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Abstract

A modified Sammon’s algorithm was applied to display a relationship

between  proteins based on their amino acid composition. In the first stage of the

method the 19-dimensional compositional space of representative proteins was

mapped into 2-dimensinal space using the original Sammon projection to create a

contour map. In the second stage, the contour map was used as a reference for

newly projected proteins. Data analysis showed that proteins belonging to the same

structural class form characteristic and distinct clusters which can be utilized in

prediction of structural classes. However, significant overlapping of the clusters has

been observed which may explain the limited success of previous protein folding

predictions based solely on amino acid composition. Additionally, the modified

Sammon’s projections can generate a unique index for each individually projected

protein related to its amino acid composition which can be a useful parameter in

classification of proteins.
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Introduction

Classification of proteins and prediction of their structural classes is an important

task in the characterization of newly discovered proteins.  Unfortunately, classification of

proteins is limited only to proteins with enzymatic activities, and no general indexing has

been widely accepted. Also, prediction of protein folding class based on primary

sequence information remains a difficult task (Fasman, 1989; Mayoraz et al. 1995;

Muskal and Kim, 1992; Lesk and Boswell, 1992; Tuckwell et al. 1995; Garnier et al.

1996; , 1989).

The comparison of more than two protein sequences is generally not a

straightforward process. Aligning them, measuring similarity/dissimilarity distances

requires complicated computing in multidimensional spaces equal to the length of the

protein sequences. Therefore, the comparison of proteins of different length creates an

additional difficulty of brining them to the same dimensional space and necessitates the

introduction of complicated gaps. A simpler way to compare proteins is to contrast their

amino acid  composition (AAC). In this case all proteins can be compared in the same 19-

D compositional space, based on the  20 amino acids used to create functional proteins.

But, even in this reduced space, comparison of vectors of proteins is not easy primarily

due to the limitation of humans to adequately visualize objects in spaces with greater than

3 dimensions. Several attempts have been made to use AAC information to predict

protein folding classes (Hatch, 1965; Harding, 1984; Chou, 1989; Zhang and Chou, 1992;

Dubchak et al. 1993; Nakai et al. 1988; Nakashima et al. 1986; Chun-Ting et al. 1992). In

these cases the compositional information has been brought into a linear format. In this

linear fitting process, different kinds of weighting factors and averaging have been
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introduced. These procedures resulted in  a significant reduction of information and have

shown limited predictive utility (Nakashima et al. 1986; Chun-Ting et al. 1992; Landes

and Risler, 1994).

The Sammon nonlinear algorithm offers the possibility to project

multidimensional spaces into 2 or 3 dimensional spaces while approximately preserving

the original information (Sammon, 1969; Agrafiotis, 1997). The algorithm works by

projecting protein vectors from compositional space onto a plane display in such a way

that  the Euclidean distances between the projected images (points) approximates, as

closely as possible, the corresponding Euclidean distance in the original compositional

space. No introduction of averaging and/or correction/weighting factors is necessary. The

ability of this algorithm to capture the essential features of protein sequence similarities

was recently demonstrated by Agrafiotis for a set of protein kinases (Agrafiotis, 1997). In

this work we are attempting to use Sammon mapping to project compositional space of

proteins  into 2-D space to observe the relationship between them in that newly created

space.

RESULTS

Helix example of Sammon’s nonlinear projection

We start here with a non biological example to show how Sammon’s algorithm

preserves certain dependencies/shapes (e.g. helixes) when projected from 3-D to 2D

space.  Figure 1 displays the results obtained using the nonlinear Sammon algorithm to

project 50 points distributed evenly along a 3-dimensional helix. The parametric

equations for this helix are: X = cos Z, Y = sin Z,  Z =  t / 2� . The points were distributed
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at one-unit intervals along the curve.  To initiate the algorithm we selected corresponding

50 random points in 2-D space (Fig. 1A). Each point was assigned to represent one of the

50 points on the helix. Application of the Sammon algorithm caused 2-D points to

organize in such a fashion that the  Euclidean  distances between points in 2-D space

closely reflect their Euclidean distances on the helix in 3-D space. After 250 iterations for

each point using the steepest descent algorithm (MF =0.3) described in the methods

section, the projected points formed a highly organized wave shape (Fig. 1B) as described

by Sammon (Sammon, 1969). Figure 1C displays the results of an experiment in which

one random point was excluded from the helix. The remaining,  49 points were projected

creating a gap in the projected  wave shape.  In the third experiment, the missing point

was added back and all 50 point were projected but this time X, Y coordinates of 49

points were preserved as on figure 1C. After only 50 iterations, the missing point fell

back in the gap and completed the wave shape. The orientation of the wave in panel C

and D of Fig. 1 are different from panel B because the optimization started from different

randomly distributed points in 2-D space and resulted in a different approximated

projection.

These experiments demonstrate that a set of vectors  in 3-dimensional space can

be projected into 2 dimensional space and recreated the dependencies from a higher

dimension even if one element of the set is missing. The missing element can be added

back to the pre-computed set and complete the structure without the need to re-optimize

the entire set from the beginning. This approach represents a significant advantage over

traditional approaches  because a full re-optimization “costs” n2 versus n computation for

one point optimization into the constant contour map.
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The Sammon projection of proteins belonging to definite structure classes.

The AAC of 64 proteins classified by Chou (Chou, 1989) to specific structural

classes were used to calculate the mole percent for all 20 amino acids.  After that, each

protein was described as a unique vector in composition space with coordinates in the

range of 0 to 1 corresponding to mole percent for each particular amino acid. We

numbered the 64 proteins as 1,2,3…,64 according to the order listed in table 5-8 of Chou

(Chou, 1989) or tables 2-5 of Zhang and Chou (Zhang and Chou, 1992).  All 64 protein

vectors in 19-D composition space were then projected into 2-D space using the Sammon

nonlinear algorithm.  Typically results were analyzed after 250 iterations using steepest

descent optimization with a learning factor MF = 0.3.  Several other projections have

been made starting from different random distributions of points. In all cases the results

were similar differing primarily  in the orientation of the projection and magnitude of the

resulting error. The most variability was observe for proteins belonging to α+β class.

The best projection, based on the smallest Sammon’s error (0.0747), accomplished in

these experiments is presented in Fig. 2. The protein names are listed in tables 1-4. The

four different colors correspond to four different structural classes: red (1-19) - 19 α

proteins; purple (20-34) -  15 β proteins; blue (35-48) - 14 α+β proteins; green (49-64) -

16 α/β proteins.  It is apparent that structural classes formed recognizable groupings.

However, a few points are clear outliers and are located within other sets. In general,

points which were ”misplaced” correspond to the proteins which were also mis-assigned
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by Zhang and Chou’s prediction algorithm (Zhang and Chou, 1992). For example: point

32 corresponds to Rubredoxin  which was initaily clasified as  β protein. Its unusual

position can be explain  by the lowest level of β structure (25%) found in that set. The

Zhang and Chou algorithm  predicts α/β structural class for Rubredoxin. Similar

arguments can be made for point 38, which represents a High-potential Iron Protein, from

α+β class. In this case only 27 % of the total protein has defined structure, and the α

structural class was predicted by Zhang and Chou. In our projection this protein also falls

into the cluster of α proteins.  Similar arguments could be made for other outlying points:

23, 33, 46, 62. This suggests, that the irregular portion of these proteins can be the source

of their structural missassigment. The presence of irregular protein structure can

significantly influence the AAC and may result in inaccurate class prediction.

The relationship within each set of proteins was analyzed by complete-linkage

cluster analysis. Cluster analysis can provide an objective automated way to group objects

into the clusters  in multidimensional spaces. The correlation coefficient of each cluster

corresponds to the maximum distance at which two objects are still consider to have

similar properties. We defined the correlation coefficient as the median 2-D Euclidean’s

distance for the set after excluding outliers (points: 23, 32, 33, 38, 46, 62). The results of

the cluster analysis are presented as the shading surrounding each set in figure 2. It

appears that  the structural classes of proteins are separated in 2-D space which

corresponds to their unique AAC. This result supports the early hypothesis that the

folding of proteins is determined by their AAC (Hatch, 1965; Harding, 1984; Chou, 1989;

Zhang and Chou, 1992; Dubchak et al. 1993; Nakai et al. 1988; Nakashima et al. 1986;
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Chun-Ting et al. 1992). However, we observed a significant degree of overlapping

between clusters which may explain the inaccurate prediction of protein folding based

solely on AAC. The irregular portion of proteins, which represents some fraction of all

proteins, may have signification contributions to the overall ambiguity of the predicted

classification.

Projection of proteins with unusual amino acid composition.

We decided to investigate if Sammon’s projection can be used to predict folding

class of “unknown” proteins. Several hundred random proteins from the Pir1 protein data

base were projected (one at a time) into the developed map. In this modified projection,

coordinates of the 64 representative proteins which form the contour map were held

constant and only the coordinates of new proteins were optimized by Sammon’s

algorithm. Each newly projected protein was treated as the 65th element. It was noticed

that several proteins fell outside the area occupied by the four clusters of the

representative set of structurally distinct proteins. We have noticed that these proteins

were small and/or showed unusual amino acid composition. Several of these proteins

were described as unusual by Cornish-Bowden  during his research on dependencies

between the size and AAC of proteins (Cornish-Bowden, 1983). In addition, we observed

that if these proteins were projected several times over, results of the optimization were

significantly different. This is due to missing reference points outside the area occupied

by set of  64 representative proteins. To avoid that ambiguity, an extra 27 proteins with

unusual AAC were selected from the Pir1 protein data base and added into the

representative set. These added proteins expanded the representative set from 64 to 91.
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These proteins were projected using the original Sammon’s algorithm. As a result, a new

extended contour map was formed (Fig. 3). A list of proteins used in this projection,

references/accession number, and the final coordinates (indices) are listed in table 1. A

large number (>1200) of random proteins for Pir1 were projected into the new extended

contour map using modified Sammon’s mapping procedure. This time we observed

significantly less variability during a multiple projection of the same proteins. Each

protein gave a distance point in 2-D map. It appears that each newly projected protein

could be characterized by unique index of X,Y coordinates on a 2-D map which reflects

their unique amino acid composition. This could offer a new way to classify the proteins

based solely on their AAC.

Projection of amino acid composition of hemoglobins into the extended contour

map.

The amino acid composition of porcine hemoglobin alpha chain was projected

into this extended contour map as an additional 92nd protein. As previously described, the

X,Y coordinates of 91 proteins from the extended contour map were displayed as fixed

points. The projected porcine hemoglobin fell into the cluster of the α proteins, close to

the other hemoglobins used in the representative set. The observed index for the α chain

of the porcine hemoglobin was 0.623;0.5713 which is very close to the other hemoglobins

used in the representative set (see table 1). This operation of the projection of the 92nd

protein was repeated for the beta chain of porcine hemoglobin and 322 other different

alpha and beta globins with a similar result. All of the projected α and β chains formed a
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distinct well defined cluster (Fig. 4).  Approximately 30-40 iterations  (MF =0.3) were

required to finish the projection based on insignificant changes in the Sammon error.

Additionally, a subset of proteins use by Nakashima et al. (Nakashima et al. 1986)

for their predictions were projected into the extended contour map. Interestingly, almost

all of them fell into the clusters to which they were previously classified except for a few

α+β proteins. This is not surprising since the projection of α+β protein  from 64 Chou’s

proteins also created a several outliers. These results indicate that the Sammon nonlinear

projection can be used to predict the structural classes of unknown proteins. Although

some ambiguity in the assignment may remain due to the overlapping of structural class

clusters.

The Sammon projection using modified distances or reduced alphabet of amino

acids.

Landes and Risler reported successful use of reduced amino acid alphabet in

searching  protein data bases (Landes and Risler, 1994). In their work they reduced the 20

amino acids to 10 symbols as follows: (A=T=S), C, (D=E=N), (F=Y), G, H,

(I=L=M=V),(K=Q=R), P, W. We were interested if the reduction of the original

compositional space into 9-dimension would affect the clustering of the projected

proteins. The application of the reduced alphabet into the Sammon projection resulted in

an irregular distribution of points (Fig. 5A). Clusters were still visible, however they were

not as clearly separated as in the case of the nominal projection from 19-D compositional

space.
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Chou’s set of 64 proteins were again projected into 2-D space using Sammon’s

algorithm. However in this particular case the calculation of Euclidean’s distance was

modified as follows:

i=1

20ãD*pq = Σ wi ( Pi - Q i) 2

The distances in compositional space were calculated as the product of wi the weighting

factor and Euclidean’s  distance for each amino acid, as described by Chun-Ting et

al.(Chun-Ting et al. 1992). These researchers performed predictions of structural class of

proteins from AAC based on a linear-programming approach. We were interested to what

degree this weighting factor developed for a linear fit would affect nonlinear projection.

The results (Fig. 5B) indicated that these weighting factors did not improved clustering of

the proteins belonging to the same structural class.

Conclusion

The nonlinear Sammon’s mapping algorithm may be a useful tool to examine

complicated multidimensional systems in protein science. When applied to project 19-D

compositional space of proteins, it can provide a new way of mapping and indexing. We

demonstrated that proteins with similar functionality can be mapped to the same region in

2-D space. This may allow prediction  folding classes and potentially functional

properties of newly sequenced proteins based on compositional indices.

Our results suggest that prediction of protein folding based on amino acid

composition may never overcome certain limitations such as overlapping clusters.

Although, different structural classes of proteins form distinct clusters which can be
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visualized after projection to 2-D space, these clusters have a tendency to overlap. This

may result in ambiguous assignment of structural classes of unknown proteins especially

proteins  sharing significant contribution of irregular folding. It is possible that extending

the number of proteins in the representative (learning) set may limit overlapping and

improve prediction accuracy.

We must also point out the computational advantage of the contour map: The

original Sammon’s algorithm, and its application to the protein classification as proposed

by Agrafiotis (Agrafiotis, 1997), required n2 computations per iteration of the steepest

decent algorithm discussed in the Method section, where n is the number of projected

proteins. In the proposed modified method, proteins have been projected onto contour

map (in our experiments n=91), and new proteins were added by comparing them only

one by one to these n points. Therefore, projection of compositional space for a new

protein costs only ‘n’ steps per iteration. This translates to a significant saving in

computation time.

Material and Methods

Calculation of Euclidean’s distance between proteins in the composition space.

In the first experiment presented in Figure 1 we used the standard Euclidean’s

distance between two points. For all other experiments, we computed the distance

between two proteins (level of dissimilarity) based on the amino acid composition, that is:

( )D P Qpq i i
i

* = −
=
∑ 2

1

20
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where Pi , Qi   are mole percent of the ith kind of amino acid in the proteins P and Q.

Each protein corresponds to a point whose coordinates are given by the mole percent of

the 20 constituent amino acids. Different modifications of this approach have been

reported by other researchers (Chou, 1989; Zhang and Chou, 1992; Nakai et al. 1988;

Nakashima et al. 1986; Chun-Ting et al. 1992; Cornish-Bowden, 1983).

The Sammon projection

The projection of 19-D compositional space onto the 2-D Euclidean space was

obtained according to the original Sammon nonlinear projection algorithm (Sammon,

1969; Agrafiotis, 1997). This algorithm tries to approximate in the best possible way (i.e.,

in the squared error sense)  a relation ship between points in a multidimensional space

when projected into 3-D spaces. The algorithm is presented in details by

Sammon(Sammon, 1969), so we only illustrate its meaning here on a simple example.

Observed, that distance relationship in a higher dimension  cannot be preserved in a lower

dimensional space.  For example, imagine three points A, B and C in 3D space with given

distances between them, say D*
AB, D*

AC and D*
BC.  These distances  cannot be preserve in

the projected 2-D space (DAB, DAC and DBC). The best you can do is to preserve the

distance between points A and B and make a small error (EAC and EBC) as possible when

locating point C. This is illustrated in figure bellow
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In general, the goal of Sammon’s algorithm  is to minimize the discrepancy in “distance”

which was defined as the error of the projection:

( ) ( )
E x y

c

D D x y

D
ij ij

ij

b

i j

n

,
( , )*

*=
−

<
∑1

(1)

where Dij
*  is Euclidean distance in old space (19 dimensional compositional space),

( ) ( ) ( )D x y x x y yij i j i j, = − + −
2 2

 Euclidean distance in 2-D space which is function of

x, y coordinates, b is a parameter, c is constant and n is a number of proteins in the

learning set. It should be pointed out the parameter b can model a variety of situations

(Szpankowski, 1993). Throughout the computation, as in Agrafiotis (Agrafiotis, 1997),

we assume b=2 and c Dij
i j

n

=
<
∑ * .
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To find optimal coordinates of a point (x, y) a numerical optimization procedure

called the steepest descent was applied. In this method, the optimal solution is found in

several iteration starting from a (random) initial point. In each iteration we move towards

the gradient of the function E(x,y). In the m th iteration we compute the m th  estimate of

E(x,y),  written as E x y
m

( , )
( ) . The next iteration coordinates of each point  x (m+1), y (m+1) are

computed according to the following formula:

for m=1 to number of iterations

for i=1 to n

x x MF

E

x

E

x

i
m

i
m

x y
m

x y
m

( ) ( )

( , )
( )

( , )
( )

+ = −1
2

2

∂
∂

∂
∂

 

y y MF

E

y

E

y

i
m

i
m

x y
m

x y
m

( ) ( )

( , )
( )

( , )
( )

+ = −1
2

2

∂
∂

∂
∂

end

end.

where MF (‘‘magic factor’’) is an experimentally determined coefficient. The first and the

second derivative of E(x,y) with respect to x are shown below ( in similar manner one can

compute the derivatives with respect to y):

( )( )∂
∂
E

x c

D D x y

D x y
x x

x y
m

ij ij

iji
i j

n

i j

( , )
( ) * ( , )

( , )
=

− −
−

=
≠

∑2

1

(2)
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In the implementation of the steepest descent method we stopped the iteration procedure

after 250 cycles.

In the experiments when additional protein n+1 was projected into the contour

map the same algorithms were used, except that in the iteration procedure was used only

to optimize the distance of the new protein without affecting the distances already

optimized  between elements of the learning set. The following modified formula was

used:

for m=1 to number of iterations

x x MF

E

x

E

x

n
m

n
m

x y
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∂

end.

In addition the summation of error Exy  (eq. 1) is over single index i ( this is only in terms

of the sum).

Computer programs.
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Source code of computer programs were written in Borland Turbo Pascal® version 7.

Executable versions of programs for Windows®  (Helix.exe and SammProj.exe) used in

this paper and corresponding contour maps are available at

http://www.cs.purdue.edu/people/spa/.
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Table 1. The X,Y indexes obtained using Sammon mapping for 19 α proteins

I.D. Name X Y
1 Calcium-binding parvalbumin (carp) 0.607 0.645
2 Cytochrome b562 (E. coli) 0.546 0.660
3 Cytochrome c (tuna) 0.455 0.556
4 Cytochrome c2 (R. rubrum) 0.540 0.616
5 Cytochrome c550 (P. denitrificans) 0.499 0.585
6 Cytochrome c555 (C. thiosulfatophilim) 0.699 0.501
7 Hemerythrin B (G. Gouldii) 0.436 0.580
8 Methemerythrin (T. dyscritum) 0.427 0.561
9 Methemerythrin (T. pyroides) 0.461 0.585
10 α-methemoglobin (horse) 0.617 0.562
11 β-methemoglobin (horse) 0.573 0.596
12 α-deoxyhemoglobin (human) 0.616 0.581
13 β-deoxyhemoglobin (human) 0.581 0.580
14 γ-deoxyhemoglobin (human fetal) 0.550 0.542
15 Hemoglobin (glycera) 0.651 0.535
16 Hemoglobin (lamprey) 0.586 0.530
17 Hemoglobin (midge larva) 0.599 0.522
18 Myoglobin (scal) 0.509 0.628
19 Myoglobin (sperm whale) 0.501 0.624

Table 2. The X, Y indexes obtained using Sammon mapping for 15 β proteins

I.D. Name X Y
20 α-chymotrypsin (bovine) 0.573 0.454
21 Concanavalin A (jack bean) 0.577 0.475
22 Elastase (porcine) 0.555 0.407
23 Erabutoxin B (sea snake) 0.453 0.338
24 Immunoglobulin Fab (VH and CH, human) 0.593 0.405
25 Immunoglobulin Fab (VL and CL, human) 0.588 0.444
26 Immunoglobulin B-J MCG (human) 0.573 0.427
27 Immunoglobulin B-J REI (human) 0.551 0.359
28 Penicillopepsin (P. janthinellum) 0.624 0.417
29 Prealbumin (human) 0.554 0.490
30 Protease A (S. griseus) 0.627 0.386
31 Protease B (S. griseus) 0.618 0.357
32 Rubredoxin (C. pasteurianum) 0.315 0.504
33 Superoxide dismutase (bovine) 0.453 0.472
34 Trypsin (bovine) 0.540 0.388
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Table 3. The X, Y indexes obtained using Sammon mapping for 14 α+β proteins

I.D. Name X Y
35 Actidin (kiwi fruit) 0.504 0.429
36 Cytochrome b5 (bovine) 0.423 0.541
37 Ferredoxin (P.aerogenes) 0.534 0.300
38 High-potential iron protein (chromatium) 0.666 0.560
39 Insulin (A and B chains, porcine) 0.422 0.399
40 Lysozyme ( bacteriophage T4) 0.474 0.531
41 Lysozyme (chicken) 0.466 0.422
42 Papain (papaya) 0.475 0.427
43 Phospholipase A2 (bovine) 0.404 0.432
44 Pibonuclease S (bovine) 0.503 0.394
45 Staphylococcal nuclease (Staphylococcus aureus) 0.482 0.596
46 Subtilisin inhibitor (streptomyces) 0.636 0.485
47 Thermolysin (B. thermoproteolyticus) 0.534 0.436
48 Trypsin inhibitor (bovine) 0.385 0.449

Table 4. The Y, Y indexes obtained using Sammon mapping for 16 α/β proteins

I.D. Name X Y
49 Adenyl kinase (porcine) 0.447 0.523
50 Alcohol dehydrogenase (horse) 0.521 0.497
51 Carbonic anhydrase B (human) 0.537 0.480
52 Carbonic anhydrase C (human) 0.496 0.540
53 Carboxypeptidase A (bovine) 0.521 0.459
54 Carboxypeptidase B (bovine) 0.497 0.468
55 Dihydrofolate reductase ( E. coli) 0.474 0.500
56 Flavodoxin (Clostridium MP) 0.407 0.512
57 Glyceraldehyde 3-P dehydrogenase (lobster) 0.547 0.511
58 Glyceraldehyde 3-P dehydrogenase (B. stearothermophilus) 0.567 0.542
59 Lactate dehydrogenase (dogfish) 0.511 0.524
60 Phosphoglycerate kinase (horse) 0.531 0.550
61 Rhodanese (bovine) 0.500 0.500
62 Subtilisin BPN’ (B. amyloliquefaciens) 0.631 0.453
63 Thioredoxin (E. coli) 0.531 0.590
64 Triose phosphate isomerase (chicken) 0.530 0.537
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Table 5. X, Y indices obtained using Sammon mapping for 27 extra proteins

I.D. Accession #  Name X Y
65 HHBYD8 Heat shock protein DDR48 - Yeast 0.200 0.517
66 TNHUA Prothymosin alpha - Human 0.333 0.747
67 TISYD Proteinase inhibitor (Bowman-Birk) D-II - soybean 0.389 0.275
68 FECF Ferredoxin - Chlorobium sp. 0.399 0.342
69 PIHUPF Basic proline-rich peptide P-F - Human 0.096 0.344
70 HSBOS Sperm histone - Bovine 0.170 0.100
71 EWBY8 H+-transporting ATP synthase (EC 3.6.1.34) 0.592 0.755
72 C32038 mu-agatoxin III - funnel-weaving spider 0.504 0.220
73 QMVHMM mastoparan M - hornet 0.854 0.663
74 JTJG3 Tremerogen a-13 - Basidiomycete 0.667 0.168
75 XASNBA Bradykinin-potentiating peptide B - Mamushi 0.112 0.273
76 AKLQ Adipokinetic hormone - Migratory locust 0.423 0.790
77 SPPGNK neuromedin K - pig 0.861 0.407
78 TPRBTS Troponin T, skeletal muscle - Rabbit 0.410 0.656
79 SMHU1F Metallothionein 1F - Human 0.554 0.151
80 UNBO neurotensin - bovine 0.237 0.582
81 QMWAVV mastoparan - yellowjacket 0.854 0.663
82 MXKN1 mu-conotoxin GIIIA - cone shell 0.345 0.174
83 QFBO micro glutamic acid-rich protein - bovine 0.302 0.920
84 FDFI8G antifreeze protein GS-8 - grubby sculpin 0.842 0.926
85 EEWTG gamma-gliadin B precursor - wheat 0.742 0.274
86 SNUMP sillucin - Rhizomucor pusillus 0.465 0.209
87 KGZQHF histidine/alanine-rich protei 0.677 0.813
88 DNVPBF DNA-binding protein - budgerigar fledgling diseases 0.262 0.726
89 W5WLEB E5 protein - bovine papillomavirus type 1 0.827 0.575
90 QQBE3 BHLF1 protein - human herpesvirus 4 0.292 0.377
91 VHNVBM nucleocapsid protein 0.097 0.435
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Figure 1. Sammon projection of a helix:  A-starting reandom distriubutin of 50 points, B-

optimized projection (map) of 50 points after 250 iterations, C-contour map of 49 points

(1 selected point is missing form the map of 50 points), D-projection of the missing 50th

point into the contour map.

Figure 2. Contour map of compositional space of  Chou’s 64 proteins (Chou, 1989)

belonging to four different folding classes. Red points (1-19) - 19 a proteins, purple

points (20-34) - 15 b proteins, blue points ( 35-48) - 14 a+b proteins, green points (49-64)

- 16 a/b proteins. Shading represents clustering for each class.

Figure 3. Contour map of 91 proteins, The set of 91 proteins included Chou’s (Chou,

1989) 64 proteins (table 1-4) and additional 27 proteins (table 5) with unusual

composition.

Figure 4. Mapping of 322 alpha and beta globins of different hemoglobins (open squares)

into the 91 proteins contour map.

Figure 5. Sammon projection of Chou’s 64 proteins (Chou, 1989): A - using a reduced

amino acid alphabet (Landes and Risler, 1994), B - using weighting factors (Chun-Ting et

al. 1992).
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