, ε) nearε = 0.

B. Asymptotic Behavior

A nontrivial constraint will necessarily have some zero-
valued conditional probabilities. Therefore, the associated
HMP will not be covered by Theorem 2, but rather by
Theorem 3. For(d, k) sequences we have

H(Z) = H(X) − f0(PX)ε log ε + f1(PX)ε + o(ε) (20)

for somef0(PX) and f1(PX) where PX is the underlying
Markov process. As discussed in (1) of the introduction,

C(S, ε) = sup
X∈S

H(Z) − H(ε)

whereH(ε) = −ε log ε + ε − O(ε2) for small ε. In [9], [10]
Han and Marcus prove that the maximizing distribution in
(1) is the maxentropic distributionPmax with the error term
O(ε2 log2 ε) (cf. Theorem 3.2 of [10]), thus exceeding the
error termO(ε2 log ε) of the entropy estimation of Theorem 3.
We establish the same error term in Section IV using different
methodology. In summary, we are led to

C(S, ε) = C(S)−(1 − f0(P
max
X ))ε log ε+(f1(P

max
X ) − 1)ε

+ O(ε2 log2 ε) (21)

whereC(S) is the capacity of noiseless RLL system. Various
methods exist to deriveC(S) [18]. In particular, one can
write [18], [24] C(S) = − log ρ0, whereρ0 is the smallest
real root of

k∑

ℓ=d

ρℓ+1
0 = 1. (22)

Our goal is to derive explicit expressions forf0(P
max
X ) and

f1(P
max
X ) for (d, k) sequences. For example, we will show

in Theorem 5 below that for some RLL constraints, we have
f0(P

max
X ) = 1 in (21), hence the noisy constrained capacity

is of the formC(S, ε) = C(S) + O(ε) . In Theorem 6 below
we derive alsof1(P

max
X ).

We apply the same approach as in previous section, that is,
we use the auxiliary functionRn(s, ε) defined in (9). To start,
we find a simpler expression forPZ(zn

1 ). Summing over the
number of errors introduced by the channel, we find

PZ(zn
1 ) = PX(xn

1 )(1 − ε)n + ε(1 − ε)n−1
n∑

i=1

PX(xn
1 ⊕ ei)

plus the error termO(ε2) (resulting from two or more errors),
whereej = (0, . . . , 0, 1, 0, . . . , 0) ∈ An with a 1 at position
j. Let Bn ⊆ An denote the set of sequencezn

1 at Hamming
distance one fromSn, andCn = An \ (Sn ∪Bn). Notice that
sequences inCn are at distance at least two fromSn, and
contribute theO(ε2) term. From the above, we conclude

Rn(s, ε) =
∑

zn
1

PZ(zn
1 ) (23)

∑

zn
1 ∈Sn

PZ(zn
1 )s +

∑

zn
1 ∈Bn

PZ(zn
1 )s +

∑

zn
1 ∈Cn

PZ(zn
1 ).



We observe that
∑

zn
1 ∈Sn

PZ(zn
1 )s = O(1),

∑

zn
1 ∈Bn

PZ(zn
1 )s = O(εs),

∑

zn
1 ∈Bn

PZ(zn
1 )s = O(ε2s), ε → 0.

Defining

φn(s) =
∑

zn
1 ∈Sn

PX(zn
1 )s−1

n∑

i=1

PX(zn
1 )

Qn(s) =
∑

zn
1 ∈Bn

(
n∑

i=1

PX(zn
1 ⊕ ei)

)s

we arrive at the following expression forRn(s, ε)

Rn(s, ε) = (1 − ε)nsRn(s, 0) + ε(1 − ε)ns−1φn(s) (24)

+ εs(1 − ε)(n−1)sQn(s) + O(ε2 + ε1+s + ε2s).

Notice thatφn(1) + Qn(1) =
∑

zn
1

∑n
i=1 PX(zn

1 ⊕ ei) = n.

We now deriveH(Zn
1 ) = − ∂

∂sRn(1, ε) using the fact that
Rn(1, ε) = 1. Since all the functions involved are analytic,
we obtain

H(Zn
1 ) = H(Xn

1 )(1 − nε) + nε − ε(φn(1) + φ′
n(1))

− ε log εQn(1) − εQ′
n(1) + O(nε2 log ε), (25)

where the error term is derived in Appendix A. In the above,
φ′

n(1) andQ′
n(1) are, respectively, the derivative ofφn(s) and

Qn(s) at s = 1. Notice also that the termnH(Xn
1 )ε of order

n2ε is cancelled by(φ′
n(1)+ Q′

n(1))ε = (H(Xn
1 )n + O(n))ε

and onlynε term remains.
The casek ≤ 2d is interesting: one-bit flip in a(d, k)

sequence is guaranteed to violate the constraint, and conse-
quently ∀zn

1 ∈ Sn and ∀i: PX(zn
1 ⊕ ei) = 0. Therefore

φn(s) = 0 in this case, leavingQn(1) = n. Thus, in the
casek ≤ 2d, we havef0(P ) = 1, and the termO(ε log ε)
in (21) cancels out.

Further considerations are required to computeQ′
n(1) and

obtain the coefficient ofε in (25) . Here, we provide the
necessary definitions, and state our result that are proved
in Section IV. Ignoring border effects (which do not affect
asymptotics, as easy to see3), we restrict our analysis to(d, k)
sequences over theextendedalphabet (ofphrases) [18]

B = { 0d1, 0d+11, . . . , 0k1 }.

In other words, we consider only(d, k) sequences that end
with a ”1”. For such sequences, we assume that they are
generated by a memoryless process over the super-alphabet.
This is further discussed in Section IV.

Let pℓ denote the probability of the super-symbol0ℓ1. The
maxentropic distributionPmax corresponds to the case of

pℓ = Pmax
X (0ℓ1), d ≤ ℓ ≤ k . (26)

3Indeed, in general a(d, k) sequence may have at mostk starting and
ending zeros of total lengthn + O(1) that cannot affect the entropy rate.

Note that in this casepℓ = ρℓ+1
0 , with ρ0 as in (22). The

expected length of a super-symbol inB is λ =
∑k

ℓ=d(ℓ+1)pℓ.
We also introduce the generating function

r(s, z) =
∑

ℓ

ps
ℓz

ℓ+1.

By ρ(s) we denote the smallest root inz of r(s, z) = 1, that
is r(s, ρ(s)) = 1. Clearly,ρ(1) = ρ0 and

ρ′(1) = −
∑

ℓ pℓ log pℓ

λ

is the entropy rateper bit of the super-alphabet, andρ′(1) =
H(X). Furthermore, we define

λ(s) =
∂

∂z
r(s, z)

∣∣
z=ρ(s)

and notice thatλ(1) = λ.
Finally, to present succinctly our results, we introduce some

additional notation. Let

α(s, z) =
∑

ℓ

(2d − ℓ)ps
ℓz

ℓ+1.

For integersℓ1, ℓ2, d ≤ ℓ1, ℓ2 ≤ k, letIℓ1,ℓ2 denote the interval

Iℓ1,ℓ2 =

{ℓ:−min+{ℓ1−d, k − ℓ2−1} ≤ ℓ ≤ min+{ℓ2−d, k−ℓ1−1}} ,

where min+{a, b} = max{min{a, b}, 0}. We shall write
I∗

ℓ1,ℓ2
= Iℓ1,ℓ2 \ {0}. At last, we defineτ(s, z) = τ1(s, z) +

τ2(s, z) + τ3(s, z) where

τ1(s, z) =
∑

ℓ1,ℓ2

2 max{0, ℓ1 + ℓ2 − k − d}ps
ℓ1p

s
ℓ2z

ℓ2+ℓ2+2

τ2(s, z) =
k∑

ℓ1=d

k∑

ℓ2=d

∑

θ∈I∗

ℓ1,ℓ2

1

2
(pℓ1pℓ2 + pℓ1+θpℓ2−θ)

szℓ2+ℓ2+2

τ3(s, z) =
k∑

ℓ1=d

k∑

ℓ2=d

1

2 min{k, ℓ1 + ℓ2 − d} − (ℓ1 + ℓ2) + 1

×




∑

θ∈Iℓ1,ℓ2

pℓ1+θpℓ2−θ




s

zℓ2+ℓ2+2

Now we are in a position to present our main results. The
proofs are delayed till the next section. The following theorem
summarizes our findings for the casek ≤ 2d.

Theorem 5:Consider the constrained(d, k) systemS with
k ≤ 2d. Then,

C(S, ε) = C(S) − (1 − f0(P
max
X ))ε + O(ε2 log2 ε),

where

f0(P
max
X ) = log λ + 2

λ′(1)

λ
+

∂
∂sτ(1, 1) + ∂

∂sα(1, 1)

λ

+ ρ′(1)(
∂2

∂s∂z
α(1, 1) +

∂2

∂s∂z
τ(1, 1))

+
ρ′(1)

λ
(

∂

∂z
α(1, 1) +

∂

∂z
τ(1, 1)) − 1



for ε → 0 andλ(s), α(s, z) andτ(s, z) are defined above.

In the complementary casek > 2d, the termφn(s) in (23)
does not vanish, and thus theO(ε log ε) term in (21) is
generally nonzero. For this case, using techniques similarto
the ones leading to Theorem 5, we obtain the following result.

Theorem 6:Consider the constrained(d, k) systemS with
k ≥ 2d. Define

γ =
∑

ℓ>2d

(ℓ − 2d)pℓ , δ =
∑

d≤ℓ1+ℓ2+1≤k

pℓ1pℓ2 ,

andλ =
∑k

ℓ=d = (ℓ + 1)pℓ wherepℓ is from (26) Then,

C(S, ε) = C(S) − (1 − f0(P
max
X )) ε log ε−1 + O(ε) , (27)

where

f0(P
max
X ) = 1 − γ + δ

λ

for ε → 0.

Example. We consider the(1,∞) constraint with transition
matrix P as in (16) . Computing the quantities called for in
Theorem 6 ford = 1 andk = ∞, we obtainpℓ = (1−p)ℓ−1p,
λ = 1+p

p , γ = (1−p)2

p , andδ = 1. Thus,

f0(PX) = 1 − γ + δ

λ
=

p(p − 2)

p − 1
,

consistent with the calculation of the same quantity in [20].
The noisy constrained capacity is obtained whenP = Pmax,
i.e.,p = 1/ϕ2, whereϕ = (1+

√
5)/2, the golden ratio. Then,

f0(P
max) = 1/

√
5, and by Theorem 6

C(S, ε) = log ϕ − (1 − 1/
√

5)ε log(1/ε) + O(ε)

for ε → 0.

IV. A NALYSIS

In this section, we derive explicit expression for the coeffi-
cientsf0(PX) andf1(PX) of Theorem 3, as well asf0(P

max)
andf1(P

max) of Theorems 5 and 6. We also establish the error
term in Theorem 5.

Throughout, we consider the super-alphabet approach. Re-
call that a super-symbol is a text0ℓ1 for d ≤ ℓ ≤ k
which is drawn from a memoryless source. This model is
equivalent to a Markov process with renewals at symbols ”1”.
As before,pℓ is the probability of the super symbol0ℓ1. The
entropy rate per symbol is−∑ℓ pℓ log pℓ. It is not difficult
to see that the maximal entropy rate is attained atpℓ = ρℓ+1

0

whereρ0 is defined in (22). This in fact corresponds to the
case when all(d, k) sequences of lengthn are equiprobable.
Furthermore, we consider(d, k) sequences generated by super
symbols under the assumption that they are of lengthn. This is
equivalent to consider a Markovian(d, k)-sequence of length
n under the restriction that it ends with a “1”.

Let xn
1 be a sequence of lengthn made ofm super-symbols:

xn = 0ℓ110ℓ21 . . . 0ℓm1. We shall call such(d, k) sequences
reduced(d, k) sequences. The actual length of such sequences
is L(xn

1 ) = n. We also writeλ =
∑

ℓ(ℓ + 1)pℓ.

In the sequel, we only consider reduced(d, k) sequences,
and therefore define

P̃ (xn
1 ) =

m∏

i=1

pℓi
.

Notice thatP̃ (xn
1 ) = 0 if xn

1 is not a reduced(d, k) sequence
(i.e., it doesn’t end on a1). In view of this we have

PX(xn
1 ) =

P̃ (xn
1 )

Pn

where
Pn =

∑

xn
1

P̃ (xn
1 ).

Observe thatPn is the probability that then-th symbol is
exactly a “1” (in other words,xn

1 is built from a finite number
of super symbols).

Recalling the definitionr(s, z) =
∑

ℓ ps
ℓz

ℓ+1, we find

∑

n

Pnzn =
1

1 − r(1, z)
.

Indeed, every reduced(d, k) sequence consists of an empty
string, one super symbol, two super symbols or more, thus∑

n Pnzn =
∑

k rk(1, z) = 1/(1 − r(1, z)) (cf. [24]). By the
Cauchy formula [24] we obtain

Pn =
1

2πi

∮
1

1 − r(1, z)

dz

zn+1

=
1

∂
∂z r(1, 1)

+ O(µ−n) =
1

λ
+ O(µ−n)

for someµ > 1, since1 is the largest root of1 = r(1, z) and
∂
∂z r(1, 1) = λ.

Let Ãm be the set of(d, k) reduced sequences made of
exactlym super-symbols with no restriction on its length. We
call it the variable-length model. Let̃A∗ =

⋃
m Ãm. Let B̃m

be the set of such sequences that are exactly at Hamming
distance1 from a sequence iñAm. By our convention, ifx ∈
Ãm for somem, (i.e. if x = 0ℓ110ℓ21 . . . 0ℓm1), thenP̃ (x) =∏i=m

i=1 pℓ; otherwiseP̃ (x) = 0). We denote byL(x) the length
of x.

To deriveH(Zn
1 ) found in (25) we need to evaluateφ′

n(1)
andQ′

n(1). We estimate these quantities in the variable-length
model as described above and then re-interpret them in the
original model. Define

φ(s, z) =
∑

n

P s
nφn(s)zn, (28)

Q(s, z) =
∑

n

P s
nQn(s)zn (29)

which we re-write as

φ(s, z) =
∑

m

φ̃m(s, z), (30)

Q(s, z) =
∑

m

Q̃m(s, z), (31)



where

φ̃m(s, z) =
∑

x∈Ãm

P̃ s−1(x)

L(x)∑

i=1

P̃ (x ⊕ ei)z
L(x),

Q̃m(s, z) =
∑

x∈B̃m




L(x)∑

i=1

P̃ (x ⊕ ei)




s

zL(x).

Notice that

φ̃m(1, z) + Q̃m(1, z) = E[L(x)zL(x)] = z
∂

∂z
rm(1, z),

andφ̃m(1, 1)+ Q̃m(1, 1) = mλ. We next evaluatẽφ(s, z) and
Q̃(s, z).

A. Computation of̃φm(s, z)

The casek ≤ 2d is easy sincex⊕ ej /∈ Ãm whenx ∈ Ãm.
Thus φ̃m(s, z) = 0. In the sequel we concentrate onk > 2d.
The following result is easy to prove.

Theorem 7:For reduced(d, k) sequences consisting ofm
super symbols, we have

φ̃m(s, z) = mb1(s, z)rm−1(s, z)+(m−1)b2(s, z)rm−2(s, z),

where

b1(s, z) =

k∑

ℓ=d

ps−1
ℓ

ℓ∑

j=1

pj−1pℓ−jz
ℓ+1,

b2(s, z) =
∑

d≤ℓ1+ℓ2≤k

ps−1
ℓ1

ps−1
ℓ2

pℓ1+ℓ2+1z
ℓ1+ℓ2+2.

In particular,

b1(1, 1) =

ℓ=k∑

ℓ=d

∑

j

pj−1pℓ−j,

b2(1, 1) =
∑

ℓ

max{0, ℓ − 2d}pℓ.

Proof. We need to consider two cases: one in which the error
changes a0 to a1, and the other one when the error occurs on
a 1. In the first case,m−1 super symbols are not changed and
each contributesr(s, z). The corrupted super symbol is divided
into two and its contribution is summarized inb1(s, z).

In the second case, an ending1 is changed into a0 so two
super symbols (except the last one) collapsed into a one super
symbol. This contribution is summarized byb2(s, z) while
the otherm − 2 super symbols, represented byr(s, z) are
unchanged.

B. Computation ofQ̃m(s, z)

We recall the following definitions. For integersℓ1, ℓ2, d ≤
ℓ1, ℓ2 ≤ k, let Iℓ1,ℓ2 denote the interval

Iℓ1,ℓ2 =

{ℓ:−min+{ℓ1−d, k − ℓ2−1} ≤ ℓ ≤ min+{ℓ2−d, k−ℓ1−1}} ,

where min+{a, b} = max{min{a, b}, 0}. We shall write
I∗

ℓ1,ℓ2
= Iℓ1,ℓ2 \ {0}.

Observe first that̃Qm(s, z) can be rewritten as

Q̃m(s, z) =
∑

x∈Ãm

j=L(x)∑

j=1

1x⊕ej /∈Ã∗

|B(x ⊕ ej) ∩ Ã∗|

×
(∑

i = 1i=L(x)P̃ (x ⊕ ej ⊕ ei)
)s

zL(x)

whereB(y) is the set of all sequences of the same length as
y and within Hamming distance 1 fromy.

Theorem 8:For reduced(d, k) sequences consisting ofm
super symbols, the following holds

Q̃m(s, z) = mα(s, z)rm−1(s, z) + (m − 1)τ(s, z)rm−2(s, z)

where
α(s, z) =

∑

ℓ

max{0, 2d− ℓ}ps
ℓz

ℓ+1

andτ(s, z) = τ1(s, z) + τ2(s, z) + τ3(s, z) where

τ1(s, z) =

k∑

ℓ1=d

k∑

ℓ2=d

(max{0, d(ℓ1) + ℓ2 − k}

+ max{0, d(ℓ2) + ℓ1 − k}) ps
ℓ1p

s
ℓ2z

ℓ1+ℓ2+2,

τ2(s, z) =

k∑

ℓ1=d

k∑

ℓ2=d

∑

θ∈I∗

ℓ1,ℓ2

1|θ|≤d

2
(pℓ1pℓ2pℓ1+θpℓ2−θ)

s
zℓ1+ℓ2+2

τ3(s, z) =

k∑

ℓ1=d

k∑

ℓ2=d

1ℓ1+ℓ2+1>k

2 min{k, ℓ1 + ℓ2 − d} − (ℓ1 + ℓ2) + 1



∑

θ∈Iℓ1,ℓ2

pℓ1+θpℓ2−θ




s

zℓ1+ℓ2+2,

with d(ℓ) = min{d, ℓ − d} .
In particular, fork ≤ 2d we have the following simplifica-

tions:
α(s, z) =

∑

ℓ

(2d − ℓ)ps
ℓz

ℓ+1,

and

τ1(s, z) =
∑

ℓ1,ℓ2

2 max{0, ℓ1 + ℓ2 − k − d}ps
ℓ1p

s
ℓ2z

ℓ2+ℓ2+2,

τ2(s, z) =

k∑

ℓ1=d

k∑

ℓ2=d

∑

θ∈I∗

ℓ1,ℓ2

1

2
(pℓ1pℓ2 + pℓ1+θpℓ2−θ)

szℓ2+ℓ2+2,

τ3(s, z) =

k∑

ℓ1=d

k∑

ℓ2=d

1

2 min{k, ℓ1 + ℓ2 − d} − (ℓ1 + ℓ2) + 1

×




∑

θ∈Iℓ1,ℓ2

pℓ1+θpℓ2−θ




s

zℓ2+ℓ2+2.

Proof. As in the previous proof, the main idea is to enumerate
all possible ways a sequencex leaves the status of(d, k) after
a bit corruption and returns to(d, k) status after a second
bit corruption. In other words,x ∈ Ã∗, x ⊕ ej /∈ Ã∗, and
x ⊕ ej ⊕ ei ∈ Ã∗. We consider several cases:



a) Property 1: Let x be a single super-symbol:x = 0ℓ1.
Consider nowx ⊕ ej. First, supposeℓ ≤ 2d and the errorej

falls on a zero ofx. If ej falls on a zero betweenℓ − d and
d, then

0ℓ1 ⊕ ej = 0ℓ110ℓ21,

and at least one ofℓ1, ℓ2 is smaller thand. Therefore,x ⊕ ej

is not a(d, k) sequence. The only wayei can produce a(d, k)
sequence is when it is equal toej: |B(x ⊕ ej) ∩ Ã∗| = 1 .
Assume nowℓ > 2d. If ej falls at distance greater thand from
both ends, thenx ⊕ ej ∈ Ã∗ and does not leavẽA∗.

b) Property 2: If the errorej falls on a symbol0ℓ11 in
x = 0ℓ110ℓ21, on the lastmin{d, ℓ1 − d} zeros, then with
θ ≤ min{d, ℓ2 − d}

0ℓ110ℓ21 ⊕ ej = 0ℓ1−θ10θ−110ℓ21,

andx /∈ Ã∗. We have:

• if it falls also on the lastmin{d, ℓ1−d, k− ℓ2} zeros,i.e
θ ≤ min{d, ℓ1 − d, k − ℓ2}, then the onlyei that moves
x⊕ ei ⊕ ej back a(d, k) sequence is eitherej = ei or ej

such that it falls on the1 of 0ℓ11, and|B(x⊕ej)∩Ã∗| =
2,

• otherwise, the only acceptablej is i, so that|B(x⊕ej)∩
Ã∗| = 1 andx ⊕ ej /∈ Ã∗.

c) Property 2bis: If the error ej in x = 0ℓ110ℓ21 falls
on the firstmin{d, ℓ2 − d} zeros of0ℓ21, then

• if it falls also on the firstmin{d, ℓ2 − d, k − ℓ1} zeros,
then the onlyej that movesx ⊕ ei ⊕ ej back a(d, k)
sequence is eitherej = ei or ej such that it falls on the
1 of 0ℓ11, and |B(x ⊕ ej) ∩ Ã∗| = 2,

• otherwise, the only acceptablej is i so that|B(x⊕ ej)∩
Ã∗| = 1 andx ⊕ ej /∈ Ã∗.

d) Property 3: We still considerx = 0ℓ110ℓ21. If the
error falls on the ”1” of0ℓ11, then the onlyej that moves
x ⊕ ej ⊕ ei back (d, k) sequences are those that either fall
back on the 1, or on themin{ℓ2 − d, k − ℓ1} first zeros of
0ℓ21, or on themin{ℓ1 − d, k − ℓ2} last zeros of)0ℓ11, and
then

|B(x ⊕ ej) ∩ Ã∗| = 1 + min{ℓ1 − d, k − ℓ2}
+ min{ℓ2 − d, k − ℓ1}

= 1 + 2 min{k, ℓ1 + ℓ2 − d} − ℓ1 − ℓ2.

Clearly, then we must haveℓ1 + ℓ2 + 1 > k in orderx⊕ ej /∈
Ãm.

Given these four properties we can define the following
quantities

α(s, z) =
∑

ℓ

max{0, 2d− ℓ}ps
ℓz

ℓ+1

andτ(s, z) = τ1(s, z)+τ2(s, z)+τ3(s, z) with the convention
that α(s, z) corresponds to Property 1,τ1(s, z) to Property 2
and 2bis (second bullet),τ2(s, z) to Property 2 and Property
2bis (first bullet), τ3(s, z) to Property 3. This completes the
proof.

C. Asymptotic analysis

Finally, we can re-interpret our results for reduced(d, k)
sequences of the variable-length model in terms of the original
(d, k) sequences of fixed length. Our aim is to provide an
asymptotic evaluation ofφn(1), Qn(1), φ′

n(1) andQ′
n(1) as

n → ∞. To this end, we will present an asymptotic evaluation
of φn(s) andQn(s).

From (30) and (31) we easily find

φ(s, z) =
∑

m

φ̃m(s, z) =
b1(s, z) + b2(s, z)

(1 − r(s, z))2
,

Q(s, z) =
∑

m

Q̃m(s, z) =
α(s, z) + τ(s, z)

(1 − r(s, z))2
.

Then by Cauchy formula applied to (28) and (29)

P s
nφn(s, z) =

1

2iπ

∮
φ(s, z)

dz

zn+1
,

P s
nQn(s, z) =

1

2iπ

∮
Q(s, z)

dz

zn+1
.

A simple application of the residue analysis leads to

P s
nφn(s) =

ρ−n−1(s)

λ(s)2
((n + 1)(b1(s, ρ(s)) + b2(s, ρ(s)))

− ∂

∂z
b1(s, ρ(s)) − ∂

∂z
b1(s, ρ(s))

)
+ O(µ−n),

P s
nQn(s) =

ρ−n−1(s)

λ(s)2
((n + 1)(α(s, ρ(s)) + τ(s, ρ(s)))

− ∂

∂z
α(s, ρ(s)) − ∂

∂z
τ(s, ρ(s))

)
+ O(µ−n).

Since functions involved are analytic and uniformly bounded
in s in a compact neighborhood, the asymptotic estimates of
φ′

n(1) andQ′
n(1) can be easily derived.

In summary, we find

φ′
n(1) + Q′

n(1) = −(n + 1)ρ′(1)(φn(1) + Qn(1)) + O(n)

= −nH(Xn
1 ) + O(n),

which cancels the coefficientnεH(Xn
1 ) in the expansion of

H(Zn
1 ) in (25). More precisely,

φ′
n(1) + Q′

n(1) = −nH(Xn
1 ) + n log λ − 2

λ′(1)

λ

+
n

λ

(
∂

∂s
b1(1, 1) +

∂

∂s
b2(1, 1)

+
∂

∂s
α(1, 1) +

∂

∂s
τ(1, 1)

ρ′(1)

(
∂2

∂s∂z
b1(1, 1) +

∂2

∂s∂z
b2(1, 1)

+
∂2

∂s∂z
α(1, 1) +

∂2

∂s∂z
τ(1, 1)

))

+ n
ρ′(1)

λ

(
∂

∂z
b1(1, 1) +

∂

∂z
b2(1, 1)

+
∂

∂z
α(1, 1) +

∂

∂z
τ(1, 1)

)
+ O(1). (32)



The expression forf0(P
max) in Theorem 5 follows directly

from the expression (32) since the coefficient atε is exactly
nH(Xn

1 ) + φ′
n(1) + Q′

n(1) + φn(1) and φn(1) = 0 when
k ≤ 2d. The proof of Theorem 6 is even easier since

f0(P
max) =

Qn(1)

n
= 1 − φn(1)

n
.

We have from (32):

φn(1) = n

(
b1(1, 1) + b2(1, 1)

λ

)
.

Observe thatb1(1, 1) exactly matchesγ andb2(1, 1) matches
δ in Theorem 6.

D. Error Term in Theorem 5

To complete the proof of Theorem 5, we establish here
that the dominating error term of the capacityC(S, ε) es-
timation is O(ε2 log2 ε). For this we need to show that the
maximizing distributionPmax

X (ε) H(Z) introduces error of
orderO(ε2 log2 ε). Recall thatPmax maximizesH(X).

In Appendix A we show that

∂

∂ǫ
H(Z) = O(log ε)

uniformly in PX . As a consequenceH(Z) converges toH(X)
uniformly in PX as ε → 0. We also prove in the Appendix
that

H(Z) = H(X)+f0(PX)ε log ε+f1(PX)ε+g(PX)O(ε2 log ε),

where the functionsf0, f1 and g of PX are in C∞. Let
Pmax

X (ε) be the distribution that maximizesH(Z), hence the
capacityC(S, ε). Let α > 0 and let Kα be a compact set
of distributions that are at topological distance smaller than
or equal toα from Pmax

X . SinceH(Z) converges toH(X)
uniformly, there existsε′ > 0 such that∀ε < ε′, ε > 0 we
havePmax

X ∈ Kα.
Let now β = maxPX∈Kα

{g(PX)}. Clearly,β → g(Pmax)
asα → 0. Let also

F (PX , ε) = H(X) + f0(PX)ε log ε + f1(PX)ε,

and
Fα(ε) = max

PX∈Kα

{F (PX , ε)}.

The following inequality forε < 1 follows from our analysis
in Appendix A

Fα(ε) + βε2 log ε ≤ H(Pmax
X (ε)) ≤ Fα(ε) − βε2 log ε.

We will prove here thatFα(ε) = F (Pmax
X , ε) + O(ε2 log2 ε).

Let P̃max
X = arg max{F (PX , ε)}. We have

∇F (P̃max
X , ε) = 0, where ∇F denotes the gradient of

F with respect toPX . Defining dPX = P̃max
X − Pmax

X we
find

∇F (P̃max
X , ε) = ∇2F (Pmax

X , ε)dPX

+ ∇f0(P
max
X )ε log ε + ∇f1(P

max
X )ε

+ O(‖dPX‖2 + ‖dPX‖ε log ε),

where∇2F is the second derivative matrix (i.e., Hessian) ofF
and‖v‖ is the norm of vectorv. DenotingF2 = ∇2F (Pmax

X )
and its inverse matrix asF−1

2 , we arrive at

dPX = −F−1
2 · (∇f0(P

max
X )ε log ε +∇f1(P

max
X )ε)

+ O(ε2 log2 ε).

Since

F (P̃max
X , ε) = F (Pmax

X , ε) +
1

2
dPX · F2 · dPX

+ ∇f0(P
max
X )dPXε log ε

+ ∇f1(P
max
X )dPXε + O(ε3 log3 ε),

we obtain for‖dPX‖ ≤ α (for sufficiently smallε) :

Fα(ε) = F (Pmax
X , ε)

− 1

2
∇f0(P

max
X ) · F−1

2 · ∇f0(P
max
X )ε2 log2 ε

− ∇f0(P
max
X ) · F−1

2 · ∇f1(P
max
X )ε2 log ε

− 1

2
∇f1(P

max
X ) · F−1

2 · ∇f1(P
max
X )ε2

+ O(ε3 log3 ε).

This completes the proof.

V. CONCLUSION

We study the capacity of the constrained BSC channel in
which the input is a(d, k) sequence. After observing that a
(d, k) sequence can be generated by ak-order Markov chain,
we reduce the problem to estimating the entropy rate of the
underlying hidden Markov process (HMM). In our previous
paper [14], [15], we established that the entropy rate for a
HMM process is equal to a Lyapunov exponent. After realizing
that such an exponent is hard to compute, theoretically and
numerically, we obtained an asymptotic expansion of the
entropy rate when the error rateε is small (cf. also [27]).

In this paper, we extend previous results in several direc-
tions. First, we present asymptotic expansion of the HMM
when some of the transition probabilities of the underlying
Markov are zero. This adds additional term of orderε log ε to
the asymptotic expansion. Then, we return to the noisy con-
strained capacity and prove that the exact capacity is related
to supremum of Lyapunov exponents over increasing order
Markov processes. Finally, for(d, k) sequences we obtain an
asymptotic expansion for the noisy capacity when the noise
ε → 0. In particular, we prove that fork ≤ 2d the noisy
capacity is equal to the noiseless capacity plus a termO(ε). In
the casek > 2d, the correction term isO(ε log ε). We should
point out that recently Han and Marcus [9], [10] reached
similar conclusions (and obtained some generalizations) using
quite different methodology.

APPENDIX A: PROOF OFTHEOREM 3

In this Appendix we prove the error term of (18) in
Theorem 3 using the methodology developed by us in [15].
We need to prove that forε < 1/2

H(Zn
1 ) = H(Xn

1 )+nf1(PX)ε+nf0(PX)ε log ε+O(nε2 log ε)
(33)



for somef1(PX) andf0(PX). We start with

H(Zn
1 ) = H(Xn

1 ) − ε
∂

∂ǫ
H(Zn

1 ) + Gn (34)

and show at the end of this section thatGn = O(nε2 log ε).
We first concentrate on proving that

∂

∂ǫ
H(Zn

1 ) = nf1(PX) + nf0(PX) log ε (35)

for somef0(PX) andf1(PX). We use equation (48) from [15]
which we reproduce below

∂

∂ǫ
PZ(z) =

1

1 − 2ε

∑

i

(PZ(z ⊕ ei) − PZ(z))

for any sequencez of lengthn (hereafter, we simply writex
for xn

1 andz for zn
1 ). Consequently,

∂

∂ǫ
H(Zn

1 ) = − 1

1 − 2ε

∑

z

∑

i

(PZ(z⊕ei)−PZ (z)) log PZ(z)

that can be rewritten as

∂

∂ǫ
H(Zn

1 ) = − 1

1 − 2ε

∑

x

∑

i

PZ(z) log
PZ(z ⊕ ei)

PZ(z)
.

In order to estimate the ratio ofPZ(z ⊕ ei) and PZ(z), we
observe that

PZ(z) = (1 − ε)n
∑

x

PX(x)

(
ε

1 − ε

)dH(x,z)

,

wheredH(, x, z) is the Hamming distance betweenx and z.
Similarly,

PZ(z ⊕ ei) = (1 − ε)n
∑

x

PX(x)

(
ε

1 − ε

)dH(x,z⊕ei)

.

The following inequality is easy to prove

min
i

(
ε

1 − ε

)dH(x,z⊕ei)−dH(x,z)

≤ PZ(z ⊕ ei)

PZ(z)

≤ max
i

(
ε

1 − ε

)dH(x,z⊕ei)−dH(x,z)

.

SincedH(x, z ⊕ ei) = dH(x, z) ± 1 we conclude that

ε

1 − ε
≤ PZ(z ⊕ ei)

PZ(z)
≤ 1 − ε

ε
.

Thus
∣∣∣∣∣
∑

z

∑

i

PZ(z) log
PZ(z ⊕ ei)

PZ(z)

∣∣∣∣∣ ≤ −n log(1 − ε) − n log ε

and this completes the proof of (33).
To finish the proof of Theorem 3, it remains to show that

that Gn = O(nε2 log ε), that is, uniformly inn andε > 0

H(Zn
1 ) = H(Xn

1 ) − ε
∂

∂ǫ
H(Zn

1 ) + O(nε2 log ε). (36)

To this end, we make use of the Taylor expansion:

H(Zn
1 ) = H(Xn

1 ) − ε
∂

∂ǫ
H(Zn

1 )

−
∫ ε

0

θ
∂2

∂ǫ2
H(Zn

1 )|ε=θdθ,

and prove that forε small enough we have uniformly inn and
ε > 0

∂2

∂ǫ2
H(Zn

1 ) = O(n log ε), (37)

from which the error termO(nε2 log ε) follows immediately.
In [15] we proved that for all sequencesz

∂2

∂ǫ2
PZ(z) = − 2

1 − 2ε

∂

∂ǫ
PZ(z) − 1

(1 − 2ε)2

∑

i,j

× (PZ(z ⊕ ei ⊕ ej) − PZ(z ⊕ ei) −PZ(z ⊕ ej) + PZ(z)) ,

which led to equation (49) of [15] repeated below

∂2

∂ǫ2
H(Zn

1 ) = − 2

1 − 2ε

∂

∂ǫ
H(Zn

1 ) − 1

(1 − 2ε)2
(D1 + D2),

where

D1 =
∑

z

∑

i,j

PZ(z ⊕ ei ⊕ ej) − PZ(z ⊕ ei)

−PZ(z ⊕ ej) + PZ(z) log PZ(z),

and

D2 =
∑

z

∑

ij

(PZ(z ⊕ ei)) − PZ(z))

×(PZ(z ⊕ ej)) − PZ(z))
1

PZ(z)
.

We will prove thatD1 = O(n log ε) andD2 = O(n).
Let first deal withD1. We can write it as

D1 =
∑

z

∑

i,j

PZ(z) log
PZ(z ⊕ ei ⊕ ej)PZ(z)

PZ(z ⊕ ei)P (z ⊕ ej)
.

We now splitD1 = D′
1 + D′′

1 whereD′
1 involves the pairs

(i, j) such that|i − j| ≤ k + 1 andD′′
1 deals with such pairs

that |j − i| > k + 1. For all z and all i and j such that
|i − j| ≤ k + 1, we have

ε2

(1 − ε)2
<

PZ(z ⊕ ei ⊕ ej)PZ(z)

PZ(z ⊕ ei)PZ(z ⊕ ej)
<

(1 − ε)2

ε2
. (38)

Therefore,

|D′
1| ≤

∑

z

∑

|j−i|≤k+1

PZ(z)(−2 log(1 − ε) − 2 log ε)

≤ (k + 1)n(−2 log(1 − ε) − log ε).

For |j − i| > k +1, we observe, as in [15], that there exists
µ < 1 such that for allz

PZ(z ⊕ ei ⊕ ej)PZ(z)

PZ(z ⊕ ei)PZ(z ⊕ ej)
= 1 + O(µi) + O(µj) + O(µ|j−i|)

+O(µn−i) + O(µn−i).



Thus we find

D′′
1 =

∑

z

∑

|j−i|>k+1

PZ(z) log
(
1 + O(ρi) + O(µj)

+O(µ|j−i|) + O(µn−i) + O(µn−i)
)

=
∑

z

PZ(z)O(n/(1 − µ)) = O(n).

Now we turn our attention toD2, and similarly we split
D2 = D′

2 +D′′
2 with D′

2 involving only i, j such that|i−j| ≤
k + 1 and D′′

2 involving i, j such that|i − j| > k + 1. We
easily see that|D′

2| ≤ n(k + 1), and then

D′′
2 =

∑

z

∑

|i−j|>k

PZ(z) − PZ(z ⊕ ei)

− PZ(z ⊕ ej) + PZ(z ⊕ ei ⊕ ej)

+

(
PZ(z ⊕ ei)PZ(z ⊕ ej)

PZ(z ⊕ ei ⊕ ej)PZ(z)
− 1

)
PZ(z ⊕ ei ⊕ ej, ε).

We now notice that
∑

z

∑

i,j

PZ(z)−PZ(z⊕ei)−PZ(z⊕ej)+PZ(z⊕ei⊕ej) = 0.

Restricting this sum to|i− j| > k+1 we observe that it gives
the opposite of the sum for|i − j| ≤ k + 1. Therefore, the
total contribution isO((k + 1)n. Furthermore,

∑

z

∑

|i−j|>k+1

(
PZ(z ⊕ ei)PZ(z ⊕ ej)

PZ(z ⊕ ei ⊕ ej)PZ(z)
− 1

)

×PZ(z ⊕ ei ⊕ ej) =
∑

z

PZ(z)O(n/(1 − µ)) = O(n),

and this completes the proof of Theorem 3.
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