A Universal Online Caching Algorithm Based on
Pattern Matching*

Gopal Pandurangan and Wojciech Szpankowski'
Department of Computer Science
Purdue University
W. Lafayette, IN 47907 U.S.A.

Email: {gopal,spa}@cs.purdue.edu

Abstract

We present a universal algorithm for the classical online problem of caching or demand paging.
We consider the caching problem when the page request sequence is drawn from an unknown
probability distribution and the goal is to devise an efficient algorithm whose performance is
close to the optimal online algorithm which has full knowledge of the underlying distribution.
Most previous works have devised such algorithms for specific classes of distributions with the
assumption that the algorithm has full knowledge of the source. In this paper, we present a
universal and simple algorithm based on pattern matching for mixing sources (includes Markov
sources). The expected performance of our algorithm is within 4+ o(1) times the optimal online
algorithm (which has full knowledge of the input model and can use unbounded resources).

Keywords: Online Computation; Caching; Universal Algorithm; Stochastic Model.

* A preliminary version of this paper was presented at the IEEFE International Symposium on Information Theory,
Adelaide, Australia, 2005.

fThe work of this author was supported in part by the NSF Grants CCF-0513636, and DMS-0503742, the NIH
Grant R01 GM068959-01, AFOSR Grant 073071, and NSA Grant 07G-044.

1 Introduction

A fundamental algorithmic goal in online computation is to design universal algorithms, i.e., algo-
rithms that work well without knowledge of the input (source) model. In many applications, no a
priori knowledge of the source characteristics is available and statistical tests are either impossible,
unreliable, or too costly [24]. Universal algorithms can overcome these difficulties and indeed have
been shown to be very useful in important practical applications, e.g., prefetching [4] and data
compression [24, 25]. For example, the universal data compression scheme of Ziv and Lempel [25],
achieves an asymptotic optimal compression (equal to the entropy rate of the source) without any
knowledge of the input source model. This algorithm is universal over a large model class, namely
stationary ergodic sources [3].

The focus of this paper is the classical online problem of caching or (demand) paging [5]. In
this problem, we have a finite collection A = {aj,aq,...,an} of pages in memory and a cache of
size k (typically k& < |A| = N). The cache can hold a subset of A of size up to k pages. Given
a page request, say a;, if it is not in the cache we incur a page fault. Further, if there is a page
fault, a; has to be placed in the cache. The issue is, if the cache is full, some page must be evicted
from the cache to make room for the current page a;. In order to minimize the number of page
faults (associated with future page requests), the choice of which page to evict is crucial. The page
requests come one after the other in an online fashion and each page request has to be handled
immediately without knowledge of future requests.

In this paper, we present a universal algorithm for online caching. In our setting the page
request sequence is drawn from an unknown probability distribution (e.g., a mixing source) and our
goal is to devise an efficient online algorithm whose performance is close to that of an optimal online
algorithm which has full knowledge of the underlying distribution. The performance is measured
by a competitive ratio parameter which is defined as ratio of the number of page faults incurred by
our algorithm to that of the optimal online algorithm. Our goal is to design an online algorithm
that competes well (has a low competitive ratio) with the optimal online algorithm, even though
our algorithm has no knowledge of the underlying distribution.

Most previous works have devised online caching algorithms for specific classes of distributions
with the assumption that the algorithm has full knowledge of the source. For example, Karlin,
Phillips, and Raghavan [12] present efficient algorithms (that run in time polynomial in the cache
size) when the request sequence is generated by a Markov chain under the assumption that the
online algorithm has complete knowledge of the Markov chain. The authors of [12] assume that the
Markov chain can be “learned” from looking at a very long input. (Similarly, Franaszek and Wagner
[8] give an optimal algorithm for memoryless sources.) Although this is possible in principle when
you know the class of the model (say memoryless, Markov Chain), it is not clear how in general the
errors in learning will affect the performance of the online algorithm. The problem becomes more
complicated when we do not have knowledge of the class or the order of the underlying Markov
process (cf. [14, 15]).

This paper is motivated by the work of Lund et al. [13] on caching strategy and universal
prediction based on pattern matching due to Jacquet et al. [11]. The authors of [13] propose an
efficient randomized 4-competitive online caching algorithm that works for any distribution D but
it needs to know for (each pair of) pages a and b the probability that a will next be requested before
b. It is also remarked that even if the algorithm can determine the probabilities approximately,

it would be ensured competitiveness. However, it is not clear how to compute these probabilities
efficiently and sufficiently accurately when we have very little knowledge of the distribution or the
class it belongs to (e.g., how to know the order of Markov process).

We present a simple caching algorithm based on pattern matching that is universal for the
class of mixing sources (includes Markov sources). We show that our universal algorithm gives an
expected performance that is within 4 + o(1) times the optimal online algorithm (which has full
knowledge of the input model and can use unbounded resources). Our universal algorithm uses the
DOMinating-distribution (DOM) algorithm of Lund et al. [13]. This algorithm assumes that, for
each pair of pages a and b, the probability that b will next be requested before a is known at every
time step t. We address the problem of estimating these probabilities at each time ¢, assuming that
the request sequence is generated by a mixing source. The main contribution is to show how to
estimate the above probabilities using a pattern matching algorithm of Jacquet et al. [11].

The rest of the paper is organized as follows. In Section 2 we give more background on the
caching problem and discuss prior research. In Section 3 we give our universal online caching
algorithm. In Section 4 we analyze our algorithm and state our main theorem. We conclude in
Section 5 with issues left for further work.

2 Background and Related Work

Caching is related to prefetching problem, and the latter is essentially the same as the prediction
problem, studied extensively in information theory [15]. In both problems, we have a collection .4
of pages in memory and a cache of size k (typically k < | A]). Given a page request (from A), if
the page is not in the cache we incur a page fault, otherwise we don’t, and in both problems, we
are interested in minimizing the number of page faults. However, in prefetching, we are allowed to
prefetch k items to the cache prior to each page request, while in caching, we are not allowed to
prefetch pages which are fetched only on demand.

Both these problems can be formulated as online decision problems [2, 14, 23] as follows. We are
given a temporal sequence of observations (in other words, a request sequence) z} = 1,2, ..., Ty,
for which corresponding actions by, bo, ..., b, result in instantaneous losses [(b;, z;), for each time
instant ¢, 1 < ¢ < n, where [(.,.) denotes a non-negative loss function. The action b, for all ¢, is

t—1

a function of the previous observations z'~" only; hence the sequence of actions can be considered

as an online algorithm or strategy. A normalized loss

L= Tllzn:l(bt,wt) (1)
t=1

accumulates instantaneous loss contributions from each action-observation pair and the objective
of the online strategy is to minimize this loss function. Prediction and prefetching can be thought
of as sequential decision problems with memoryless loss functions i.e., the loss does not depend on
previous action-request pairs. On the other hand, in caching, the loss function is not memoryless
and this is one reason why designing optimal online strategies for caching is more complicated in
general than prefetching or prediction (discussed more below; see also [15]).

One can study such online decision problems in two settings: a probabilistic framework, in
which the sequence of requests is viewed as a sample of a random process; or using an individual

sequence approach i.e., comparing the performance of the online strategy for an arbitrary sequence
with certain classes of competing offfine strategies — such as in the sequential decision approach
[10, 14] (where the online strategy is compared with the best constant offline algorithm which has
full knowledge of the given sequence of observations), or with finite state machines [6]).

In the probabilistic setting, universal algorithms have been well-studied for prefetching and
prediction problems. For example, Vitter and Krishnan [22] considered a model where the sequence
of page requests is assumed to be generated by a Markov source. They show the fault rate of a
Ziv-Lempel based prefetching algorithm approaches the fault rate of the best prefetcher (which has
full knowledge of the Markov source) for the given Markov source as the page request sequence
length n — oco. In fact, a general result in a probabilistic setting was shown by Algoet [2]: if the
request sequence is generated by a stationary ergodic process then it is shown that the optimum
strategy is to select an action that minimizes the conditional expected loss given the currently
available information at each step and this strategy is shown to be asymptotically optimal in the
sense of the strong law of large numbers. In the individual sequence approach, we refer to the work
of Feder et al. [6] on predicting binary sequences (corresponding to prefetching in a universe of two
pages with cache of size 1).

Thus while there has been a lot of work on universal algorithms for prefetching (and prediction)
— both in the probabilistic setting and in the individual sequences approach (see e.g., [14] for a
survey), there has not been much work for the more difficult problem of online caching except
perhaps the recent work of Merhav et al. [15] on sequential strategies. In [15] the authors assume
that the loss function depends also on the past action-observation pairs. In particular, at time ¢
the loss function I(b;—1, bt, x;) depends on the current and previous decisions.

The difference between prefetching and caching is also discussed in [18] where it is shown
that, in a probabilistic setting, entropy can “characterize” the performance of the best prefetching
algorithm, but, in general, entropy alone is not sufficient to characterize the performance of the
best caching algorithm. However, if the request sequence is generated by a memoryless source then
the best caching algorithm is essentially the same as the best prefetching algorithm and one can
give explicit bounds on the fault-rate of the best algorithm in terms of the entropy of the source
[18].

In the theoretical computer science literature, however, the online caching problem has received
a lot of attention and, in fact, was one of the first problems to be analyzed under the framework
of competitive analysis where the performance of the online algorithm is compared with the best
offline algorithm [19]. For online caching (or demand paging) the well known LRU (Least Recently
Used) has a competitive ratio of k [19], where k is the cache size, while the randomized MARKER
algorithm is O(logk) competitive [7]. In fact, it is known that any deterministic algorithm for
caching has a competitive ratio of at least k and any randomized algorithm has a competitive ratio
of Q(logk). We note, that for the problem of prefetching, competitive analysis is meaningless as
the optimal offline algorithm will always prefetch the correct item and hence incurs no cost.

In this paper, we take the probabilistic approach, and assume that the loss function represents
the page fault. Following the work of Lund et al. [13], we compare the performance of our algorithm
to the optimal online algorithm (henceforth called as ON) which has full knowledge of the input
distribution. The optimal online caching strategy (assuming full knowledge of the underlying
distribution) is known for memoryless sources ([1, 8, 18]) and for Markov sources (l-order Markov)

[5]. While the best online strategy is easy for memoryless sources (simply keep the k —1 pages with
the highest probabilities in the cache), the best strategy for higher order sources (in particular, even
when the request sequence is generated by a Markov chain) is nontrivial, and involves computing
the optimal policy in a Markov decision process (MDP) [12, 18]. In particular, many “natural”
online strategies such as LAST (i.e., on a fault, evict the page that has the highest probability of
being the last of the k pages in the cache to be requested), MAX-REACH-TIME (i.e., on a fault
for page r, evict that page whose expected time to be reached from r is maximum) perform poorly
even on Markov chains [12]. On the other hand, for prefetching, the optimal universal strategies
(e.g., see Algoet [2]) are somewhat more “natural” and intuitive. However, known methods for
computing this optimal online strategy takes time exponential in £ and this has motivated work
on computing near-optimal online strategies (which closely approximate the performance of ON)
which take time polynomial in &k ([12, 13]); however, these results, as mentioned earlier, assume
full knowledge of the Markov source, and hence not universal. The universal caching algorithm of
this paper works for mixing sources (this includes Markov sources) and has a performance that is
within a constant factor of the optimal online algorithm.

In the probabilistic setting, one can also compare the performance of universal algorithms with
offline strategies, e.g., with the optimal offline algorithm (that has access to the request string output
by the source, and serves it optimally). We remark that the performance of ON will typically have a
higher expected cost than the optimal offline algorithm, and in the worst case, ON has a cost which
is a factor of at most ©(log k) of the optimal offline algorithm, and this immediately implies that
our universal algorithm gives a performance that is O(log k) times the optimal offline algorithm.

3 The Caching Algorithm

To motivate our algorithm we first briefly describe the DOMinating-distribution (DOM) algorithm
of Lund et al. ([13, 5]). DOM assumes that for a given distribution D, one can compute for all
distinct pages a and b the probability p(a,b) that b will be requested before a (such a distribution
is called pairwise-predictive). A pairwise-predictive distribution D and an online paging algorithm
ALG naturally induce a weighted tournament as follows. A weighted tournament T'(S,p) is a set
of states S and a (probability) weight function p : S x S — [0, 1] satisfying the property that
p(a,b) + p(b,a) = 1 for all @ # b in S and p(a,a) = 0 for all @ € S. Given a pairwise predictive
distribution D and paging algorithm ALG, the weight function p is determined by D (just before
each new request), and S will be the set of ALG’s pages in the cache. A dominating distribution p
for a tournament T'(S, p) is a probability function p : S — [0, 1] such that for every a € S, if b € S'is
chosen with probability p(b), then Ep s[p(a,b)] < 1/2 (i.e., the expectation is taken with respect to
both D and p). It follows that, for every a in the cache, if b in the cache is chosen with probability
p(b), then with probability > 1/2, a’s next request will occur no later than b’s next request. Lund
et al. show the following key lemma on dominating distributions:

Lemma 3.1 ([13]) Every weighted tournament T'(S,p) has a dominating distribution and such a

distribution can be found by solving the following linear program consisting of |S| variables:

min z
subject to : Zp(a, b)p(b) < z (Ma€els),
bes

Y pb) = 1, p(b) >0, (VbeS)
besS

The solution to the above linear program is at most 1/2.

To summarize DOM, let x = x1,29,... be a request sequence. The DOM algorithm is as
follows.

1. On the tth request x4, if z; is a page fault (otherwise do nothing), then (as determined by D)
construct a weighted tournament 7;(S, p) on the k pages presently in the cache.

2. Evict page a with probability p;(a) where p; is the dominating distribution for the tournament
T:(S, p)-

The performance of DOM can be analyzed using the following key lemma.

Lemma 3.2 ([13]) Let A denote a caching algorithm. Assume that each time A evicts a page a
chosen from some distribution following property holds: for every page b in cache, the probability
that b is next requested no later than a is at least 1/c, where ¢ > 1 is some fized constant. Let A,
and ON,, denote the number of page faults incurred by A and the optimal online algorithm (ON)
respectively after n requests. Then E[Ay] < 2c¢E[ON,].

Applying the above lemma to the DOM algorithm yields:

Theorem 3.1 ([13]) For all request sequences = from D, the following holds: E[DOM (z)] <
4 - ON(x). Furthermore, the complezity per page fault is bounded by a polynomial in k, the cache
size, assuming that for all distinct pairs of pages a and b, we have precomputed p(a,b).

We now propose a new universal caching algorithm that uses the idea of the Sampled Pattern
Matching (SPM) [11] to obtain a good estimate of the probability that page b occurs before page
a (Steps 1-3 below). We then apply the caching strategy of [13] to evict a page upon a fault (Step
4). We will show that the expected page fault rate of our algorithm will be at most 4 + o(1) times
ON, the optimal online algorithm. First we state our algorithm below.

Universal Caching Algorithm:

Let z1,x2... be the request sequence. Let 1/2 < o < 1 be a fixed constant, and k = |C|, be the
cache size.

If x,, is not in the cache C' and C is full do:

1. Find the largest suffix of 21" = z1, ..., z, whose copy appears somewhere in the string z7. Call
this the mazimal suffiz and let its length be D,,.
2. Take an « fraction of the maximal suffix of length k, = [aD,], i.e., the suffix x,,_, t1...Zn.

Each occurrence of this suffix in the string z7 is called a marker. Let K,, > 2 be the number of
occurrences of the marker in z7.
3. For every pair of elements a,b in C, estimate the probability P(a,b) that b will occur before a
after the marker position as follows: Let Yj(a,b) be the indicator r.v. for the event that b occurs
before a in the substring that starts after the jth marker, 1 < j < K,,. Then the estimator is

. S K Y(a,b)

Pla.b)==1=""""""7

(a'7) Kn

4. Compute a distribution p by solving the following Linear Program (LP) in which we minimize
z subject to

> Plabpb) < =z (Vac0),
beC

STpb) = 1, pb)>0, (WbeC)
beC

(Note that the above LP is the same as the one mentioned in Lemma 3.1.) We will show that the
above LP has a feasible solution for some z € [0, 1] (whose value will be proved to be < 1/2+1/n? for
some A > 0). Thus, for each page a in C, if b is chosen according to p, then E[P(a,b)] < 1/2+1/n’.
Choose a page to evict from C according to the distribution p.

The above algorithm can be naturally implemented by maintaining a suffix tree [9]. The longest
suffix, markers, the delay sequences and the estimates (Steps 1-3), can be computed efficiently from
a suffix tree. The suffix tree of x1,...,x, is a trie (i.e., a digital tree) built from all suffixes of
x1,...,2,$ where $ is a special symbol that does not belong to the alphabet A. External nodes of
such a suffix tree contain information about the the suffix positions in the original string and the
substring itself that leads to this node. In addition, we keep pointers to those external nodes that
contain suffixes ending with the special symbol $ (since one of them will be the longest suffix that
we are looking for; in fact, the one with the longest path). It is very easy to find all markers once
the suffix tree is built. Indeed, they are located in the subtree that can be reached following the
last [aD,,] symbols of the longest suffix.

Given a suffix tree on n nodes, the worst case time to do these operations is O(n) (cf. [9]), but
on average will take only O(n'~?) (for some o >> 1/2) since there are only so many markers with
high probability (whp)!([11]) and the delay is O(log2n) whp (cf. Section 4). Moreover, it is easy
to update the suffix tree when the new symbol x4 is added. The only nodes that we must look at
are the ones with $ to which we keep pointers. In the worst case, we need to inspect O(n) nodes,
but on average only O(n'~%) [11]. Step 4 can be implemented by solving a LP in k variables and
hence the running time is polynomial in the size of the cache.

4 Main Result and Analysis

Throughout, we assume that the request sequence X, Xs,...,X,, is generated by a stationary
(strongly) mixing source over a finite alphabet A (the cache size is k < |A]) (cf. [20]).

!Throughout this paper, this means with probability at least 1 — 1/n” for some constant v >> 0.

Definition 4.1 (MX - (Strongly) ¢-Mixing Source) Let F) be a o-field generated by X! =
XmXm41 ... Xy for m < n. The source is called mixing, if there exists a bounded function ¢(g)

such that for all m,g > 1 and any two events A € Fi" and B € F37, , the following holds:

(1= ¢(9))Pr(A)Pr(B) < Pr(AB) < (1 + ¢(g))Pr(A)Pr(B).
If, in addition, limy_.o ¢(g) = 0, then the source is called strongly mixing.

Strongly mixing sources include memoryless sources (mixing with ¢(g) = 0) and Markov sources
over a finite alphabet (mixing with ¢(g) = O(99) for some v < 1) [20]. For our analysis below we
assume that our ¢ mixing coefficient decays faster than the reciprocal of every polynomial function,
ie., ¢(g) =o(1/g7) for every v > 0. Our main result is formulated next.

Theorem 4.1 Let A, and ON,, denote the number of page faults incurred by our algorithm and the
optimal online algorithm (ON) respectively after n requests from a strongly mizing source. Then,
for a positive constant §, we have

E[An] < (44 O(=))E[ON,]

1
nd
as n — oo.

The rest of this section is devoted to the proof of Theorem 4.1. We start with reviewing some
results of [11] needed for the proof of our result.

We need the following results from [11]:
1. Marker separation property: There exists € >> 0 such that for some constant « € (1/2,1) whp
as n — oo two consecutive markers (i.e., copies of a portion of the longest suffix) in the string X7
cannot be closer than n¢ positions. A consequence of the separation property is that the number
of markers (i.e., K,) is n® whp for some constant 3 € (0,1).
2. Marker stability property: There exists € > 0 such that whp no modification of any of the [n]
symbols following a marker will transform the string X{* into another string X 1 with a new set of
markers.

Let L denote the maximum delay before we see all the symbols in the (current) cache C after
any marker, i.e., L = maxi<j<k,L; where L; the delay before we see all symbols after the jth
marker.

Lemma 4.1 L = O(log2n) whp.

Proof. Let X; be the first symbol after the end of a marker and consider the next clog 2n symbols

, e
starting from Xj, i.e., the subsequence X Z+010g n-l

We first bound the probability that a particular symbol (say a) in C' will not occur in the above

where ¢ > 0 is a suitably large fixed constant.

subsequence. Partitioning this subsequence into blocks of size logn and using the mixing property
the above probability is bounded by

(1 + ¢(logn)))*'*8" (1 — pa)“'¢"™ < 1/n2,

for a suitably large constant ¢, where p, is the (unconditional) probability of occurrence of symbol
a in the sequence. (Since we consider a finite alphabet and the source is stationary and ergodic,
Da 18 some positive constant independent of n.) Applying the union bound ([16][Lemma 1.2]), we
have that all symbols in C occur in X Z+dog2 " (for some suitably large constant ¢) with probability
1 —1/n. Thus the delay for this marker is O(log2n) with probability at least 1 — 1/n. We appeal
to the marker separation property and the fact that are at most n® markers whp to conclude that

whp that the delay is O(log2n) after every marker. [

In the next lemma we prove that our estimator P(a, b) is consistent. We need one more definition
from [11], namely the concept of favorite strings.

Definition 4.2 (Favorite String) Fiz a constant € > 0. Let i; be the position after the last
symbol of marker j, 1 < j < K,,. A favorite string is one for which any modification of any [nc]
symbols following a marker does not change the position of any marker and the delay L; after any
marker is O(log 2n).

Lemma 4.2 Let 0 € (0,1) be a suitably small positive constant. The estimators P(a,b) for every
pair of symbols a and b in cache are within 1/n? of the true estimates whp for sufficiently large n.

Proof: The main idea of the proof is to show that that the random variables Yj(a,b), 1 < j < K,
(computed in Step 3) are almost independent. Let F,, be the set of favorite strings as defined

above: F,, = {X7 : X' is a favorite string}. The marker separation and stability properties and
Lemma 4.1 imply that whp any string is a favorite. Consider the delay subsequence: XZ]J telog2n—1

1 <j < K,, (cis a suitably large constant), i.e., the subsequence consisting of O(log2n) symbols

i

after every marker. Lemma 4.1 and the two marker properties guarantee that whp the markers are
stable and the delays after are separated by n¢ for some € > 0. Using this and arguments similar
to proof of Lemma 7 in [11], it follows that the delay subsequence is mixing if X{" € F,.

The mixing property of the delay subsequence implies that, for favorite strings, the probability
distribution of the Y;s are within factor of (14 O(¢(n¢)))"» from an ii.d. sequence (this follows
from the definition of a mixing source). Let P(a,b) be the true estimate. We bound the probability
of error as follows:

Pr (1P(a.b) ~ P(a,b)] <n™?) <Pr(|P(a,b) = P(a,b)| < 0™ X[€ F,) +Pr(X] ¢ F)

Since for a favorite string the Y;s are within factor of (14 O(¢(n¢)))E" from an i.i.d sequence,
we bound the first probability on the right hand side by using a Chernoff bound ([17, Chapter 4])
and noting that whp (say, 1 — 1/n”) K, is n® for some 3 € (0,1):

Pr(1B(a.) ~ Pla.b)] < n~*) < (1+O(6(n)))"e 5" OO LPr(X] ¢ Fy)+O(1/nf) = O(1/n")

for large n and for some constant v > 0. In the above we used the fact that K, < n and
¢(g) = o(1/g") for every v > 0.

We are now ready to prove our main result.

Proof of Theorem 4.1. We first show that the LP stated in Step 4 has a feasible solution for
z < 1/2+4 1/n? whp. We use the approach in [13]. Consider the LP (cf. Step 4 of the Universal
Caching Algorithm):

min z
subject to : Z Pla,b)p(b) < z (Yae(),
beC

o) = 1 p) 20, (e)
beC

For the purpose of analysis, appealing to Lemma 4.2, we can rewrite (whp) the first constraint as:

> P(a,b)p(b) <z—0(1/n?) (Ya € C)
beC

where P(a,b) is the true estimate of the probability that b will be requested before a and 6 is a
suitably small positive constant. By considering the dual LP, we can show that the solution of
the above LP is at most 1/2 + O(1/n?) ([13]). By Lemma 4.2, this holds with probability at least
1 —1/n" for some v > 0. When our algorithm has a page fault and must evict a page, let a be a
random variable denoting the page that is evicted. Now the following property holds, by definition
of the algorithm: for every page b in C, the probability that b is next requested no later than «a
is at least 1/2 — O(1/n?) — O(1/n¥). By Lemma 3.2, we conclude that the expected number of
page faults is at most 4 + O(1/n’) times the optimal online algorithm, for a positive constant §, as

n — OoQ. |

5 Concluding Remarks and Further Work

Our pattern matching approach appears to be quite general and can be a useful technique for
designing universal caching algorithms. The technique gives a way to “convert” a caching algorithm
that is not universal to begin with into one which is universal. We illustrated by showing how to
design a universal caching algorithm based on the DOM algorithm.

There are a few open questions for future work. From the algorithmic complexity point of view,
our universal algorithm is not efficient, since it has the drawback of constructing a suffix tree after
each eviction. Moreover, it has to keep and deal with a large sequence of requests in memory in
order to use the sampling algorithm. One approach that can be used to get faster and space-efficient
algorithms is to use a fized database approach [20] to “store” a fixed long sequence and then bound
the errors that can accumulate. In this approach, we are given a database (offline training sequence)
that is utilized to pre-compute the estimator]5(@, b) for all a,b € A. It is assumed that the request
sequence and the database sequence are independent and identically distributed. Clearly, now we
need only to construct a suffix tree of a given database sequence. Another approach would be to
use a “sliding window”, where only the most recent m symbols are taken into consideration, where
m is some fixed function of n. It would be interesting to analyze the performance guarantee of
these approaches.

10

Another question is to design universal algorithms with better performance guarantees. In

particular, a key question is whether we can design a universal caching algorithm that converges

asymptotically to the optimal online algorithm.

References

1]

[11]

[12]

[13]

A. Aho, P. Denning, and J.D. Ullman. Principles of Optimal Page Replacement, JACM, 18(1),
1971, 80-93.

P. Algoet, Universal Schemes for Prediction, Gambling and Portfolio Selection, Annals of
Probability, 20(2), 1992, 901-941.

T.M. Cover and J.A. Thomas, Elements of Information Theory, Wiley, New York, 1991.

K. Curewitz, P. Krishnan and J.S. Vitter. Practical Prefetching Via Data Compression, In
Proceedings of the ACM SIGMOD International Conference on Management of Data, 1993,
257-266.

R. El Yaniv and A. Borodin. Online Computation and Competitive Analysis, Cambridge Uni-
versity Press, 1998.

M. Feder, N. Merhav and M. Gutman, Universal Prediction of Individual Sequences, IEEE
Transactions on Information Theory, 38, 1992, 1258-1270.

A. Fiat, R.M. Karp, M. Luby, L. A. McGeoch, D.D. Sleator and N.E. Young, On Competitive
Algorithms for Paging Problems, Journal of Algorithms, 12, 1991, 685-699.

P.A. Franaszek and T.J. Wagner. Some Distribution-free Aspects of Paging Performance, Jour-

nal of the ACM, 21, 1974, 31-39.
D. Gusfield. Algorithms on Strings, Trees, and Sequences, Cambridge University Press, 1997.

J.F. Hannan. Approximation to Bayes risk in repeated plays, in Contributions to the Theory
of Games, Vol. 3, Annals of Mathematics Studies, Princeton, NJ, 1957, 97-139.

P. Jacquet, W. Szpankowski, and I. Apostol. A Universal Predictor Based on Pattern Matching,
IEEE Transaction on Information Theory, 48(6), 2002, 1462-1472.

A.R. Karlin, S.J. Phillips and P. Raghavan. Markov Paging, SIAM Journal on Computing,
30(3), 906-922, 2000.

C. Lund, S. Phillips, and N. Reingold. Paging against a Distribution and IP Networking,
Journal of Computer and System Sciences, 58, 1999, 222-231.

N. Merhav and M. Feder. Universal Prediction, IEEE Trans. Information Theory, 44, 2124-
2147, 1998.

N. Merhav, E. Ordentlich, G. Seroussi, and M. J. Weinberger. On Sequential Strategies for
Loss Functions With Memory, IEEE Transactions on Information Theory, 48(7), 1947-1958,
2002.

11

[16]

[17]

[18]

[19]

[20]

[21]

22]

M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and Prob-
abilistic Analysis, Cambridge University Press, 2005.

R. Motwani and P. Raghavan. Randomized Algorithms, Cambridge University Press, 1995.

G. Pandurangan and E. Upfal. Entropy-Based Bounds for Online Algorithms, ACM Transac-
tions on Algorithms, 3(1), 2007.

D.D. Sleator and R.E. Tarjan. Amortized Efficiency of List Update and Paging Rules, Com-
munications of the ACM, 28(2), 1985, 202-208.

W. Szpankowski. Average Case Analysis of Algorithms on Sequences, John Wiley, 2001.

W. Szpankowski. A Generalized Suffix Tree and Its (Un)Expected Asymptotic Behaviors,
SIAM J. Computing, 22, 1176-1198, 1993.

J.S. Vitter and P. Krishnan. Optimal Prefetching Via Data Compression, Journal of the ACM,
43(5), 1996, 771-793.

M. Weinberger and E. Ordentlich. On-line decision making for a class of loss functions via
Lempel-Ziv Parsing, In Proc. of the IEEE Data Compression Conference, 2000, 163-172.

J. Ziv and A. Lempel. A Universal Algorithms for Sequential Data Compression, IEEE Trans-
actions on Information Theory, 23(3), 1977, 337-343.

J. Ziv and A. Lempel, Compression of Individual Sequences via Variable Rate Coding, IEEE
Transactions on Information Theory, 24(5), 1978, 530-536.

12

