Networks: how Information theory met the space and time

Philippe Jacquet INRIA Ecole Polytechnique France

Plan of the talk

- History of networking and telecommunication
- Physics, mathematics, computer science
- Internet Routing complexity
- Mobile ad hoc networking complexity
- Wireless networking: Shannon's law.
- Information and space-time
- Wireless capacity and space-time

History of networking and telecommunication

- 1900: Marconi on Eiffel tower: first wireless telecommunication
- 1948: Shannon and Information Theory, transistor: first telecommunication massive optimization
- 1986: Birth of Internet, World Wide Web: First massive data, multimedia, multi-user network.
- 2000: the internet got wireless

Rise of Telecommunications (1800-1900)

C. Chappe 1793

S. Morse 1837

T. Edison 1878

G. Marconi 1899

plancher du 3* etage plancher du 5* etage plancher du 1* etage du 1* etage du 1* etage du 1* etage du 1* etage

From pigeon to light speed: the triumph over the matter

WERKEND JOURNAL PERSONAL JOURNAL

> MARKETPLACE THE WALL STREET, JOINNAL

Electromagnetic

Journal paper

• Pigeon post

From lamp to transistor: code and signal processing revolution. The triumph over the numbers Telecommunications cross the border from physics to mathematics

Fig. 1 The NPN Transistor

transistor 1947

C. Shannon 1948

enigma 1941

The wonders of the digital revolution

C. Berrou 2000

Internet: The triumph over the complexity

- Telecommunications cross the border of computer science
 - Cold war 1970: the strategic network identified as the weak point
- Answer: ARPANET then INTERNET
 - First, connect missiles sites
 - Then, universities
 - Every user
- The protocol (IP) binds heterogeneous networks (fiber, telephone, *etc*)
- Detects and avoids damaged parts in real time.

Facts and figure about internet

Country Code: from mask

- internet:
 - 6.10⁸ connected other machines
 - Connectivity degree 10-100
 - 3.10¹⁰ web pages
 - -2.10^{15} online bits
 - speed sub c

Internet is the most complicated artefact

•Far from human brain:

•10¹¹ neurons

•Connectivity degree : 10,000 -100,000

•Speed: 100-400 m/s (scale with world internet)

Histogram

Physics, math and computer sciences in telecommunication

wireless performance from Marconi to Wifi

- Traffic density
 - 1900:
 - 10 bit/s/100.000 km²,
 - 1000 watt

<text><text><text><text><text><text><text>

TOUR EIFFEL

- 2008:
 - 10,000,000 bit/s/ha,
 - 0.01 watt

A factor 10¹⁴ 100,000,000, 000,000

Comparison: road traffic

Road traffic increase 1900-2008: < 10⁵ =100,000?

Physics,mathematics,computer science

• The telecommunications without

– The physics

Physics,mathematics,computer science

• The telecommunications without

Physics,mathematics,computer science

- The telecommunications without
 - The computer science

Physics-math-computer science

- Networks are together physics, math and computer science
- Computer science is the science which makes a complex system a simple object
 - Gee, how hard sometimes to reach this simplicity...

 Routing tables is like orientation maps in every router North North-West Road Road North-Eastestinati exit distance Road on NE 62 km routerB RouterA South-West Paris 133 km Ν Road South-East Beijing NW 12880 km Road South Road

- Two protocols;
 - RIP: run to neighbor protocol
 - Deliver the routing table to local neighbor
 - BGP: run theTour de France protocol
 - Deliver the local routing table to whole network

- Complexity: NL (per refresh period)
- Convergence time: network diameter

- Routing table computed on local link database
- Complexity L² (per refresh period)
- Convergence: network diameter

- Which is best:
 - Deliver whole table to local?

– Deliver local table to all?

- •Divergence time makes the difference!
 - Network Diameter with BGP (symmetric)
 - At least Diameter × L with RIP (asymmetric)

RIP failure

Count to infinity (1983 ARPANET incident)

 $\infty \times L < 15 \times L$

Wireless networks

WILL ALWAYS

d

 N^2

WILL HIGH

m

Mobile ad hoc networks

- Mobility makes link failure a necessity
 - Refresh period 1 second
 - Automatic self-healing
- Local neighborhood is local space
 - Unlimited neighborhood size
- Stadium network: N=10,000, with average degree 1,000
 - BGP needs 10¹⁴ links exchange per refresh time
 - BGP fails on Wifi networks with 20 users at walking speed.
 - Heavy density kills link state management.

- Optimized Link State Routing protocol
 - Advertize local table subset to whole network
 - Local neighborhood subset is the MultiPoint Relay (MPR) set of the node.
 - Every node receives a compressed topology information.

Wireless topology compression

 the MPR set covers the two-hop neighbor set

Wireless topology compression

- MPR sets forms a *remote spanner* Nodes compute their routing table on
 - remote spanner plus their local topology.

- Topology compression is *lossless*
 - Optimal routes on remote spanner also optimal without compression.

Wireless topology compression

- In Erdoss-Renyi random graphs – Random selection gives compression rate $\tau_r = \frac{N^3}{r^2} \log N$
- In unit disk graph model – Greedy selection gives compression rate $\tau_r = 3 \left(\frac{\pi N}{L}\right)^{\frac{2}{3}}$
- Stadium network

 Compression rate 10⁻²

Dissemination compression

- Only MPR retransmit local routing table – Another compression of rate $\approx \tau_r \frac{N}{L}$
- Stadium network

– Overall compression 10⁻⁷

Wireless protocol compression

- 10⁷ ratio is like
 - your car traveling at light speed

Information theory in networks

• Originally for point to point coding A X: Emitted code X: Emitted code X: Received code

Channel capacity: I(X,Y)=entropy of Y - channel entropy

 $I(X,Y) = h(Y) - h(Y \mid X)$

Example: wireless transmission

- Emitted Symbol: *X* an integer in [1,*S*]
- Received Symbol: $Y = X + \beta$

-Noise β an integer in [1,B]

- Capacity per symbol $I(X,Y) = \log(1 + \frac{S}{B})$ $h(Y) = \log(S + B)$ $h(Y | X) = \log B$

Limitation of information theory within space and time

 Fake superluminal information propagation: the twin traveler paradox

Causality in information theory

- Twin traveler paradox resolution?.
 - For a common fixed past X et Y should be independent.

Bell theorem

• Information is non causal:

Network: information and space-time

Space time relay versus information causality

B

- Can network of superluminal relays exist
 - Space time relay (A,B) definition
 - Can relay anything
 - From any source in Past(A)
 - To any destination in Future(B)

Space time relay versus information causality

A wireless model

 Emitters are distributed as Poisson process in the plan

density λ

– Signals sum

$$S = \sum_{i} |z - z_i|^{\alpha}$$

A wireless model

Signal distribution

 $E(e^{-\theta S}) = \exp(-\lambda \pi \Gamma(1-\gamma)\theta^{\gamma})$

$$\gamma = \frac{2}{\alpha}$$

Wireless information theory

• Wireless capacity,

- emiters send independent information

$$I_0 = E\left(\sum_i \log_2(1 + \frac{|z - z_i|^{\alpha}}{\sum_{j \neq i} |z - z_j|^{\alpha}})\right)$$

- Computable and invariant even with random fading γ

$$I_0 = \frac{\gamma}{\log 2}$$

Wireless Shannon

Invariant with dimensions

$I_0 = \frac{\alpha}{D} (\log 2)$	$2)^{-l^{1,0}}_{0,9}^{0,9}_{0,8}^{0,0}^{0,0}_{0,8}^{0,0}_{0,8}^{0,0}_{0,8}^{0,0}_{0,8}^{0,0}_{0,8}^{0,0}_{0,8}^{0$		
Works also with fractal	o,6 o,6 Spaces		
• D=4/3	0,4		

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

1.0

Wireless Space capacity

10.

1.0

With signal over noise ratio K requirement

$$I(K) = \frac{\sin(\gamma \pi)}{\gamma \pi} K^{-\gamma}$$

• Average area of correct reception $\sigma(K) = \frac{I(K)}{\lambda}$

 $\sigma(10) \approx 0.037066$

Wireless Space capacity

Z

 Reception probability vs distance

$$p(r,\lambda,K) = p(r\sqrt{\lambda}K^{-\frac{1}{4}},1,1)$$

$$p(r,1,1) = \sum_{n} (-1)^{n} \frac{\sin(\pi n\gamma)}{\pi} \frac{\Gamma(n\gamma)}{n!} r^{2n}$$
$$p(r,1,1) = 1 - \operatorname{erf}(\frac{r^{2}}{2}) \text{ when } \alpha = 4$$

• Optimal routing radius $r_m = \underset{r>0}{\operatorname{arg\,max}} \{rp(r,\lambda,K)\} = \frac{r_1}{\sqrt{\lambda}} K^{\frac{1}{4}}$

Wireless Space capacity

- Average number of retransmissions $\frac{|z-z'|}{r_m p(r_m)}$
- Net traffic density $\rho = \lambda \frac{r_m p(r_m)}{E(|z-z'|)}$
- True if neighborhood is dense enough

$$\pi r_m^2 \frac{N}{A} > \log N$$

Space capacity result (Gupta-Kumar 2000)

• The capacity increases with the density

$$A\rho = \sqrt{\pi}r_1^2 p_1 \frac{\sqrt{A}}{E(|z-z'|)} \sqrt{\frac{N}{\log N}} = O\left(\sqrt{\frac{N}{\log N}}\right)$$

Time capacity paradox

• Mobility can create capacity in sparse networks

Delay Tolerant Networks

Information propagation speed

- Unit disk graph model
- Random walk mobility model

Time capacity paradox

Mobility creates capacity

Information propagation speed

- Upper bound of information propagation speed
 - Any quantity c such that

$$\lim_{z' \to \infty} P(T(z') < \frac{|z - z'|}{c}) = 0$$

- Is the smallest ratio $\frac{\theta}{\rho}$ in the kernel of $D(\rho, \theta) = \sqrt{(\tau + \theta)^2 - \rho^2 v^2} - \tau - \frac{2\pi v s I_0(\rho)}{1 - \pi v \frac{2}{\rho} I_1(\rho)}$
 $I_k()$ are modified Bessel functions

Information propagation speed

