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I

Aristotle, economy (oiko and nemo) and the

idea of exchange values, subsequently adapted

by Ricardo and Marx. Classical economists.

An economy consists of a set of agents each

of whom is characterized by her preferences

and her initial endowments (resources).

Walras and Pareto, neo-classical economists

and the emergence of rigorous economics equi-

librium, von-Neumann, Arrow, Debreu, McKen-

zie, Nash, Aumann. Walrasian equilib-

rium, competitive equilibrium and per-

fect competition.

Existence and Optimality of equilibrium.

Book: Aliprantis et al.

Uncertainty and the state contingent trade
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model.

II

Asymmetric or Differential Informa-

tion Economies.

Walrasian Expectations equilibrium (WEE),

and Rational Expectations Equilibrium

(REE), Radner, Lucas, Prescott.

What is the best possible contact we can reach

when agents are asymmetrically informed?

1. Individual rationality (better off)

2. Efficient

3. Incentive Compatible

4. Existence

5. Implementable as a PBE of an extensive

form graph (game tree).
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Can we construct in a finite agent econ-

omy a contact which has the above

properties?

NO

Can we construct a second best con-

tract?

YES

Can we construct an environment or

framework where “first” best contracts

can be reached?

Yes, under perfect competition – negligible

private information.

Book: Glycopantis-Yannelis, Differential In-

formation Economies, 2005.
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1. Differential information economy

(DIE)

We define the notion of a finite-agent econ-

omy with differential information for the case

where the set of states of nature, Ω and the

number of goods, l, per state are finite. I is a

set of n players and IRl
+ will denote the set of

positive real numbers.

A differential information exchange econ-

omy E is a set

{((Ω,F), Xi,Fi, ui, ei, qi) : i = 1, . . . , n}

where

1.F is a σ-algebra generated by a partition of

Ω;

2. Xi : Ω → 2IRl
+ is the set-valued func-

tion giving the random consumption set
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of Agent (Player) i, who is denoted by Pi;

3.Fi is a partition of Ω generating a sub-σ-

algebra of F , denoting the private infor-

mation of Pi;

4. ui : Ω×IRl
+ → IR is the random utility

function of Pi; for each ω ∈ Ω, ui(ω, .) is

continuous, concave and monotone;

5. ei : Ω → IRl
+ is the random initial endow-

ment of Pi, assumed to be Fi-measurable,

with ei(ω) ∈ Xi(ω) for all ω ∈ Ω;

6. qi is an F -measurable probability function

on Ω giving the prior of Pi. It is assumed

that on all elements of Fi the aggregate qi

is strictly positive. If a common prior is

assumed on F , it will be denoted by µ.

We will refer to a function with domain Ω,
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constant on elements of Fi, as Fi-measurable,

although, strictly speaking, measurability is

with respect to the σ-algebra generated by the

partition.

In the first period agents make contracts in

the ex ante stage. In the interim stage, i.e.,

after they have received a signal1 as to what is

the event containing the realized state of na-

ture, they consider the incentive compatibility

of the contract.

For any xi : Ω → IRl
+, the ex ante expected

utility of Pi is given by

vi(xi) =
∑

Ω

ui(ω, xi(ω))qi(ω).

Let G be a partition of (or σ-algebra on) Ω,

belonging to Pi. For ω ∈ Ω denote by EG
i (ω)

1A signal to Pi is an Fi-measurable function to all of the possible distinct observations specific to the player; that is, it

induces the partition Fi, and so gives the finest discrimination of states of nature directly available to Pi.
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the element of G containing ω; in the par-

ticular case where G = Fi denote this just

by Ei(ω). Pi’s conditional probability for the

state of nature being ω′, given that it is actu-

ally ω, is then

qi
(

ω′|EG
i (ω)

)

=











0 : ω′ /∈ EG
i (ω)

qi(ω
′)

qi

(

EG
i (ω)

) : ω′ ∈ EG
i (ω).

The interim expected utility function of Pi,

vi(x|G), is given by

vi(x|G)(ω) =
∑

ω′
ui(ω

′, xi(ω
′))qi

(

ω′|EG
i (ω)

)

,

which defines a G-measurable random variable.

Denote by L1(qi, IR
l) the space of all equiv-

alence classes of F -measurable functions

fi : Ω → IRl; when a common prior µ is as-

sumed L1(qi, IR
l) will be replaced by L1(µ, IRl).
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LXi
is the set of all Fi-measurable selections

from the random consumption set of Agent i,

i.e.,

LXi
= {xi ∈ L1(qi, IR

l) : xi : Ω →

IRl is Fi-measurable and xi(ω) ∈ Xi(ω) qi-a.e.}

and let LX =
n
∏

i=1
LXi

.

Also let

L̄Xi
= {xi ∈ L1(qi, IR

l) : xi(ω) ∈ Xi(ω) qi-a.e.}

and let L̄X =
n
∏

i=1
L̄Xi

.

An element x = (x1, . . . , xn) ∈ L̄X will be

called an allocation. For any subset of players

S, an element (yi)i∈S ∈ ∏

i∈S
L̄Xi

will also be

called an allocation, although strictly speaking
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it is an allocation to S.

In case there is only one good, we shall use

the notation L1
Xi

, L1
X etc. When a common

prior is also assumed L1(qi, IR
l) will be re-

placed by L1(µ, IRl).

Finally, suppose we have a coalition S, with

members denoted by i. Their pooled informa-

tion
∨

i∈S Fi will be denoted by FS
2. We

assume that FI = F .

Is it possible for agents to write incentive

compatible and efficient or Pareto optimal

contracts? Let us answer this question by

considering a simple two agents example.

Example 0.1 There are two Agents, 1 and 2,

and three equally probable states of nature de-

noted by a, b, c and one good per state denoted
2The “join”

W

i∈S
Fi denotes the smallest σ-algebra containing all Fi, for i ∈ S.
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by x. The utility functions, initial endowments

and private information sets are given as fol-

lows:

u1(w, x1) =
√

x1, for w = a, d, c

u2(w, x2) =
√

x2, for w = a, b, c

e1(a, b, c) = (10, 10, 0), F1 = {{a, b}, {c}}
e2(a, b, c) = (10, 0, 10), F2 = {{a, c}, {b}}.

Notice that a “fully”, pooled information, Pareto

optimal, (i.e. a weak fine core outcome) is

x1(a, b, c) = (10, 5, 5)

x2(a, b, c) = (10, 5, 5). (1)

However, this outcome is not incentive com-

patible because if the realized state of nature is

a, then Agent 1 has an incentive to report that

it is state c, (notice that Agent 2 cannot distin-

guish state a from state c) and become better
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off. In particular, Agent 1 will keep her ini-

tial endowment in the event {a, b} which is 10

units and receive another 5 units from Agent

2, in state c, (i.e., u1(e1, (a)+x1(c)−e1(c)) =

u1(15) > u1(x, (a)) = 10) and becomes better

off. Obviously Agent 2 is worse off. Similarly,

Agent 2 has an incentive to report b when he

observes {a, c}
This example demonstrates that “full or ex

post Pareto optimality” is not necessarily

compatible with incentive compatibility.

The following example will illustrate the role

of the private information measurability of

an allocation.

Example 0.2 There are two Agents, 1 and 2,

two goods denoted by x and y and two equally

probable states denoted by {a, b}. The agents’
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characteristics are:

u1(w, x1, y1) =
√

x1y1, for w = a, b

u2(w, x2, y2) =
√

x2y2, for w = a, b

e1(a, b) = ((10, 0), (10, 0)), F1 = {a, b}
e2(a, b) = ((10, 8), (0, 10)), F2 = {{a}, {b}}.

The feasible allocation below is Pareto optimal

(interim, ex post and ex ante).

((x1(a), y1(a)), (x1(b), y1(b))) = ((5, 2), (5, 5))

((x2(a), y2(a)), (x2(b), y2(b))) = ((15, 6), (5, 5)). (2)

However, the allocation in (2) above is not

incentive compatible because if b is the realized

state of nature Agent 2 can report state a and

become better off, i.e.,

u2(e2(b) + (x2(a), y2(a)) − e2(a))

= u2((0, 10) + (15, 6) − (10, 8))

= u2(5, 8) > u2(x2(b), y2(b)) = u2(5, 5).
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Notice that the allocation in (2) is not F1-

measurable (i.e., measurable with respect to

the private information of Agent 1). Hence, an

individually rational, efficient (interim, ex

ante, ex post) without the Fi-measurability

(i = 1, 2) condition need not be incentive

compatible.

Observe that one can restore the incentive

compatibility simply by making the allocation

in (2) above Fi-measurable for each i, (i =

1, 2). In particular, the Fi-measurable alloca-

tion below is incentive compatible, and private

information (Fi-measurable) Pareto optimal.

(x1(a), y1(a)), (x1(b), y1(b)) = ((5, 5), (5, 5))

(x2(a), y2(a)), (x2(b), y2(b)) = ((15, 3), (5, 5)).

The importance of the measurability condi-
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tion in restoring incentive compatibility and of

course guaranteeing the existence of an opti-

mal contract is obvious in the above example

and this approach was introduced by Yannelis

(1991).

Example 0.3 Consider a three person differ-

ential information economy, with Agents 1, 2,

3, two goods denoted by x, y, and the three

equal probable states are denoted by a, b, c.

The agents’ utility functions, random initial

endowments and private information sets are
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as follows:

ui(xi, yi) =
√

xiyi, i = 1, 2, 3,

e1(a, b, c) = ((20, 0), (20, 0), (20, 0)),

F1 = {a, b, c}
e2(a, b, c) = ((0, 10), (0, 10), (0, 5)),

F2 = {{a, b}, {c}}
e3(a, b, c) = ((10, 10), (10, 10), (20, 30)),

F2 = {{a}, {b}, {c}}.
The allocation below is individual incentive

compatible but not coalitional.

((x1(a), y1(a)), (x1(b), y1(b)), (x1(c), y1(c)))

= ((10, 5), (10, 5), (12.5, 7.5)) (3)

((x2(a), y2(a)), (x2(b), y2(b)), (x2(c), y2(c)))

= ((10, 5), (10, 5), (2.5, 2.5)) (4)

((x3(a), y3(a)), (x3(b), y3(b)), (x3(c), y3(c)))

= ((10, 10), (10, 10), (25, 25)). (5)
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Notice that only Agent 3 can cheat Agents

2 and 3 in state a or b, by announcing b and

a respectively, but has no incentive to do so.

Hence, allocation (3) is individual incentive

compatible. However, Agents 2 and 3 can form

a coalition and when state c occurs they re-

port to Agent 1 state b. Thus, Agent 1 gets

(10, 5) instead of (12.5, 7.5) and Agents 2 and

3 distribute among themselves 2.5 units of each

good, and clearly are better off.

Example 0.4 Consider a three person econ-

omy, with Agents 1, 2, 3, one good denoted by

x, and three equally probable states denoted

by a, b, c. The agents’ utility function, initial

endowments, and private information sets are
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as follows:

ui =
√

xi, i = 1, 2, 3

e1(a, b, c) = (5, 5, 0)), F1 = {{a, b}, {c}}
e2(a, b, c) = (5, 0, 5), F2 = {{a, c}, {b}}
e3(a, b, c) = (0, 0, 0), F2 = {{a}, {b}, {c}}.

The allocation below is Fi-measurable (i =

1, 2, 3) and cannot be improved upon by any

Fi-measurable, and feasible redistributions of

the initial endowments of any coalition (this is

the private core, Yannelis (1991)):

x1(a, b, c) = (4, 4, 1)

x2(a, b, c) = (4, 1, 4)

x3(a, b, c) = (2, 0, 0). (6)

Notice that the allocation in (4) is incentive

compatible in the sense that Agent 3 is the

only one who can cheat Agents 1 and 2 if the
18



realized state of nature is a. However, Agent 3

has no incentive to misreport state a since this

is the only state she gets positive consumption,

and in any case one of Agents 1 or 2 will be able

to tell the lie. Neither is it possible, as it can

be easily seen, to form a coalition, profitable

to both members, and misreport the state they

have observed. Finally, notice that if Agent 3

had “bad” information, i.e., F ′
3 = {a, b, c},

then, in a private core allocation, she gets zero

consumption in each state. Thus, advanta-

geous information is taken into account.

2. Cooperative equilibrium concepts:

Core

Definition 3.1. An allocation x ∈ LX is

said to be a private core allocation if

(i)
∑n

i=1 xi =
∑n

i=1 ei and
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(ii) there do not exist coalition S and allo-

cation (yi)i∈S ∈ ∏

i∈S
LXi

such that
∑

i∈S
yi =

∑

i∈S
ei and vi(yi) > vi(xi) for all i ∈ S.

Definition 3.2. An allocation

x = (x1, . . . , xn) ∈ L̄X is said to be a WFC

allocation if

(i) each xi(ω) is FI-measurable;

(ii)
∑n

i=1 xi(ω) =
∑n

i=1 ei(ω), for all ω ∈ Ω;

(iii) there do not exist coalition S and allocation

(yi)i∈S ∈ ∏

i∈S
L̄Xi

such that yi(·) − ei(·)
is FS-measurable for all i ∈ S,

∑

i∈S
yi =

∑

i∈S
ei and vi(yi) > vi(xi) for all i ∈ S.

3. Noncooperative equilibrium con-

cepts: Walrasian expectations equi-

librium and REE
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A price system is an F -measurable, non-

zero function p : Ω → IRl
+ and the budget

set of Agent i is given by

Bi(p) = {xi : xi : Ω → IRl is Fi-measurable

xi(ω) ∈ Xi(ω) and
∑

ω∈Ω

p(ω)xi(ω) ≤
∑

ω∈Ω

p(ω)ei(ω)}.

Definition 4.1. A pair (p, x), where p is

a price system and x = (x1, . . . , xn) ∈ LX

is an allocation, is a Walrasian expectations

equilibrium if

(i) for all i the consumption function maxi-

mizes vi on Bi(p)

(ii)
∑n

i=1 xi ≤
∑n

i=1 ei ( free disposal), and

(iii)
∑

ω∈Ω
p(ω)

∑n
i=1 xi(ω) =

∑

ω∈Ω
p(ω)

∑n
i=1 ei(ω).

Next we turn our attention to the notion of

REE. We shall need the following. Let σ(p)
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be the smallest sub-σ-algebra of F for which

a price system p : Ω → IRl
+ is measurable

and let Gi = σ(p) ∨ Fi denote the smallest

σ-algebra containing both σ(p) and Fi. We

shall also condition the expected utility of the

agents on G which produces a random variable.

Definition 4.2. A pair (p, x), where p is

a price system and x = (x1, . . . , xn) ∈ L̄X is

an allocation, is a REE if

(i) for all i the consumption function xi(ω) is

Gi-measurable;

(ii) for all i and for all ω the consumption func-

tion maximizes vi(xi|Gi)(ω) subject to the

budget constraint at state ω,

p(ω)xi(ω) ≤ p(ω)ei(ω);
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(iii)
∑n

i=1 xi(ω) =
∑n

i=1 ei(ω) for all ω ∈ Ω.

REE is an interim concept because we con-

dition on information from prices as well. An

REE is said to be fully revealing if Gi = F =
∨

i∈I Fi for all i ∈ I . Although in the def-

inition we do not allow for free disposal, we

comment briefly on such an assumption in the

context of Example 5.2.

Example 5.1 Consider the following three

agents economy, I = {1, 2, 3} with one com-

modity, i.e. Xi = IR+ for each i, and three

states of nature Ω = {a, b, c}.
The endowments and information partitions

of the agents are given by

e1 = (5, 5, 0), F1 = {{a, b}, {c}};
e2 = (5, 0, 5), F2 = {{a, c}, {b}};
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e3 = (0, 0, 0), F3 = {{a}, {b}, {c}}.

ui(ω, xi(ω)) = x
1
2
i and every player has the

same prior distribution µ({ω}) =
1

3
, for ω ∈

Ω.

The redistribution








4 4 1

4 1 4

2 0 0









is a private core allocation, where the ith line

refers to Player i and the columns from left to

right to states a, b and c.

If the private information set of Agent 3 is

the trivial partition, i.e., F ′
3 = {a, b, c}, then

no trade takes place and clearly in this case he

gets zero utility. Thus the private core is sensi-

tive to information asymmetries. On the other

hand in a Walrasian expectations equilibrium
24



or a REE Agent 3 will always receive zero

quantities as he has no initial endowments, ir-

respective of whether her private information

partition is the full one or the trivial one.

4. Incentive compatibility

There are alternative formulations of the no-

tion of incentive compatibility. The basic idea

is that an allocation is incentive compatible if

no coalition can misreport the realized state of

nature and have a distinct possibility of mak-

ing its members better off.

Suppose we have a coalition S, with mem-

bers denoted by i, and the complementary set

I \ S with members j. Let the realized state

of nature be ω∗. Each member i ∈ S sees

Ei(ω
∗). Obviously not all Ei(ω

∗) need be the

same, however all Agents i know that the ac-
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tual state of nature could be ω∗.
Consider a state ω

′
such that for all j ∈ I \S

we have ω
′ ∈ Ej(ω

∗) and for at least one i ∈
S we have ω

′
/∈ Ei(ω

∗). Now the coalition

S decides that each member i will announce

that she has seen her own set Ei(ω
′
) which, of

course, contains a lie. On the other hand we

have that ω
′ ∈ ⋂

j /∈S
Ej(ω

∗).

The idea is that if all members of I \ S be-

lieve the statements of the members of S then

each i ∈ S expects to gain. For coalitional

Bayesian incentive compatibility (CBIC) of

an allocation we require that this is not possi-

ble.

Definition 7.1. An allocation

x = (x1, . . . , xn) ∈ L̄X , with or without
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free disposal, is said to be TCBIC if it is not

true that there exists a coalition S, states ω∗

and ω
′
, with ω∗ different from ω

′
and ω

′ ∈
⋂

i/∈S
Ei(ω

∗) and a random, net-trade vector,

z = (zi)i∈S among the members of S,

(zi)i∈S,
∑

S

zi = 0

such that for all i ∈ S there exists Ēi(ω
∗) ⊆

Zi(ω
∗) = Ei(ω

∗) ∩ (
⋂

j /∈S

Ej(ω
∗)), for which

∑

ω∈Ēi(ω∗)

ui(ω, ei(ω) + xi(ω
′
) − ei(ω

′
) + zi)qi

(

ω|Ēi(ω
∗)

)

>
∑

ω∈Ēi(ω∗)

ui(ω, xi(ω))qi

(

ω|Ēi(ω
∗)

)

. (7)

Notice that ei(ω)+xi(ω
′
)− ei(ω

′
)+ zi(ω) ∈

Xi(ω) is not necessarily measurable. The def-

inition implies that no coalition can hope that

by misreporting a state, every member will
27



become better off if they are believed by the

members of the complementary set.

We now provide a characterization of TCBIC:

Proposition 7.1. Let E be a one-good

DIE, and suppose each agent’s utility function,

ui = ui(ω, xi(ω)) is monotone in the elements

of the vector of goods xi, that ui(., xi) is Fi-

measurable in the first argument, and that an

element x = (x1, . . . , xn) ∈ L̄1
X is a feasi-

ble allocation in the sense that
∑n

i=1 xi(ω) =
∑n

i=1 ei(ω) ∀ω. Consider the following condi-

tions:

(i) x ∈ L1
X =

n
∏

i=1
L1

Xi
.

and

(ii) x is TCBIC.

Then (i) is equivalent to (ii).
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5. Bayesian learning with cooperative

solution concepts

Let T = {1, 2, ...} denote the set of time pe-

riods and σ(et
i, u

t
i) the σ-algebra that the ran-

dom initial endowments and utility function

of Agent i generated at time t. At any given

point in time t ∈ T , the private information

of Agent i is defined as:

F t
i = σ

(

et
i, u

t
i,

(

xt−1, xt−2, ...
)

)

(8)

where xt−1, xt−2, ... are past periods private

core allocations.

Relation (22) says that at any given point in

time t, the private information which becomes

available to Agent i is σ(et
i, u

t
i) together with

the information that the private core alloca-

tions generated in all previous periods. In this
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scenario, the private information of Agent i in

period t+1 will be F t
i together with the infor-

mation the private core allocation generated

at at period t, i.e. σ(xt). More explicitly, the

assumption is that the private information of

Agent i at time t+1 will be F t+1
i = F t

i∨σ(xt),

which denotes the ”join”, that is the smallest

σ-algebra containing F t
i and σ(xt).

Therefore for each Agent i we have that

F t
i ⊆ F t+1

i ⊆ F t+2
i ⊆ ... . (9)

Relation (23) represents a learning process

for Agent i and it generates a sequence of dif-

ferential information economies
{

Et : t ∈ T
}

where now the corresponding private informa-

tion sets are given by
{

F t
i : t ∈ T

}

.

Example 10.1 Consider the following DIE
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with two agents I = {1, 2} three states of na-

ture Ω = {a, b, c} and goods, in each state,

the quantities of which are denoted by xi1, xi2,

were i refers to the agent. The utility func-

tion are given by ui(ω, xi1, xi2) = x
1
2
i1x

1
2
i2, and

states are equally probable, i.e. µ({ω}) =
1

3
, for ω ∈ Ω. Finally the measurable en-

dowments and the private information of the

agents is given by

et
1 =

(

(10, 0), (10, 0), (0, 0)
)

, F1 =
{

{a, b}, {c}
}

et
2 =

(

(10, 0), (0, 0), (10, 0)
)

, F2 =
{

{a, c}, {b}
}

.

The structure of the private information of

the agents implies that the private core allo-

cation, (xt
1, x

t
2), in t = 1 consists of the initial

endowments.
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Notice also that the information generated

in Period 2 is the full informa σ(xt
1, x

t
2) =

{

{a}, {b}, {c}, {a, b}, {a, c}, {a, b, c}, ∅
}

. It fol-

lows that the private information of each agent

in periods t ≥ 2 will be

F t+1
1 = F t

1∨σ(xt
1, x

t
2) =

{

{a}, {b}, {c}
}

;

F t+1
2 = F t

2∨σ(xt
1, x

t
2) =

{

{a}, {b}, {c}
}

.

Now in t = 2 the agents will make contracts

on the basis of the private information sets in

(25). It is straightforward to show that a pri-

vate core allocation in period t ≥ 2 will be

xt+1
1 =

(

(5, 5), (10, 0), (0, 0)
)

;

xt+1
2 =

(

(5, 5), (0, 0), (0, 10)
)

.

Notice that the allocation in (26) makes both

agents better off than the one given in (24).

In other words, by refining their private infor-
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mation using the private core allocation they

have observed, the agents realized a Pareto im-

provement.

Of course, in a generalized model with more

than two agents and a continuum of states,

unlike the above example, there is no need

that the full information private core will be

reached in two periods. The main objective

of learning is to examine the possible conver-

gence of the private core in an infinitely re-

peated DIE. In particular, let us denote the

one shot limit full information economy by

Ē = {(Xi, ui, F̄i, ei, qi : i = 1, 2, ..., n)} where

F̄i is the pooled information of Agent i over

the entire horizon, i.e. F̄i =
∞
∨

i=1
F t

i .

The questions that learning addresses itself

to are the following:
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(i) If
{

Et : t ∈ T
}

is a sequence of DIE

and xt is a corresponding private core or value

allocation, can we extract a subsequence which

converges to a limit full information private

core allocation for Ē?

(ii) Is the answer to (i) above affirmative, if

we allow for bounded rationality in the sense

that xt is now required to be an approximate,

ǫ-private core allocation for Et, but nonethe-

less it converges to an exact private core allo-

cation for Ē?

(iii) Given a limit full information private

core allocation say x̄ for Ē , can we construct

a sequence of ǫ-private core allocation xt in

Et which converges to x̄? In other words, can

we construct a sequence of bounded rational

plays, such that the corresponding ǫ-private
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core allocations converge to the limit full in-

formation private core allocation.

The above questions have been affirmatively

answered in Koutsougeras - Yannelis (1999).

It should be noted that in the above frame-

work it may be the case that in the limit in-

complete information may still prevail. In other

words, it could be the case that

F̄i =
∞
∨

i=1
F t

i ⊂
n
∨

i=1
F t

i .

Hence in the limit a private core allocation

may not be a fully revealing allocations of the

same kind. However, if learning in each period

reaches the complete information in the limit,

i.e. F̄i ⊃
n
∨

i=1
F t

i the private core is indeed

fully revealing.
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