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Abstract— We study the classical problem of noisy constrained natural logarithms throughout. Entropies are correspayigi
capacity in the case of the binary symmetric channel (BSC), measured in nats. The entropy of a random variable or process
namely, the capacity of a BSC whose input is a sequence fromX will be denotedH(X7), and the entropy rate b7 (X).

a constrained set. As stated in [4] V.. while calculation of the . - . . .
noise-free capacity of constrained sequences is well knowthe The noisy constrained capacit§/(S, ¢) is defined [4] by

computation of the capacity of a constraint in the presence fo 1
noise. .. has been an unsolved problem in the half-century since  C(S,¢) = sup I(X;Z) = lim — sup I(X{,Z7), (1)
Shannon’s landmark paper. . ..” We first express the constrained Xes oo M XTES,

capacity of a binary symmetric channel with (d, k)-constrained :
input as a limit of the top Lyapunov exponents of certain matix where the supreme are over all stationary processes sefport

random processes. Then, we compute asymptotic approximatis ©N S and Sy, respectively. Thenoiseless capacityf the
of the noisy constrained capacity for cases where the noiseconstraint isC'(S) £ C(S,0). This quantity has been ex-
parameter ¢ is small. In particular, we show that when k<2d, tensively studied, and several interpretations and mettiod
the error term with respect to the constraint capacity is O(e), its explicit derivation are known (see, e.g., [18] and estes
whereas .|t.|sO(sloge) when & > 2d. In both cases, we compute bibli hv therein). As fo'(S the best its in th
the coefficient of the error term. In the course of establishig _' iography therein). : s foC(S,¢), the best results in (,3
these findings, we also extend our previous results on the eopy  literature have been in the form of bounds and numerical
of a hidden Markov process to higher-order finite memory simulations based on producing random (and, hopefully; typ
processes. These.conc.lusions are proved by a combination ofca|) channel output sequences (see, e.g., [26], [23], [t] an
analytic and combinatorial methods. references therein). These methods allow for fairly peecis
numerical approximations of the capacity for given coristsa
and channel parameters.

We consider a binary symmetric channel (BSC) with Qur approach to the noisy constrained capacitys, ¢) is

crossover probability, and a constrained set of inputs. Morgjifferent. We first consider the corresponding mutual infar
precisely, letS,, denote the set of binary sequences of lengthtjon,

satisfying a giver{d, k)-RLL constraint [18], i.e., no sequence I(X;2)=H(Z)— H(Z|X). )

in S, contains a run of zeros of length shorter théror

longer thank (we assume that the valuesand k, d < k, SinceH(Z|X) = H(e), the problem reduces to finding(Z),

are understood from the context). We wrif&p < S, for the entropy rate of the output process. If we restrict our
X? = X;...X,. Furthermore, we denot§ = Un>0 S,,. attention to constrained process&s that are generated by
We assume that the input to the channel is a stationdylgrkov sources, the output procegscan be regarded as a
processX = {X;}.>1 supported orS. We regard the BSC hidden Markov proces§iMP), and the problem of computing
channel as emitting a Bernoulli noise sequelte {E}}>1, {(X;Z) reduces to that of computing the entropy rate of this
independent ofY, with P(E; = 1) = . The channel output HMP. The noisy constrained capacity follows provided we find

I. INTRODUCTION

is the maximizing distributionP™#* of X, as it turns out.
Zi=X; ®E;. It is well known (see, e.g., [18]) that we can regard the
where® denotes addition moduld (exclusive-or). (d, k) constraint as the output of &th-order finite memory

For ease of notation, we identify the BSC channel with i§4arkov) stationary process, uniquely defined by condaion
parametek. Let C(¢) denote conventional BSC channel caProbabilities P(x¢|x;~; ), where for any sequencgr;}ix1,
pacity (over unconstrained binary sequences), nanily) = We denote byr;, j>i, the sub-sequence, =1, . .., x;. For
1—H(e), whereH (¢) = —cloge — (1—¢)log(1—¢). We use hontrivial constraints, some of these conditional proliizs

must be set to zero in order to enforce the constraint (for

*Preliminary version of this paper was presented at ISITeNa007. Work example, the probability of a zero after seeingonsecutive
of W. Szpankowski was supported in part by the NSF Grants G&F3636, zeros, or of a one after seeing less thlaconsecutive zeros).
DMS-0503742, DMS-0800568, and CCF -0830140, NSA Grant 130838- - - )

1-0092, EU Project No. 224218 through Poznan University @fhhology, When the remaining free prObab'“t'eS are aSS|gned so fieat t

and the AFOSR Grant FA8655-08-1-3018. entropy of the process is maximized, we say that the prosess i



maxentropicand we denote it by?™#*. The noiseless capacity (and also the equivalerffl, o) constraint). Our formula for

C(S) is equal to the entropy aP™»* [18]. the constant. in this case is consistent with the one derived
The Shannon entropy (or, simplgntropy of a HMP was from the results of [20]. Preliminary results of this papares

studied as early as [2], where the analysis suggests tlisictr presented in [16].

complexity of the HMP entropy as a function of the process We also remark that recently Han and Marcus [9] reached

parameters. Blackwell [2] showed an expression of the pgtrosimilar conclusions and obtained some generalizationsgusi

in terms of a measuré€), obtained by solving an integral different methodology.

equation dependent on the parameters of the process. The mea

sure is hard to extract from the equation in any explicit way. II. ENTROPY OFHIGHER ORDER HMPsS

Recently, we have seen a resurgence of interest in estignatin _ o

HMP entropies [7], [8], [14], [19], [20], [27]. In particufaone ~ Let X = {Xi}i>, be anrth-order stationaryinite memory

recent approach is based on computing the coefficients of @frkov) processover a binary alphabetd={0,1}. The

asymptotic expansion of the entropy rate around certainegal Process is defined by the set of condmopal pr_obablhtles

of the Markov and channel parameters. The first result alofg Xt = 1|X;=; = af), aj € A". The process is equivalently

these lines was presented in [14], where the Taylor expansiBterpreted as the Markov chain of itatess, = X/,

arounde = 0 is studied for a binary HMP of order one. Int > 0 (we assumex?, ., is defined and distributed according

particular, the first derivative of the entropy ratesat= 0 is (0 the stationary distribution of the processClearly, a

expressed very compactly as a Kullback-Liebler divergenf@nsition from a statec A” to a stateyc A” can have positive

between two distributions on binary triplets, derived frime  Probability only if u and v satisfy uf=v{ ™", in which case

marginals of the input procesX. It is also shown in [14], We say that(u,v) is anoverlappingpair. Thenoise process

[15] that the entropy rate of a HMP can be expressed in terdis= {Ei}i>1 is Bernoulli (binary i.i.d.), independent of,

of the top Lyapunov exponent of a random proces2ep With P(E;=1) = . Finally, the HMP is

matrices (cf. also [11], where the capacity of certain cledsin

with memory is also shown to be related to top Lyapunov

exponent_s). Further improvements, and new me.thods for thﬁ_et 7 = (ZiZsrr. Zise1) and B =

asymptotic expansion approach were obtained in [19], [27]E_ B Al ¢ 0.1 let B B

and [8]. In [20] the authors express the entropy rate for aryin (Bi, . Bigro). so, ‘or ee{t’e’ }’~n et L N

HMP where one of the transition probabilities is equal tmzer(e’ E};;'T';iEi““T_l)' Wwe next compu P(2}) (equivalently,

as an asymptotic expansion includingCde loge) term. As P(Z; ))- From the definitions of” and &, we have

we shall see in the sequel, this case is related to(theo)

(or the equivalen{0, 1)) RLL constraint. Analyticity of the

entropy as a function of was studied in [7]. - ~
In Section Il of this paper we extend the results of [14], = Z P(Z1"" Zngr—1, En1 = €, En)

[15] on HMP entropy to higher order Markov processes. We e€A R B R B

show that the entropy of eth-order HMP can be expressed as = Z P(Zpir1,Bnir 1|27 ES_)P(ZP " ES_))

the top Lyapunov exponent of a random process of matrices  ec4

of dimensions2” x 2" (cf. Theorem 1). As an additional L~ . ~ S =

result of this work, of interest on its own, we derive thew Y P(Bntr—1)Px(Za®Eu| Zoa®E;,_ ) P(Z7 7 By, ).

asymptotic expansion of the HMP entropy rate aroand 0 e€A

for the case where all transition probabilities are positjef. Observe that in the last line the transition probabilities

Theorem 2). In particular, we derive an expression for they (-|-) are with respect to the original Markov chain.

first derivative of the entropy rate as the Kullback-Liebler We next derive, from (4) , an expression 6 Z]) as

divergence between two distributions @n+1-tuples, again a product of matrices extending our earlier work [14], [15].

generalizing the formula far=1 [14].The results of Section Il In what follows, vectors are of dimensidf, and matrices

are applied, in Section Ill, to express the noisy constinare of dimension®” x 2". We denoterow vectors by bold

capacity as a limit of top Lyapunov exponents of certailowercase letters, matrices by bold uppercase letterswand

matrix processes. These exponents, however, are notlyrioust 1 = [1,...,1]; superscript denotes transposition. Entries

difficult to compute [25]. Hence, as in the case of the entropy vectors and matrices are indexed by vectordiinaccording

of HMPs, it is interesting to study asymptotic expansions @ some fixed order, so that” = {a;,as,...,as-}. Let

the noisy constrained capacity. In Section 11I-B, we study o o L

the asymptotics of the noisy constrained capacity, and we. = [P(Z7, E,=a1), P(Z], E,=ay) ... P(Z7, E,=ay:)]

show that for (d,k) constraints withk < 2d, we have

C(S,e) = CS)+ Ke + 0(52 loge), where K is a well _1We generally use the term “finite memory process” for the fingrpre-

characterized constant. On the other hand, when 2d, we tat;(I)rr:’ aerr]l((jar‘;'a\l/liri:(gvmceh;rl;(efgr t(r)]\(/eefr?i(riomj‘robabilit expresswill be clear

haveC(S,e) = C(S)+Leloge+0(e), where, again is an ¢, t%e context. In cases wghen congll‘urs)ion is p)é)ssigle, we exiplicitly

explicit constant. The latter case covers {lel) constraint indicate the measure, e.Px.

Z={Z;}i>1, Zi=X®E;, i>1. ©)

P(Z3,By) =Y P(Z}, By, Eqy = ¢) @
ec A



and IetM(Zn|Zn,1) be a2” x 2" matrix defined as follows: [7e]ec.4- b€ the corresponding stationary distribution . Define
if (en—1,e,) € A" x A" is an overlapping pair, then alsoP(s) = [pg, o,lei e;ear andm(s) = [mglecar. Then

Men,l,en(Zn|Zn—l) = PX(Zn®en|2n—l@en—l)P(En:en)- Rn(s, O) = Z P)S((Z?) = W(S)P(S)nillt . (11)
~ - (5) FA

All other entries are zero. ClearlM(Z,|Z,—1) is a random Using a formal Taylor expansion neat= 0, we write

matrix, drawn from a set of"+! possible realizations.
With these definitions, it follows from (4) that Ry(s,¢) = Ru(s,0) + ¢ QR (s,€)
n 9’ - n 9’ BE n I

_ B o whereg(n) is the second derivative aR,, (s, ) with respect

Since Pz(Z7') = pnl’ = Y oca- Pz(Z], En = e), after toc, computed at some, provided these derivatives exist (the

iterating (6), we obtain dependence on stems from (9)).

Po(Z7) = prM(Za]Z1) - - - M(Zn| Zon 1)1, ) Using analyticity at= = 0 (cf. [7], [15]), we find

+0(g(n)e?), (12)
e=0

Pn = pnflM(Zn|Zn71)- (6)

82
The joint distributionP (Z7*) of the HMP, presented in (7), H(Z7") = H(XT') — e 5—-Rn(s,¢)

has the formp; A, 1%, where A,, is the product of the first 0s0e 22(1)
n—1 random matrices of the process 9 0
. _ =H(X]) —eg-5- > P()| _ +0(g(n)e®). (13)
M :M(ZQ|Z1),1\/I(Z3|ZQ)7,M(Zn|Zn_1), (8) §0¢ 2 ‘22(1)7

Applying a subadditive ergodic theorem, and noting thao compute the linear term in the Taylor expansion (13),
p1A,1" is a norm of A,, it is readily proved that we differentiate with respect te, and evaluate at = 1.
n~'E[—log Pz(Z{")] must converge to a constafitknown Proceeding in analogy to the derivation in [14], we obtaia th
as thetop Lyapunov exponemtf the random process1 (cf. following result basically proved in [15], so we omit degail
[5], [21], [25]). This leads to the following theorem. here.

Theorem 1:The entropy rate of the HME of (3) satisfies  Theorem 2:If the conditional symbol probabilities in the

1 finite memory (Markov) proces¥X satisfy P(a,4+1]a}) > 0

H(Z)= lim E {_ﬁ 1ogPZ(Zf+T)] for all a]™'c A"+, then the entropy rate of for smalle is

n—oo

— lim %E [_bg (p1M<22|21>...M<zn|zn,1>1t)} —¢,  H(Z)= lim LH,.(2") = HX)+ f1(Px)e +0(), (14)

n—00 n—oo N

wheret is the top Lyapunov exponent of the procesisof (8). Where, denoting byz; the Boolean complement of;, and
22T+1:z1 e ZpZp41Zp42 ... Z2r41, WE have

PX (Z2r+l)

PX (Z2T+l) 10g Vilr

Z;1 ! Px (Z12 +1)
1

Theorem 1 and its derivation generalize the resultsyfer1,
of [14], [15], [27], [28]. It is known that computing top £1(Px)
Lyapunov exponents is hard (maybe infeasible), as shown

in [25]. Therefore, we shift our attention to asymptotic ap- _— o1
proximations. = D(Px(z" IIPx (") - (15)

We consider the entropy ratlf () for the HMP Z as & pere (.||.) is the Kullback-Liebler divergence, applied here
function of ¢ for small . In order to derive expressions for_tO distributions on42"+! derived from the marginals of .

the entropy rate, we resort to the following formal defini- _ _ _ _
tion (which was also used in entropy computations in [13] A question arises about the asymptotic expansion of the

and [15]): entropy H (Z) when some of the conditional probabilities are
Ry(s,¢) = Z Py (D), (9) zero. Clegrly, when some transition probabilities are zero
A then certain sequence$’ are not reachable by the Markov

] ) ~ process, which provides the link to constrained sequences.
wheres is a real (or complex) variable, and the summation i85, example, consider a Markov chain with the following

over all binaryn-tuples. It is readily verified that transition probabilities
H(Z7) =E[-log Pz(Z1)] = — an(s,e) . (10) P-= [ 1 p g ] (16)
The entropy of the underlying Markov sequence is where(0 < p < 1. This process generates sequences satisfying

the (1, 00) constraint (or, under a different interpretation of

rows and columns, the equivalgiit 1) constraint). The output
s=1 sequenceZ, however, will generally not satisfy the constraint.
Furthermore, leP = [pe, ¢;]e;.c,c.4» b€ the transition matrix The probability of the constraint-violating sequences fa t
of the underlyingrth order Markov chain, and letr = output of the channel is polynomial 7 which will generally

n 0
H(X[)= — - Ra(5,0)




contribute a termO(e log ¢) to the entropy ratéf (Z) whene B. Asymptotic Behavior
is small. This was already observed for the transition matri

. 7 A nontrivial constraint will necessarily have some zero-
P of (16) in [20], where it is shown that y

valued conditional probabilities. Therefore, the asdecia
(2 —p) HMP will not be covered by Theorem 2, but rather by
H(Z)=H(X) - ﬁflOgE +0(e) (17) " Theorem 3. Ford, k) sequences we have

ase — 0. H(Z)=H(X)— fo(Px)eloge + fi(Px)e +o(s) (20)
In this paper, in Section IV and Appendix A we prove the . )
following generalization of Theorem 2 fqt, k) sequences. for some fo(Px) and f,(Px) where Px is the underlying
Theorem 3:Let Z be a HMM representing dd, k) se- Markov process. As discussed in (1) of the introduction,
guence. Then C(S,) = sup H(Z) — H(e)

H(Z) = H(X) — fo(Px)eloge + f1(Px)e + O(e% loge) res

(18) whereH(s) = —cloge + ¢ — O(g?) for smalle. In [9], [10]
for some fy(Px) and f1(Px). If all transition probabilites Han and Marcus prove that the maximizing distribution in
are positive, therfy(Px) = 0 and the coefficienf;(Px) ate (1) is the maxentropic distributio®™** with the error term
is presented in Theorem 2. The coefficigt Px ) is derived O(c?log®¢) (cf. Theorem 3.2 of [10]), thus exceeding the
in Section IV, and for the maximizing distribution is presesh error termO(e? log ) of the entropy estimation of Theorem 3.
in Theorems 5 and 6. We establish the same error term in Section IV using differen

) methodology. In summary, we are led to
Recently, Han and Marcus [9] showed that in general for

any HMM CS.e) = CO)~(1— fo(Pp™))cloge+(f1(PR™) — 1)

2 2
H(Z) = H(X) — fo(Px)eloge + O(c) + O log7e) (21)
whereC(S) is the capacity of noiseless RLL system. Various
methods exist to derive’(S) [18]. In particular, one can
H(Z) = H(X) — fo(Px)eloge + f1(P)e + O(2 loge) Wr|t|e [12t3],f[24] C(S) = —logpo, wherep, is the smallest
real root o

when at least one of the transition probabilities in the Mark k i1
chain is zero. >ost =1 (22)
t=d

which is further generalized in [10] to

1. CAPACITY OF THE NOISY CONSTRAINED SYSTEM Our goal is to derive explicit expressions ffy( P**) and

We now apply the results on HMPs to the problem of noisfs (Px™*) for (d, k) sequences. For example, we will show

constrained capacity. in Theorem 5 below that for some RLL constraints, we have
fo(P¥®*) = 1 in (21), hence the noisy constrained capacity
A_ Capacity as a Lyapunov Exponent iS Of the fOI‘mC(S,E) = C(S) + O(E) . In Theorem 6 belOW

we derive alsof; (Py**).
Recall that/(X; Z) = H(Z) — H(e) and, by Theorem 1, We apply the same approach as in previous section, that is,

when X is a Markov process, we havl (Z) = ¢(Px) we use the auxiliary functiof®,, (s, £) defined in (9). To start,

where £(Px) is the top Lyapunov exponent of the ProCeSge find a simpler expression fdPz(z7). Summing over the

{M(Zi|Zi-1)}i>0. In [3] itis proved that the process optimiz-, , her of errors introduced by the channel, we find
ing the mutual information can be approached by a sequence

of Markov representations of increasing order. Therefaee, . . . e .
a direct consequence of this fact and Theorem 1 we conclude (21) = Px (a7)(1 —&)" +&(1 —¢) ZPX(Il @ ei)
the following. =1

Theorem 4:The noisy constrained capacity(S,e) for a plus the error tern®(e2) (resulting from two or more errors),
(d,k) constraint through a BSC channel of parametels wheree; = (0,...,0,1,0,...,0) € A" with a 1 at position
given by j. Let B, C A" denote the set of sequeneg at Hamming
distance one fron$,,, andC,, = A™\ (S,, U B,,). Notice that

— 1 (r)
C(S,e) = Tlgﬂo Sl(lgg(PX ) — H(e) (19) sequences irC,, are at distance at least two fro®),, and
Px contribute theO(£?) term. From the above, we conclude
WhereP)({) denotes the probability law of arth-order Markov (s,€) = ZPZ(Z”) (23)
process generating thd, k) constraintS. e — !
1

In the next subsection, we turn our attention to asymptotic Z Py(27)° + Z Pz(27)° + Z Py (21).
expansions of’(S, ) neare = 0. 2P ES, 27EBy 2reC,



We observe that Note that in this case, = p“l, with py as in (22). The
expected length of a super-symbolBris \ = Zé 2l+1)pg

2; Pz(z1)" = OQ), ZB Pz(21) = O(e%), We also introduce the generating function
21 €ESn 2z €Byp
s €+1
S P = 0E®), - =2 iz
21'€Bn

By p(s) we denote the smallest root inof r(s, z) = 1, that

Defining is (s, p(s)) = 1. Clearly, p(1) = py and
dnls) = > Px(e)' 3 Px(ep) S = _Zw#
21 €Sn i=1
n s is the entropy rateer bit of the super-alphabet, and(1) =
Qu(s) = > (D Px(zt@e) H(X). Furthermore, we define
zp€B, \i=1
i i i /\(S) = _T(Sa Z) |z: (s)
we arrive at the following expression fdt,, (s, ¢) 9z P
Ru(s,e) = (1=&)" Ra(s,0) +(1—2)" 'on(s) (24) and notice thah(l) = A.

Finally, to present succinctly our results, we introducenso
additional notation. Let

a(s,z) = > (2d — O)piz"T.

+ 51 —e)mV3Q,(s) + O(? + &' + £%9).
Notice that, (1) + Qn(1) = 3, Y1, Px (2] @ e;) = n.

We now deriveH(Z7') = asR (1,¢) using the fact that 7
R,(1,e) = 1. Since all the functions involved are analytic . .
we(obiz);\in y Forintegerdy, {5, d < ¢1,¢5 < k, letZ,, ¢, denote the interval

n n / IZ by =
H(ZT) = H(X[)(1—ne)+ne —e(on(l) + ¢,(1)) v ,
— elogeQn(1) — @, (1) + O(ne’loge), (25) {l: —min; {l1—d, k — l3—1} < ¢ < miny {lo—d, k—0,—1}},

where the error term is derived in Appendix A. In the abov
¢! (1) and@, (1) are, respectively, the derivative ¢f, (s) and
Qr(s) ats = 1. Notice also that the termH (X )e of order
n’e is cancelled by(¢/, (1) + Q.,(1))e = (H(X?)n+ O(n))e (s, z) = Z 2max{0, 6 + l5 — k — d}pj, pj, 22 T2+
and onlyne term remains. gl,gz

The casek < 2d is interesting: one-bit flip in ad, k)
sequence is guaranteed to violate the constraint, and conggs ») = Z Z Z pglpb + Do, soPe,—g) 2Tt
quently vz € S, and Vi: Px(z] @ e;) = 0. Therefore t=dly=d0€T;,
¢n(s) = 0 in this case, leavind, (1) = n. Thus, in the

where min, {a,b} = max{min{a,b},0}. We shall write
0, = Loy, \ {0}, At last, we definer(s, z) = 7i(s, 2) +
To(s, z) + 13(s, 2) where

casek < 2d, we havefy(P) = 1, and the termO(cloge) _
in (21) cancels out. ma(s,2) = ZZMZ 2min{k, (1 + (3 — d} (G + ) +
Further considerations are required to comp@fg1) and ' s
obtain the coefficient okt in (25) . Here, we provide the lotlot2
necessary definitions, and state our result that are proved <| D purere-o| 2
in Section IV. Ignoring border effects (which do not affect R
asymptotics, as easy to Sgewe restrict our analysis t@l, k) Now we are in a position to present our main results. The
sequences over thextendedalphabet (ofphrase$ [18] proofs are delayed till the next section. The following tresn

summarizes our findings for the cake< 2d.
Theorem 5:Consider the constraingd, k) systemS with

In other words, we consider onlgd, k) sequences that end® < 2d. Then,
with a "1”. For such sequences, we assume that they are C(S,e) = C(S) — (1 — fo(PR™))e + O(c> log?€),
generated by a memoryless process over the super-alphabet.

B={0%,0%"1,...,0F1}.

This is further discussed in Section IV. where
Let p, denote the probability of the super-symi9dl. The N1 2r(1,1) + Za(1,1)
maxentropic distributiorP™** corresponds to the case of Jo(P¥™) = logA+2 + & )\ s
. 2 2
pe=PR™>(0°1), d<i<k. (26) 2 a1 o a1
£ )1, 1) + oo (1, 1))
3Indeed, in general 4d, k) sequence may have at moststarting and Py, 0 0

ending zeros of total length + O(1) that cannot affect the entropy rate. + B\ ((9 (1 1) 627(1a 1)) -1



for e — 0 and A(s), a(s, z) and(s, z) are defined above. In the sequel, we only consider reduced k) sequences,

In the complementary case> 2d, the terme¢,(s) in (23) and therefore define

does not vanish, and thus th@(zloge) term in (21) is Plan) —
generally nonzero. For this case, using techniques sirtolar (1) = Hmi'
the ones leading to Theorem 5, we obtain the following result =t

Theorem 6:Consider the constrained, k) systemS with  Notice thatP(z}) = 0 if 7 is not a reducedd, k) sequence

m

k > 2d. Define (i.e., it doesn’'t end on &). In view of this we have
’7262 (£_2d)pfa 0= Z DeyPes s PX(I?): P('rl)
>2d d<l1+l2+1<k P,
and\ = Y5 = (¢ + 1)p, wherepy is from (26) Then, ~ Where )
P, = P(z™).
C(S,¢) = C(8) = (1 - fo(PE™))eloge™" + 0(e), (27) Z )
where 5 Observe thatP, is the probability that then-th symbol is
fo(PRaxy =1 — y+o exactly a “1” (in other wordsg? is built from a finite number
A of super symbols).
for e — 0. Recalling the definition(s, z) = >, p;z**1, we find
Example. We consider the1, co) constraint with transition P 1
matrix P as in (16) . Computing the quantities called for in Z nt =1 r(1,2)

Theorem 6 ford = 1 andk = oo, we obtainp, = (1—p)*~!p,

A=H2 4 = M, ands = 1. Thus, Ino_leed, every reducefil, k) sequence consists of an empty
P P string, one super symbol, two super symbols or more, thus

1+6 _pp—2)

fo(Px) =1-— = 2o Puz =30 (1,2) = 1/(1 = 1(1,2)) (cf. [24]). By the
_ . . p= o Cauchy formula [24] we obtain

consistent with the calculation of the same quantity in [20]
The noisy constrained capacity is obtained whea= P™, P, = L j{ 1 dz
i.e.,p = 1/p?, wherep = (14++/5)/2, the golden ratio. Then, 2mi J 1 —r(1,2) 27

pmax) = 1/4/5, and by Th 6 L —ny _ L —n
fo(P™2) =1/1/5, and by Theorem - +O(u™) = 5 +0u™)

E’f’(l, 1)

C(S.) =logy — (1 - 1/VB)elog(1/e) + Oe)
for someyp > 1, sincel is the largest root of = (1, z) and
for e — 0. gr(l 1) = A
Let A,, be the set of(d, k) reduced sequences made of
_ ) ) o _ exactlym super-symbols with no restriction on its length. We
In this section, we derive explicit expression for the ceeffig)| it the variable-length model. Lel, = U A,,. Let B,
cientsfy(Px ) and f1(Px) of Theorem 3, as well 8 (P™*) pe the set of such sequences that are exactly at Hamming
and f,(P**) of Theorems 5 and 6. We also establish the em@fstancel from a sequence irl,,,. By our convention, ifr €
term in Theorem 5. A,, for somem, (i.e.if z =0101...0%1), thenP(z) =
Throughout, we consider the super-alphabet approach. FH;iT pe; otherwiseP(z) = 0). We denote by.(z) the length
call that a super-symbol is a text’'l for d < ¢ < k of 4.
which is drawn from a memoryless source. This model is 14 deriveH(Z7) found in (25) we need to evaluaté (1)
equivalent to a Markov process with renewals at symbols "1and ) (1). We estimate these quantities in the variable-length
As before,p, is the probability of the super symbof1. The moqel as described above and then re-interpret them in the
entropy rate per symbol is-} -, p;logp,. It is not difficult  griginal model. Define
to see that the maximal entropy rate is attainegat pﬁ !

IV. ANALYSIS

where pg is defined in (22). This in fact corresponds to the o(s,z) = ZPj%(s)z”, (28)
case when alld, k) sequences of length are equiprobable. n
Furthermore, we considéd, k) sequences generated by super Q(s,2) = Z P3Q,(s)z" (29)
symbols under the assumption that they are of lengthhis is "

equivalent to consider a Markovigd, k)-sequence of length
n under the restriction that it ends with a “1”.

Let z} be a sequence of lengthmade ofm super-symbols: b(s,2) = Z @m(s, 2), (30)
™ = 0410%1...01. We shall call such(d, k) sequences ™
reduced(d, k) sequences. The actual length of such sequences Q(s,2) = Z Qm(s, 2), (31)
is L(z}) = n. We also writeh = " ,(¢ + 1)py. —

which we re-write as



where Observe first that),,, (s, z) can be rewritten as

- . L) j=L(z)
Om(s,2) = > PN2) Y Plree)zt), Qn(s2) = 3 _ legepa.
z€A, =1 wed,, =1 |B(z & e] ﬂA |
) L@) s  Li=L(2) B o) L)
Qum(s,z) = Z ZP(:EEB&‘) 2@, % (Zl_ : Ple@e @el)) :
w€Bm \ =1 where B(y) is the set of all sequences of the same length as
Notice that y and within Hamming distance 1 from
_ ~ ) Theorem 8:For reducedd, k) sequences consisting of
Gm(1,2) + Qm(1,2) = E[L(2)z-®)] = z£7‘m(1, z), super symbols, the following holds

andg, (1,1) + Qm(1, 1) = mA. We next evaluaté(s, z) and Qm(s,2) = ma(s, 2)r™ (s, 2) + (m — 1)r(s, 2)r™ (s, 2)
Qs,2)- where

A. Computation ofb,, (s, z) ZmaX{O 2d — (}pjz"+!

The caseé: < 2d is easy since & e; ¢ A, whenz € 4,,.

Thus ¢,,,(s, z) = 0. In the sequel we concentrate &> 2d. andr(s,z) = 7i(s, z) + 12(s, 2) + 73(s, z) where
The following result is easy to prove. P
Theorem 7:For reducedd, k) sequences consisting et _ 0.d(¢ 00—k
super symbols, we have mi(s:2) Z Z (max{0, d(1) + 62 '

l1=d lx=d
P (5,2) = mbi (s, 2)r™ (s, 2) + (m—1)ba(s, 2)r™ (s, 2), +max{0,d(f2) + 1 — k}) pj pj, 2 H 2,
k k
Lig|<a
where (s, 2) = Z Z Z \2\_ (Do, Do, s 4 6Pty —g)° 201+ +2
k ) ¢ . G=d l=d 0€T;,
bi(s,2) = ij_ ij—lpe—jz ,
=d j=1 Z Z Loteati>k
bo(s,2) = Z pzl—lnglpél+€2+lzl1+l2+2. Pt 2m1n{k,€1 +lo—d} — (b1 +42)+1
d<l14+L2<k 8
In particular, Z Peyiopes_p | 20 HET2,
Ik 96[@112
bi(1,1) = ZZPj—lP@—j, with d(¢) = min{d, ¢ — d} .
t=d j In particular, fork < 2d we have the following simplifica-

by(1,1) = Y max{0, - 2d}ps. tions:

Proof. We need to Considér two cases: one in which the error

changes @ to a1, and the other one when the error occurs on

al. In the first casem — 1 super symbols are not changed ang"

each contributes(s, z). The corrupted super symbol is d|V|dedT _ Z 2 max{0, {1 + by — k — d}pj. pj, 2'2t2+2

into two and its contribution is summarized (s, z). ’ e ’
In the second case, an endihgs changed into & so two

super symbols (except the last one) collapsed into a ong SUPRs, )

symbol. This contribution is summarized Iy (s, z) while

the otherm — 2 super symbols, represented bys, z) are

a(s,z) = > (2d — O)piz"T,

Y4

4y, 42

Z Z Z Pélpez—kpgﬁ@pgz g)* 2t t?,

li=d b= dOEIel 5

unchanged. ] 1
Mo = Y Z
; ~ 2min{k, (1 + 0y — d 01+ 7

B. Computation of),,, (s, z) fi=d fom {k i+ by —d} — (L +£2) +

We recall the following definitions. For integefs, {2, d < P
01,02 < k, let Z,, o, denote the interval X Z Dey+6Pes—0 | 2727277

0€lp, 0,

Ly, = Proof. As in the previous proof, the main idea is to enumerate

(0: —ming {61 —d, k — lo—1} < £ < miny {lo—d, k—0,—1}}, all possible ways a sequengdeaves the status d@fl, k) after

- a bit corruption and returns td, k) status after a second
where min; {a,b} = max{min{a,b},0}. We shall write bit corruption. In other wordsy € A., = ®¢; ¢ A,, and
L}, 0y = Loy, \ {0} T ®e; ®e; € A,. We consider several cases:



a) Property 1: Let 2 be a single super-symbat: = 0°1.
Consider nowz @ e;. First, supposé < 2d and the errok;
falls on a zero ofr. If ¢; falls on a zero betweef— d and
d, then

0‘1 @ e; = 010%1,

and at least one df;, ¢, is smaller thard. Thereforex @ e;
is not a(d, k) sequence. The only way can produce &d, k)
sequence is when it is equal tg: |B(z ® e;) N A,| =1 .
Assume now > 2d. If ¢; falls at distance greater thafrom
both ends, then @ ¢; € A, and does not leavd.,.

b) Property 2: If the errore; falls on a symbob:1 in
r = 0%10%1, on the lastmin{d, ¢, — d} zeros, then with
0 < min{d, ¢s — d}

01021 @ e; = 0791077 110%21,

andz ¢ A,. We have:

« if it falls also on the lasinin{d, ¢, — d, k — {2} zeros,i.e
0 < min{d, ¢; — d,k — {5}, then the onlye; that moves
r®e; ®e; back a(d, k) sequence is either; = e; ore;
such that it falls on the of 0“1, and|B(z@e;)NA,| =
2,

. otherW|se the only acceptabjés i, so that| B(z©e;) N

A =1andz@e; ¢ A,.

c) Property 2bis: If the errore; in x = 09101 falls
on the firstmin{d, ¢> — d} zeros of0*21, then

« if it falls also on the firstmin{d, {2 — d,k — ¢1} zeros,
then the onlye; that movese @ e; @ e; back a(d, k)
sequence is either; = e; or e; such that it falls on the
1 0f 0“1, and|B(z @ ¢;) N A,| = 2,

« otherwise, the only acceptabjes i so that| B(x @ e;) N
A =1andz@e; ¢ A,.

d) Property 3: We still considerz = 0¢110°21. If the
error falls on the "1” of0‘1, then the onlye; that moves

x @ e; @ e; back (d,k) sequences are those that either fal/ (1)

back on the 1, or on thenin{¢s — d,k — ¢;} first zeros of
021, or on themin{¢; — d, k — ¢;} last zeros of)0**1, and
then

1+ min{ﬂl — d, k — fg}
+min{ly —d,k — {1}
1+ 2min{k,€1 +£2 - d} —51 - 62.

Qlearly, then we must havg +¢; +1 > k in orderz @ e; ¢
A

Given these four properties we can define the following

guantities

Zmax{o 2d — (}pj2tt1

andr(s, z) = 11(s, z) +712(s, 2) +73(s, 2) with the convention
that o (s, z) corresponds to Property 1 (s, z) to Property 2

and dis (second bullet)7 (s, z) to Property 2 and Property
2bis (first bullet), 73(s, z) to Property 3. This completes the

proof. ]

C. Asymptotic analysis

Finally, we can re-interpret our results for reducetl k)
sequences of the variable-length model in terms of therwalgi
(d, k) sequences of fixed length. Our aim is to provide an
asymptotic evaluation o, (1), @,(1), ¢,,(1) and @, (1) as
n — oo. To this end, we will present an asymptotic evaluation
of ¢, (s) and Q. (s).

From (30) and (31) we easily find

_ bi(s,2) +ba(s, 2)

os,2) = Z% (1—1(s,2)2
_ 5.2) = w

Then by Cauchy formula applied to (28) and (29)

2z7r ?{(b
2 ?{Q

A simple application of the residue analysis leads to

P’rfd)n(svz) 77,+1’

P’Qn(s,z)

n+1

s p " (s)
Pion(s) = Lt (o 1) (0105 () + s ()
D (st - %bms,p(s))) o™,
P0u(s) = L1 (g 1)(als, p(s)) + (s p(5)))

A(s)?

~alsl9) = 5Ll p(s)) + 06

Since functions involved are analytic and uniformly bouhde
in s in a compact neighborhood, the asymptotic estimates of
@ (1) and@’,(1) can be easily derived.

In summary, we find

+ @, (1) —(n+1)p (1) (6 (1) + Qun(1)) +
—nH(X7) + O(n),

O(n)

which cancels the coefficientsH(X7") in the expansion of

H(Z?) in (25). More precisely,
¢n(1) + Q1) = —nH(X{l)+nlog/\—2¥
R TRIEFCNIE
+ %a(l, 1)+ %T(l, 1)
o' (1) <%{;b1(1, 1)+ %{;brz(l, 1)
+ asgza(1,1)+68227(1,1))>
+ n”/il) <§b (1,1) + §b2(1 1)
+ %a(l, > ). (32)



The expression fofy (P™2*) in Theorem 5 follows directly whereV?2F is the second derivative matrix (i.e., HessianYof
from the expression (32) since the coefficientas exactly and||v|| is the norm of vector. DenotingF, = V2 F(PRax)
nH(X]) + ¢,(1) + Q'(1) + ¢n(1) and ¢,(1) = 0 when and its inverse matrix ag, *, we arrive at

k < 2d. The proof of Theorem 6 is even easier since

@n(1) on(1)

fo(P™*) = — = 1- —
We have from (32):
3 .

Observe thab, (1, 1) exactly matches andbs(1,1) matches
0 in Theorem 6.

dn(1)

D. Error Term in Theorem 5

To complete the proof of Theorem 5, we establish here

that the dominating error term of the capacity(S,¢) es-

timation is O(2log® ¢). For this we need to show that the

maximizing distribution P}**(¢) H(Z) introduces error of
orderO(s? log® €). Recall thatP™>* maximizesH (X).
In Appendix A we show that
0
—H
Oe
uniformly in Px. As a consequencl (Z) converges tdd (X)
uniformly in Px ase — 0. We also prove in the Appendix
that

(Z) = O(loge)

H(Z) = H(X)4+ fo(Px)eloge+ f1(Px)e+g(Px)O(e* loge),

where the functionsf,, f; and g of Px are in C. Let
PR**(e) be the distribution that maximized (Z), hence the
capacityC(S,¢). Let « > 0 and let K, be a compact set
of distributions that are at topological distance smalleant
or equal toa from PR?*. Since H(Z) converges taH (X)
uniformly, there exists’ > 0 such thatve < ¢’,¢ > 0 we
have PR € K.

Let now 8 = maxp, ¢k, {g(Px)}. Clearly, 5 — g(P™)
asa — 0. Let also

H(X) + fo(Px)eloge + f1(Px)e,

F(PXaE)

and

Fo(e) = max {F(Px,e)}.
The following inequality fore < 1 follows from our analysis
in Appendix A

Fo(e) + petloge < H(P¥*(e)) < Fo(e) — pe’loge.

We will prove here that, () = F(PE**,¢) + O(2log?¢).
Let Prpax argmax{F(Px,s)}. We have
VF(Pp* ¢) = 0, where VF denotes the gradient of
F with respect toPx. Defining dPx = 15;}“”“ — Py®* we

find

VF (PR ¢)

V2F(P¥™, e)dPx
Vfo(P¥*)eloge + V f1(P¥*)e
O(|ldPx||* + ||dPx || loge),

+ +

dPx = —F; ' (Vfo(PR™)ecloge +V f1(PR)e)

+ O(?log?e).

Since
~ 1
F(Py™,e) = F(PY™,e)+ §dPX - Fy - dPx
+ Vifo(P¥*™)dPxeloge
+  VA(PE*)dPxe + O(*log’¢),

we obtain for||dPx|| < « (for sufficiently smalle) :
Fa(e) F(PY™, )

%v fo(PR™) - Fy b -V fo (PR™)e? log”

Vfo(PE™) - Fy t - V f1(PR™)e? loge

SVAPE™) - By V(PR

O(e%log® ¢).

This completes the proof.

_|_

V. CONCLUSION

We study the capacity of the constrained BSC channel in
which the input is a(d, k) sequence. After observing that a
(d, k) sequence can be generated bi-arder Markov chain,
we reduce the problem to estimating the entropy rate of the
underlying hidden Markov process (HMM). In our previous
paper [14], [15], we established that the entropy rate for a
HMM process is equal to a Lyapunov exponent. After realizing
that such an exponent is hard to compute, theoretically and
numerically, we obtained an asymptotic expansion of the
entropy rate when the error rateis small (cf. also [27]).

In this paper, we extend previous results in several direc-
tions. First, we present asymptotic expansion of the HMM
when some of the transition probabilities of the underlying
Markov are zero. This adds additional term of ordésg ¢ to
the asymptotic expansion. Then, we return to the noisy con-
strained capacity and prove that the exact capacity isectlat
to supremum of Lyapunov exponents over increasing order
Markov processes. Finally, fqi, k) sequences we obtain an
asymptotic expansion for the noisy capacity when the noise
e — 0. In particular, we prove that fok < 2d the noisy
capacity is equal to the noiseless capacity plus a te(n). In
the case: > 2d, the correction term i®)(c loge). We should
point out that recently Han and Marcus [9], [10] reached
similar conclusions (and obtained some generalizatiosisigu
quite different methodology.

APPENDIXA: PROOF OFTHEOREM 3

In this Appendix we prove the error term of (18) in
Theorem 3 using the methodology developed by us in [15].
We need to prove that for < 1/2

H(Z7) = H(X?)+nfi(Px)e+nfo(Px)e loge+0(ne* loge)
(33)



for some f1(Px) and fo(Px ). We start with To this end, we make use of the Taylor expansion:
0 8

H(z{) = H(X}) —e5 H(Z{) + G (34) HZ) = HO) - )
and show at the end of this section tiat = O(ne?loge). / 0—H(Z])|:=0db,
We first concentrate on proving that
P and prove that foe small enough we have uniformly im and
EH(Z?) =nf1(Px) +nfo(Px)loge (35) >0 52
. —H(Z') = O(nloge), (37)
for somefy(Px) and f1(Px). We use equation (48) from [15] Oe?
which we reproduce below from which the error termO(ne?log <) follows immediately.
) 1 In [15] we proved that for all sequences

5.2 = T zi:(PZ(ZG%i) — Pz(2))

0? 2 0 1
. . gtz =~ 52 (3) - (1—25)22
for any sequence of lengthn (hereafter, we simply write: ij

for 7 andz for z}*). Consequently, x (P7(2® e; @ ej) — Py(z ®e;) —Pr(z@® e;) + Py(2)),
0 n . .
EH(Zl )= — e Z Z(PZ(2®€i)—PZ(Z)) log Pz(2) wr;;:h led to equation (489) of [15] repeated below
z 2 "
that can be rewritten as e 2 B(Z7) = 1 2E&H( i) - (1—2¢)2 (D1 + Da),
0 Py(z&e;
SH(Z)) = 1—2522132 g 222 0e) o ). where
D, = ZZPZ(ZGBei@ej)—PZ(z@ei)
In order to estimate the ratio dPz(z @ e;) and Pz(z), we z 4,
observe that —Pz(z & e;) + Pz(z)log Pz(2),
d (%) and
Py( (1—¢) ZPX (1 ) ,
e Y D (Pr(z@e) - Py(2))
wheredy (, z, z) is the Hamming distance betweenand . z Y )
Similarly, x(Pz(z @ ej)) — Pz(2)) 5=
Py (2)
dy (z,20e;) )
Pr(z®e;)=(1—¢) Z Px(z < ) We will prove thatD; = O(nloge) and Dy = O(n).
lI—e¢ Let first deal withD;. We can write it as
The following inequality is easy to prove Z ZP Pz (z®e; Pej)Pz(z)
di (z,20e;)—dg (,72) Z PZ(z@ez)P(z@eJ) '
) € e ’ < Pz(z®e;) z
T - Pz(2) We now splitD, = D7 + DY where D] involves the pairs

(,7) such thatji — j| < k + 1 and D} deals with such pairs

S dn (2 en) ~din (v2) that |j — i| > k + 1. For all z and all i and j such that
i \1l—c¢ ' li —j] < k+1, we have
Sincedy (v, z ® e;) = dp(r, 2) = 1 we conclude that e? Pz(2®e; @ e;)Pz(2) < (1-¢)? (38)
5 Pr(z®e) 1—c¢ (I—¢)®  Pz(z@e)Pz(2Dej) g2
1—¢ < Pz (z) < :c Therefore,
Thus DI <> > Pg(z)(—2log(l —¢) — 2loge)
z|j—i|<k+1
PZ (z®e;)
Py (2) < —nlog(l —¢) —nloge < (k+1)n(—2log(l —e) —loge).

and this completes the proof of (33). For|j—i| > k+ 1, we observe, as in [15], that there exists

To finish the proof of Theorem 3, it remains to show thdt < 1 such that for all:

= 2 i i i P i )P .

that G,, = O(ne?loge), that is, uniformly inn ande > 0 7(2 ® e; D e;)Pz(z) 140 + O(?) + 0=
9 Pz(Z@ei)Pz(ZEBej)

- aEH(Z{l) +O(ne*loge).  (36) O + O(u").

H(z1') = H(XT)



Thus we find

2 2

z |j—il>h+1

+O(uT=) + 0" + O(u" ™))
> P2(2)0(n/(1 = ) = O(n).

DY Pz(2)log (1+0(p") + O(1)

Now we turn our attention td),, and similarly we split
Dy = D)+ DY with Dj involving only i, j such thati — j| <
k + 1 and DY involving i,j such thatji — j| > kK + 1. We
easily see thatD}| < n(k + 1), and then

S>> Pa(2) - Pz(z @)

z |i—j|>k

Prz(z®ej)+ Pz(z®e; Dey)

Py(z @ ei) Py (z @ ¢j)
—-1)P (e o).
<Pz(2@ei@ej)PZ(z) 7(2 @ e @ ej,€)

We now notice that

Z Z Py(2)—Pz(z®e;)—Pz(2®e;)+Pz(2®e;de;) = 0.
z 4,

"
D2

+

Restricting this sum t¢i — j| > k+ 1 we observe that it gives

the opposite of the sum fdi — j| < k + 1. Therefore, the
total contribution isO((k + 1)n. Furthermore,
_ 1)

Z Z (Pz(z@ei)Pz(zGBej)
xPz(z®e; @ ej) = ZPZ(Z)O(n/(l — ) =0(n),

e ik Pr(z®e; ®ej)Pz(2)

and this completes the proof of Theorem 3.
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